On the Characters a Quaternion Group Q_{2n} Where $n=p^r$, $r \in Z^+$ and p is any Prime Number and $p \neq 2$

Nesir Rasool Mahamoed

University of Kufa

Abstract

In this research, we present an important result on the characters of the quaternion group Q_{2n} where $n=p^r$ and $r \in Z^+$ and p is any prime number and not equal to 2, and the main result is the following proposition:-

Every rational valued characters of the quaternion group can be written as Z-linear combination of induced characters $1_{c_i}^{Q_{2n}}$, c_i runs over all cyclic subgroup of $q_{2n}.$

الخلاصة

في هذا البحث توصلنا الى النتيجة الاتية حول شواخص الزمرة Q2n عندما n=p^r وان r عدد صحيح موجب و p عدد اولى اكبر من 2 وكانت النتيجة الرئيسية هي الاتية:-كل شاخص من شواخص الزمرة Q_{2n} (في حالة n=p^r) يمكن التعبير عنه بصيغة تركيب خطى للشواخص المحثثة . Q_{2n} حيث معاملاتها اعداد صحيحة وان C_i زمرة جزئية من الزمرة $1_{c.}^{Q_{2n}}$

Introduction

Let Q_{2n} be a quaternion group, and Q a rational field, two elements X and Y of Q_{2n} are called Q-conjugate if the cyclic group generated by X is conjugate to the cyclic group generate by Y. This defines an equivalence relation on Q_{2n} , their equivalence classes are called the Γ -classes of Q_{2n} , let these be

 $1 = \Gamma_1, \Gamma_2, \dots \Gamma m$

Let $x_i \in \Gamma i$ be the representative of the class Γi and $C_i = \langle X_i \rangle$.

Due to Artin theorem asserts if G be a finite group and θ be a rational valued character of G then;

$$\theta = \sum_{i=1}^{m} a_i \ 1_{c_i}^G \qquad \text{where } a_i \in Q \qquad \dots(1)$$

So according to this theorem each valued character χ of Q_{2n} can be written as:

$$\chi = \sum_{i=1}^{m} a_i \ 1_{c_i}^{Q_{2n}} \qquad \text{where } a_i \in Q \qquad \dots (2)$$

In the present paper, we have proved that each rational valued character χ of Q_{2n} , which is expressible as in (1) with $a_i \in Z$, where $n=2^r$ such that r is positive integer number i.e.

$$\chi = \sum_{i=1}^{m} a_i \ 1_{c_i}^{\mathcal{Q}_{2n}} \qquad \text{where } a_i \in \mathbb{Z} \qquad \dots(3)$$

There is no doubt that the problem of constructing the rational valued characters table of Q_{2n}, where $n=2^r$ and $r \in Z^+$ and p is any prime number, and $p\neq 2$, would be rather simplified if we knew that each rational valued characters of Q_{2n} can be written

as a Z-linear combination of the induced characters $1_{c_{\rm i}}^{Q_{2n}}$.

On the group $K(Q_{2n})$

Definition (1) : For each positive integer n the general quaternion group of order 4n can be defined as follows:

 $Q_{2n} = \{ <\!\! X, \, Y\!\!> \colon X^{2n} = Y^4 = 1 \ , \ Y\!\times\!Y^{\text{-}1} = X^{\text{-}1} \}$

For more information see [Board et al., 1973; Curtise, 1988)

Definition (2): Let Cf (G, Z) be the set of all Z-Valued class function of G which are constant on Q-Classes. Let R(Q, Z), be the intersection of Cf (G, Z) with R(G) the group of generalized characters of G.

R(Q, Z) is a finitely generated Z-module with bases Q-Characteristics of G.

$$\chi_i = \sum_{\sigma \in \operatorname{Gal}(Q(\chi_i)/Q)}^m \chi_i^{\sigma} , \chi_i \in \mathrm{I}_{\mathrm{rr}}(\mathrm{C})$$

And rank m, we will denote by K(G) the factor group $\frac{Cf(G,Z)}{R(Q,Z)}$

Theorem (1):

For a finite group G, we have;

$$|\mathbf{K}(\mathbf{G})| = \left(\frac{\prod_{i=1}^{m} n_i |\mathbf{N}(\mathbf{C}_i)|}{\phi(|\mathbf{C}_i|)}\right)^{\frac{1}{2}}$$

For proof see (Kirdar, 1988)

Theorem (2): Let G be a finite group, $\{C_i = \langle X_i \rangle, 1 \leq I \leq m\}$ set of non-conjugate cyclic subgroups of G, and n_i be the number of conjugate cyclic subgroup of G contained in the Q-Class Γ i, then each rational valued

character of G can be written as a Z-linear combination of $1_{C_i}^{C_n}$ if and only if:

$$\left(\prod_{i=1}^{m} \frac{n_{i}}{\phi(|C_{i}|)}\right)^{\frac{1}{2}} = \prod_{i=1}^{m} \frac{\left(|N(C_{i})|\right)^{\frac{1}{2}}}{|C_{i}|}$$

for proof see (Kirdar, 1988)

Corollary 1:

The rational valued characters of a cyclic group C_n of order n can be written as a Z-linear combination of characters $1_{C_i}^{C_n}$, where C_i runs over the set of subgroup of C_n . For proof see(Kirdar, 1988).

Lemma 1: Let m be the number of Q-classes Γ_i of Q_{2n} , where n is an even number, then m=m₁+2, where m₁ is the number of Q-classes Γ_i of the cyclic

then m=m₁+2, where m₁ is the number of Q-classes Γ_i of the cyclic subgroup C_{2n}= $\langle X \rangle$.

For proof see (Mohammed, 1995).

Corollary 2: We have,

 $|\mathbf{K}(\mathbf{Q}_{2n})| = |\mathbf{K}(\mathbf{Q}_2, \mathbf{p}^h)| = |\mathbf{K}(\mathbf{C}_2\mathbf{p}^h) \oplus \mathbf{C}_4|$

The main result

In this article we shall prove the following

Proposition

Every rational valued character of the quaternion can be written as z-linear combination of induced characters $1_{C_i}^{C_n}$, Ci runs over all cycles subgroup of Q2n, where m is the number of Γ classes of Q_{2n} .

Let $n=2^r$ and r is any positive integer number, by theorem (1) we get

$$|\mathbf{K}(\mathbf{Q}_{2n})| = |\mathbf{K}(\mathbf{Q}_{2p^{r}})| = \left(\prod_{i=1}^{m} \frac{\mathbf{n}_{i}(|\mathbf{N}(\mathbf{C}_{i})|)}{\phi(|\mathbf{C}_{i}|)}\right)^{\frac{1}{2}} \dots (1)$$

By corollary (2) we get;

$$|\mathbf{K}(\mathbf{Q}_{2n})| = |\mathbf{K}(\mathbf{Q}_{2p^{r}})| = |\mathbf{K}(\mathbf{C}_{2p^{r}})| |\mathbf{C}_{4}| = 4 |\mathbf{K}(\mathbf{Q}_{2}p^{r})| \qquad \dots (2)$$

Further more by equation (1) lemma (1) and corollary (2), we get;

$$|\mathbf{K}(\mathbf{Q}_{2n})| = |\mathbf{K}(\mathbf{Q}_{2p^{r}})| = \left(\prod_{i=1}^{m_{1}} \frac{\mathbf{n}_{i}(|\mathbf{N}(\mathbf{C}_{i})|)}{\phi(|\mathbf{C}_{i}|)}\right)^{\frac{1}{2}} \cdot \left(\frac{\mathbf{n}_{s}|\mathbf{N}(\mathbf{C}_{4})|^{\frac{1}{2}}}{\phi|(\mathbf{C}_{4})|}\right)$$

but;
 $\phi(|\mathbf{C}_{4}|) = \phi(4) = 2$
and $\mathbf{n}_{s} = 2$

$$\therefore |\mathbf{K}(\mathbf{Q}_{2n})| = |\mathbf{K}(\mathbf{Q}_{2p^{r}})| = \left(\prod_{i=1}^{m_{i}} \frac{\mathbf{n}_{i}(|\mathbf{N}(\mathbf{C}_{i})|)}{\phi(|\mathbf{C}_{i}|)}\right)^{1/2} \cdot \left[\frac{2^{r+1}|\mathbf{N}(\mathbf{C}_{4})|}{2}\right]^{2}$$
$$\therefore |\mathbf{K}(\mathbf{Q}_{2n})| = \left(\prod_{i=1}^{m_{i}} \frac{\mathbf{n}_{i}(|\mathbf{N}(\mathbf{C}_{i})|)}{\phi(|\mathbf{C}_{i}|)}\right)^{1/2} \cdot \left[|\mathbf{N}(\mathbf{C}_{4})|\right]^{\frac{1}{2}} \dots (3)$$

Also, by equation (2) and equation (3), we get;

$$\begin{aligned} 4 \left| K(Q_{2p^{r}}) \right| &= \left[\prod_{i=1}^{m_{1}} \frac{n_{i}(|N(C_{i})|)}{\phi(|C_{i}|)} \right]^{\frac{1}{2}} \cdot \left[|N(C_{4})| \right]^{\frac{1}{2}} \\ \text{So} \\ \left| K(C_{2p^{r}}) \right| &= \left[\prod_{i=1}^{m_{1}} \frac{n_{i}(|N(C_{i})|)}{\phi(|C_{i}|)} \right]^{\frac{1}{2}} , \\ \left[|N(C_{4})| \right]^{\frac{1}{2}} , \text{ it mean} \\ N(C_{4}) &= 16 \\ \text{Hence} \\ \end{aligned}$$
(4)

1/

$$\prod_{i=1}^{m} \frac{(|N(C_i)|)^{\frac{1}{2}}}{(|C_i|)} = \prod_{i=1}^{m} \frac{(|N(C_i)|)^{\frac{1}{2}}}{(|C_i|)} \cdot \frac{(|N(C_4)|)^{\frac{1}{2}}}{|C_4|}$$
$$= \prod_{i=1}^{m_1} \frac{(|N(C_i)|)^{\frac{1}{2}}}{(|C_i|)} = \frac{4}{4} \qquad \dots (5)$$

17

On the other hand

17

$$\therefore \prod_{i=1}^{m} \frac{(|\mathbf{N}(\mathbf{C}_{i})|)^{\frac{1}{2}}}{(|\mathbf{C}_{i}|)} = \prod_{i=1}^{m_{i}} \frac{(|\mathbf{N}(\mathbf{C}_{i})|)^{\frac{1}{2}}}{(|\mathbf{C}_{i}|)} \cdot \left(\frac{n_{s}}{\phi|\mathbf{C}_{4}|}\right)$$

Since n_s=2

$$, \phi |C_i| = \phi(4) = 2,$$

So

From (5) and (6) we get

$$\left[\prod_{i=1}^{m} \frac{\mathbf{n}_{i}}{\phi(|\mathbf{C}_{i}|)}\right]^{\frac{1}{2}} = \left[\prod_{i=1}^{m_{i}} \phi \frac{\left(|\mathbf{N}(\mathbf{C}_{i})|\right)}{\phi|\mathbf{C}_{i}|}\right]^{\frac{1}{2}}$$

Then by theorem (3) we have the rational valued characters of quaternion group Q_{2n} , where $n=p^r$ for all p is any prime number and r is a positive integer number, can

be written as a Z-linear combination of the induced characters $1_{c_i}^{Q_{2n}}$, where C_i runs over the set of all subgroup of Q_{2n} .

References

- Board, A.D., Ocnner, D.E., and Young; (1973). Symmetry and Its Application in Science: McGraw Hill Book Company Limited (VK).
- Curtise, C.R., (1988). Reiner, Representation of Finite Groups and Associative Algebras; Wiley Interscience.
- Isacc, I.M. (1976). Character Theory of Finite Groups. Academic Press, New York .
- Kirdar, M.S.(1988). On Artins Theorem. Arab Journal of Mathematics Vol.(9), No.182, 1988.
- Mohammed N.R. (1995). The Cyclic Decomposition of the Factor Group of $Cf(Q_{2n}, Z)/R(Q_{2n})$, M.Sc., thesis University of Technology.
- Serr, J.P. (1977). Linear Representations of Finite group Springier-Verlag (42), New York.