On S_{β} – Dimension Theory

Raad Aziz Hussain

Sanaa Noor Mohammed

Department of Mathematics College of Computer science and Mathematics University of AL-Qadisiya Sanaa9noor@gmail.com Raad-64@hotmail.com

Abstract

In this paper we introduce and define a new type of S_{β} — dimension theory and the concept of *indX*, *IndX and dimX*, for a topological space *X* have been studied. In this work, these concepts will be extended by using S_{β} — *open* sets.

Keywords: $S_{\beta} - open$, semi-open , semi-pre-open (= β open), $S_{\beta} - ind$, $S_{\beta} - Ind$, and $S_{\beta} - dim$.

الخلاصة

Introduction

Dimension theory starts with "dimension function" which is a function defined on the class of topological spaces such that d(X) is an integer or ∞ , with the properties that d(X) = d(Y) if X and Y are homeomorphic and $d(\mathbb{R}^n) = n$ for each positive integer n. The dimension functions taking topological spaces to the set{-1,0,1,...}. The dimension functions ind, Ind, dim, were investigated by [Pears ,1975]. Actually the dimension functions, S - indX, S - IndX and S - dimX by using S - open sets were studied in [Raad,1992], also the dimension functions, b - indX, b - IndX and b - dimX, by using b - open sets were studied in [Sama Kadhim Gabar,2010], and the dimension functions, f - indX, f - IndX and f - dimX, by using f - open sets were studied in [Nedaa, 2011]. In this chapter we recall the definitions of ind, Ind, dim, from [Pears ,1975], and the dimension functions, N - ind, N - Ind, N - dim are by using N - open sets [Enas,2014]. Then the dimension functions, $S_{\beta} - ind$, $S_{\beta} - Ind$ and $S_{\beta} - dim$ are introduced by using $S_{\beta} - open$ sets. Finally some relations between them are studied and some results relating to these concepts are proved.

1. Preliminaries

Definition (2.1): A subset A of a topological space (X,T) is called :

i. Semi-open (s – open) set in X if $A \subseteq \overline{A^\circ}$ and semi-closed (s-closed), if $\overline{A^\circ} \subseteq A$. [Das,1973]

ii. Pre-open if $A \subseteq \overline{A}^{\circ}$ and pre-closed set if $\overline{A^{\circ}} \subseteq A$. [Mashhour *et al.*, 1982] iii. Semi-pre-open(= β - *open*) if $A \subseteq \overline{\overline{A}^{\circ}}$ and semi-pre-closed (= β - *closed*) if $\overline{A^{\circ}}^{\circ} \subseteq A$. [Shareef,2007] iv. Regular open if $A = \overline{A}^\circ$ and regular closed if $A = \overline{A^\circ}$. [Steen, & Seebach, 1970] Definition (2.2)[Alis and Nehmat ,2012]: A semi open subset A of a topological space(X,T) is said to be $S_\beta - open$ if for each $x \in A$ there exists a β -closed set F such that $x \in F \subseteq A$. The complement of an $S_\beta - open$ set is said to be an $S_\beta - closed$ set The family of $S_\beta - open$ subset of X is denoted by $S_\beta O(X)$.

Proposition (2.3) [Alis and Nehmat, 2012]: A subset A of a topological space (X,T) is S_{β} – open set if and only if A is semi open and it is union of β – *closed* sets.

Example(2.4): It is clear that every S_{β} - open set is S-open set and every S_{β} - closed set is S-closed, but the converse is not true in general, see the following example. Let $X = \{a, b, c\}$ and $T = \{\{a\}, \emptyset, X\}$ the S-open sets are : $\{a\}, \{a, b\}, \{a, c\}, \emptyset, X \quad \beta O(X) = \{\{b, c\}, \{c\}, \{b\}, \emptyset, X\}$ and S_{β} - open sets are \emptyset, X thus every S_{β} - open set is S-open but converse is not true since $\{a\}, \{a, b\}, \{a, c\}$ is S-open but not S_{β} - open set.

Corollary (2.5)[Alis and Nehmat, 2012]: Let $A \subseteq Y \subseteq X$, if $A \in S_{\beta}O(X)$ and Y is clopen subset of X, then $A \cap Y \in S_{\beta}O(Y)$.

Definition (2.6) [Alis and Nehmat, 2012]: Intersection of all S_{β} – *closed sets containing* F is called the S_{β} – *closure* of F and is clenoted by $\overline{F} \, {}^{S_{\beta}}$.

Theorem(2.7)[Alis and Nehmat, 2012]: For any subset F of a topological space X, the following statements are true .

- 1- $\overline{F}^{s_{\beta}}$ is the intersection of all s_{β} *closed sets* in X containing F.
- 2- $\overline{F} \, {}^{\mathbf{s}_{\beta}}$ is the smallest $\mathbf{S}_{\beta} closed sets$ in x containing F.
- 3- **F** is smallest $S_{\beta} closed$ if and only if $F = \overline{F} S_{\beta}$.

Theorem (2.8) [Alis and Nehmat ,2012]: If F and E are any subsets of a topological space X, If $F \subseteq E$, then $\overline{F} \stackrel{s_{\beta}}{=} \subseteq \overline{E} \stackrel{s_{\beta}}{=}$.

Proposition (2.9)[Alis and Nehmat, 2012]: Let A be any subset of a topological space X. If a point x is in the S_{β} - interior of A, then there exists a semi-closed set F of X containing x such that $F \subseteq A$.

Definition (2.10) [Alis and Nehmat, 2012]: A a subset A of a topological space X, is called S_{β} -boundary of A if $b_{S_{\beta}}(A) = \overline{A} {}^{S_{\beta}} \setminus A^{\circ S_{\beta}}$ and denoted by $b_{S_{\beta}}(A)$.

Remark(2.11) [Alis and Nehmat , 2012]: Let A be a subset of a topological space X, then $b_{S_{\beta}}(A) = \varphi$ if and only if A is both S_{β} -open and S_{β} - closed set.

Definition (2.12) [Alis and Nehmat, 2012]: Let A be a subset of a topological space X. A point $x \in X$ is said to be S_{β} -limit point of A if for each S_{β} -open set U containing $U \cap (A \setminus \{x\}) \neq \varphi$. The set of all S β -limit point of A is called S_{β} -derived set of A and is denoted by $A'^{S_{\beta}}$.

Theorem (2.13) [Alis and Nehmat, 2012]: Let A be a subset of a space X, then $\bar{A}^{S_{\beta}} = A \cup A'^{S_{\beta}}$.

Definition (2.14) : A space X is called $S_{\beta} - T_1$ space if and only if, for each $x \neq y$ in X, there exist $S_{\beta} - open$ sets U and V such that $x \in U, y \notin U$ and $y \in V, x \notin V$.

Proposition (2.15) [Alis and Nehmat, 2012]: If a space X is T_1 -space, then $S_\beta O(X) = SO(X)$.

Proposition (2.16) : Let X be a topological space .Then (X, T) is an $S_{\beta} - T_1$ space if and only if $\{x\}$ is $S_{\beta} - closed$ set for each $x \in X$.

Proof: Let X is $S_{\beta} - T_1$ space Let $y \in X$ such that $y \notin \{x\}$ since X is $S_{\beta} - T_1$ space then there exist an $S_{\beta} - open$ set U such that $y \notin U, x \notin U$. It is clear that $(U-y) \cap \{x\} = \emptyset$ and hence $y \notin \{x\}' \stackrel{S_{\beta}}{=} \{x\} \cup \{x\}' \stackrel{S_{\beta}}{=} = \{x\}$ by definition(1.1.40) Then $\{x\}' \stackrel{S_{\beta}}{=} \subseteq \{x\}$ for each $x \in X$, and hence $\{\bar{x}\}' \stackrel{S_{\beta}}{=} = \{x\} \cup \{x\}' \stackrel{S_{\beta}}{=} = \{x\}$ by theorem (2.13), so that $\{x\}$ is $S_{\beta} - closed$ set for each $x \in X$ by theorem (2.7).

Conversely :Assume that $\{x\}$ is $S_{\beta} - closed$ set for each $x \in X$. Let $x \neq y$ in X, then $X - \{x\} = U$ is $S_{\beta} - open$ set contains y not x. Now $X - \{y\} = V$, hence V is $S_{\beta} - open$ set which contains x but not y. Therefore X is $S_{\beta} - T_1$ space.

Definition (2.17): A space X is called S_{β} —regular space iff for each x in X and a closed set F such that $x \notin F$, there exist disjoint S_{β} -open sets U, V such that $x \in U, F \subseteq V$.

Definition (2.18): A space X is said to be S_{β}^* -regular space if and only if ,for each x $\in X$ and an S_{β} -closed set F such that $x \notin F$,there exist disjoint S_{β} -open sets and V in X such that $x \in U$ and $F \subseteq V$.

Proposition(2.19)[Pervin,1964]: A space X is regular space iff for every $x \in X$ and each open set U in X such that $x \in U$ there exist an open set w such that $x \in W \subseteq \overline{W} \subseteq U$.

Proposition(2.20): A space X is S_{β} -regular space iff for every $x \in X$ and each open set U in X such that $x \in U$ there exist an open set W such that $x \in W \subseteq \overline{W}^{S_{\beta}} \subseteq U$.

Proof: Let X be an S_{β} – regular space and $x \in X$, U is open set in X such that $x \in U$ thus U^{c} is closed set in x and $x \notin U^{c}$ then there exist disjoint S_{β} –open sets W,V such that $x \in W$, $U^{c} \subseteq V$. Hence $x \in W \subseteq \overline{W} \stackrel{S_{\beta}}{\subseteq} \overline{V^{c}} \stackrel{S_{\beta}}{=} V^{c} \subseteq U$.By theorem(2.8)we have $\overline{W} \stackrel{S_{\beta}}{\subseteq} \overline{V^{c}} \stackrel{S_{\beta}}{=} N^{c}$

Conversely: Let $x \in X$ and F be closed set in X such that $x \notin F$, then F^c is open set and $x \in F^c$, thus there exist an S_{β} -open set w such that $x \in W \subseteq \overline{W}^{S_{\beta}} \subseteq F^c$ then $x \in W, F \subseteq \overline{W}^{cS_{\beta}}$ and W, $\overline{W}^{cS_{\beta}}$ sre disjoint S_{β} -open sets Hence X is S_{β} -regular space.

Proposition(2.21): A topological space X is S_{β}^* –regular topological space if and only if, for every $x \in X$ and each S_{β} –open set U in X such that $x \in U$ then there exists an S_{β} –open set W such that $x \in W \subseteq \overline{W}^{S_{\beta}} \subseteq U$.

.Proof: Assume that X is S_{β}^* -regular topological space and let $x \in X$ is an S_{β} -open in X such that $x \in U$.then U^c is an S_{β} -closed in X, $x \notin U^c$.since X is S_{β}^* -regular topological space then there exist disjoint S_{β} -open sets W and V such

that $x \in W$ and $U^c \subseteq V$.then by proposition (2.20) $x \in W \subseteq \overline{W}^{s_\beta} \subseteq \overline{V^c}^{s_\beta} = V^c \subseteq U.$

Conversely: Let $x \in X$ and C be S_{β} -closed set such that $x \in C^{c}$. thus there exists an S_{β} -open set W such that $x \in W \subseteq \overline{W}^{S_{\beta}} \subseteq C^{c}$. Then $x \in W$, $C \subseteq (\overline{W}^{S_{\beta}})^{c}$ and $(\overline{W}^{S_{\beta}})^{c}$ is an S_{β} -open set, $W \cap (\overline{W}^{S_{\beta}})^{c} \neq \emptyset$. Hence X is S_{β}^{*} -regular topological space.

Definition (2.22): A space X is said to be S_{β} – normal space if and only if for every disjoint S_{β} - closed sets F_1, F_2 there exist disjoint S_{β} – open subsets V_1, V_2 such that $F_1 \subset V_1, F_2 \subset V_2$.

Definition (2.23): A space X is said to be S_{β}^* – normal space if and only if for every disjoint closed sets F_1, F_2 there exist disjoint S_{β} – open subsets V_1, V_2 such that $F_1 \subset V_1, F_2 \subset V_2$.

Example(2.24): This example show that normal space is not S_{β} – normal space in general .Let $x = \{a, b, c, d\}$, $T = \{X, \emptyset, \{a, b\}, \{a, b, c\}\}$ $S_{\beta}O(X) = \{\emptyset, X, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}, S_{\beta}C(X) = \{\emptyset, X, \{c, d\}, \{d\}, \{c\}\}\}.$

It is clear that X is normal space and $S_{\beta}^* - normal$ space since there exists no disjoint closed sets . but X is not $S_{\beta} - normal$ space since $\{d\}, \{c\}$ is disjoint $S_{\beta} - closed$ sets cannot be separated by $S_{\beta} - open$ in X.

Proposition (2.25): A topological space X is S_{β} – normal topological space if and only if for every S_{β} – closed set $F \subseteq X$ and each S_{β} – open set U in X such that $F \subseteq U$ then there exists an S_{β} – open set W such that $F \subset W \subset \overline{W}^{S_{\beta}} \subset U$.

Proof: Let F be an S_{β} - closed set and $\bigcup S_{\beta}$ - open set such that $F \subseteq U$. It's clear that F, U^{\complement} are disjoint S_{β} - closed set in X. Thus since X is S_{β} - normal topological space then there exist disjoint S_{β} - open sets W, V such that $F \subseteq W, U^{\complement} \subseteq V$, by theorem(2.8)we have $\overline{W} \, {}^{S_{\beta}} \subseteq \overline{V^{c}} \, {}^{S_{\beta}}$, and by theorem (2.7) $\overline{V^{c}} \, {}^{S_{\beta}} = V^{c}$ then $F \subseteq W \subseteq \overline{W} \, {}^{S_{\beta}} \subseteq \overline{V^{\complement}} \, {}^{S_{\beta}} = V^{\complement} \subseteq U$.

Conversely

Let F_1, F_2 be disjoint $S_\beta - \text{closed}$ sets in X then $F_2^{\ C}$ is an $S_\beta - \text{open}$ set, $F_1 \subseteq F_2^{\ C}$. Thus there exists an $S_\beta - \text{open}$ set W such that $F_1 \subseteq W \subseteq \overline{W}^{S_\beta} \subseteq F_2^{\ C}$. Then $F_1 \subseteq W, F \subseteq (\overline{W}^{S_\beta})^{\ C}$, $W, \overline{W}^{S_\beta}$ are disjoint $S_\beta - \text{open}$ sets. Hence X is $S_\beta - \text{normal topological space}$.

Proposition (2.26): A topological space X is $S_{\beta}^* - \text{normal}$ if and only if for every closed set $F \subseteq X$ and each $S_{\beta} - \text{open}$ set U in X such that $F \subseteq U$ then there exists an $S_{\beta} - \text{open}$ set W such that $F \subseteq W \subset \overline{W}^{S_{\beta}} \subset U$.

Proof: Let F be an **closed** set and U **open** set such that $F \subseteq U$. It's clear that F, U^{C} are disjoint **closed** set in X. Thus since X is S_{β}^{*} – normal topological space then there exist disjoint S_{β} – **open** sets W, V such that $F \subseteq W, U^{C} \subseteq V$, by theorem(2.8) we

have $\overline{W}^{s_{\beta}} \subseteq \overline{V^{c}}^{s_{\beta}}$, and by theorem

(2.7) $\overline{V^c}{}^{S_\beta} = V^c \text{ then } F \subseteq W \subseteq \overline{W}{}^{S_\beta} \subseteq \overline{V}{}^{C}{}^{S_\beta} = V^{C} \subseteq U.$

Conversely: Let F_1, F_2 be disjoint closed sets in X then $F_2^{\ C}$ is an open set, $F_1 \subseteq F_2^{\ C}$. Thus there exists an S_{β} – open set W such that $F_1 \subseteq W \subseteq \overline{W}^{S_{\beta}} \subseteq F_2^{\ C}$. Then $F_1 \subseteq W, F \subseteq (\overline{W}^{S_{\beta}})^{\ C}$, $W, \overline{W}^{S_{\beta}}$ are disjoint S_{β} – open sets. Hence X is S_{β}^* – normal topological space.

2. On small S_{β} – Inductive Dimension Function

Definition (3.1)[Raad,1992]: Let X be a topological space, we say that S - indX = -1 iff $X = \emptyset$ and if n is a positive integer or 0, then we say that $SindX \le n$ iff the following satisfied:

for each $x \in X$ and for each open set G containing x, there exists an S-open set V such that $x \in V \subseteq G$ and $S - \operatorname{ind} b(V) \leq n - 1$, there exists no integer n for which $\operatorname{ind} X \leq n$, then we put $S - \operatorname{ind} X = \infty$.

In similar way, we introduce the following :

Definition (3.2): The S_{β} -small inductive dimension of a space X, S_{β} -ind X, is defined inductively as follows. topological space X, S_{β} - indX = -1, and only if, X is empty. If n is a non-negative integer, then S_{β} -ind $X \leq n$ means that for each point $x \in X$ and each open set G such that $x \in G$ there exists an S_{β} - open set U such that $x \in U \subseteq G$ and S_{β} - ind $b_{S_{\beta}}(U) \leq n - 1$. We put S_{β} indX = n if it is true that S_{β} - ind $X \leq n$, but it is not true that S_{β} -ind $X \leq n - 1$. If there exists no integer n for which S_{β} ind $X \leq n$, then we put S_{β} - ind $X = \infty$.

Definition (3.3):The S^*_{β} -small inductive dimension of a space X, S^*_{β} - indX, is defined inductively as follows.

A space X satisfies $S_{\beta}^{*} - \operatorname{ind} X = -1$ if and only if, $X = \emptyset$. If *n* is a non-negative integer, then $S_{\beta}^{*} - \operatorname{ind} X \leq n$ means that for each point $x \in X$ and each S_{β} -open set *G* such that $x \in G$ there exists an S_{β} -open set *U* such that $x \in U \subseteq G$ and $S_{\beta}^{*} - \operatorname{ind} b_{S_{\beta}}(U) \leq n - 1$. We put $S_{\beta}^{*} - \operatorname{ind} X = n$ if it is true that $S_{\beta}^{*} - \operatorname{ind} X \leq n$, but it is not true that $S_{\beta}^{*} - \operatorname{ind} X \leq n1$. If there exists no integer *n* for which $S_{\beta}^{*}\operatorname{ind} X \leq n$, then we put $S_{\beta}^{*} - \operatorname{ind} X = \infty$.

Theorem (3.4): Let X be a topological space, if $S_{\beta} - \text{ind}X = 0$ then X is S_{β} -regular space.

Proof: Let $x \in X$ and G an open set such that $x \in G$, since $S_{\beta} - \operatorname{ind} X = 0$, then there exists an S_{β} - open set V such that $x \in V \subseteq G$ and $S_{\beta} - \operatorname{ind} b_{S_{\beta}}(V) = -1$. Thus $b_{S_{\beta}}(V) = \emptyset$ by Remark (2.11), hence V is an S_{β} -open and S_{β} -closed set. Therefore $x \in V \subseteq \overline{V}^{S_{\beta}} \subseteq G$ by proposition (2.20), hence X is S_{β} -regular space.

Theorem (3.5): Let X be a topological space, if $S_{\beta}^* - \operatorname{ind} X = 0$ then X is S_{β}^* -regular space.

Proof: Let $x \in X$ and G an S_{β} - open set such that $x \in G$, since $S_{\beta}^* - \operatorname{ind} X = 0$, then there exists an S_{β} - open set V such that $x \in V \subseteq G$ and $S_{\beta}^* - \operatorname{ind} b_{S_{\beta}}(V) = -1$. Thus $b_{S_{\beta}}(V) = \emptyset$ by Remark (2.11), hence V is an S_{β} -open and S_{β} -closed set.

Therefore $x \in V \subseteq \overline{V}^{S_{\beta}} \subseteq G$ by proposition (2.21), hence X is S_{β}^* –regular space.

Proposition (3.6): Let X be a topological space, if $S_{\beta} - indX$ is exists then $S - indX \le S_{\beta} - indX$.

Proof: By induction on *n*. If n = -1, then $S_{\beta} - indX = -1$ and $X = \emptyset$, so that S - indX = -1. Suppose the statements is true for n - 1.

Now, suppose that $S_{\beta} - \operatorname{ind} X \leq n$, to prove $S - \operatorname{ind} X \leq n$, let $x \in X$ and G is an open set in X such that $x \in G$ since $S_{\beta} - \operatorname{ind} X \leq n$, then there exist an S_{β} -open set V in X such that $x \in V \subseteq G$ and S_{β} -ind $b_{S_{\beta}}(V) \leq n-1$ and since each S_{β} -open set is S-open set. Then V is an S-open set such that $x \in V \subseteq G$ and S-ind $b(V) \leq n-1$. Hence S-ind $X \leq n$.

Theorem (3.7): Let X be a topological space, then S_{β} -indX = 0 if and only if S-indX = 0.

Proof: By proposition (3.6) if S_{β} -indX = 0, then S-ind $X \leq 0$ and since $X \neq \emptyset$

then $S \cdot \operatorname{ind} X = 0$. Now let $S \cdot \operatorname{ind} X = 0$, let $x \in X$ and G an open set in X such that $x \in G$, since $S \cdot \operatorname{ind} X = 0$ then there exists an S-open set V such that $x \in V \subseteq G$ and $S \cdot \operatorname{ind} b(V) \leq -1$, then $b(V) = \emptyset$, hence V is both open and closed set. Since every open (closed) set is S-open an (S-closed) set, therefore $x \in V \subseteq G$ Hence V is an S_{β} -open and S_{β} -closed set and $S_{\beta} \cdot \operatorname{ind} b_{S_{\beta}}(V) \leq -1$. So that $S_{\beta} \cdot \operatorname{ind} X \leq 0$ and since $X \neq \emptyset$, then $S_{\beta} \cdot \operatorname{ind} X = 0$.

The following example a space X with S_{β} -indX = S-indX = 0.

Example (3.8): Let $X = \{a, b, c\}$ and $T = \{\emptyset, X\}$ be a topology on X, then $S_{\beta}O(X) = \{\emptyset, X\}$, let $x \in X$ and only S_{β} -open set is X, then $x \in X \subseteq X$ and $b_{S_{\beta}}(X) = \emptyset$, so S_{β} -ind $b_{S_{\beta}}(X) = -1$. Then S_{β} -ind $X \leq 0$, since $X \neq \emptyset$ thus S_{β} -ind $X \neq -1$, hence S_{β} -ind X = 0 and since S_{β} -open set is S-open, then by theorem (3.7), we have S_{β} -ind X = S-ind X = 0.

4. On Large S_{β} – Inductive Dimension Function

Definition (4.1)[Raad, 1992]: Let X be a topological space. It is said that S-IndX = -1 if and only if X is empty. If n is a positive integer or 0, then we say that S-Ind $X \le n$ if and only if the following is satisfied:

for each closed set F and each open set G of X such that $F \subset G$ there exists an S-open set U such that $F \subset U \subset G$ and S-Ind $b_S(U) \leq n$ -1. We put S-IndX = n if it is true that S-Ind $X \leq n$, but it is not true that S-Ind $X \leq n$ -1. If there exists no integer n for which S-Ind $X \leq n$ then we put S-Ind $X = \infty$.

Definition (4.2) : The S_{β} -large inductive dimension of a space X, S_{β} -Ind X, is defined inductively as follows. A space X satisfies S_{β} -Ind X = -1 if and only if X is empty. If n is a non-negative integer, then S_{β} -Ind $X \leq n$ means that for each closed set F and

each open set G of X such that $F \subset G$ there exists an S_{β} -open set U such that $F \subset U \subset G$ and S_{β} -Ind $b_{S_{\beta}}(U) \leq n-1$. We put S_{β} -IndX = n if it is true that S_{β} -Ind $X \leq n$, but it is not true that S_{β} -Ind $X \leq n-1$. If there exists no integer n for which S_{β} -Ind $X \leq n$ then we put S_{β} -Ind $X = \infty$.

Definition (4.3): The S_{β}^* -large inductive dimension of a space X, S_{β}^* -IndX, is defined inductively as follows: A space X satisfies S_{β}^* -IndX = -1 if and only if X is empty. If n is a non-negative integer, then S_{β}^* -Ind $X \leq n$ means that for each S_{β} -closed set F and each S_{β} -open set G of X such that $F \subset G$ there exists S_{β} -open set U such that $F \subset U \subset G$ and S_{β}^* -Ind $b_{S_{\beta}}(U) \leq n-1$. We put S_{β}^* -IndX = n if it is true that S_{β}^* -Ind $X \leq n$, but it is not true that S_{β}^* -Ind $X \leq n-1$. If there exists no integer n for which S_{β}^* -Ind $X \leq n$ then we put S_{β}^* -Ind $X = \infty$.

Proposition (4.4): Let X be a topological space, if S_{β} -IndX = 0, then X is S_{β}^* -normal.

Proof: Let *F* be a closed set in *X* and *U* is an open set such that $F \subseteq U$. Since S_{β} -IndX = 0, then there exist S_{β} -open *W* such that S_{β} -Ind $b_{S_{\beta}}(W) = -1$, hence *W* is S_{β} -open and S_{β} -closed set therefore $F \subseteq W \subseteq \overline{W}^{S_{\beta}} \subseteq U$ by proposition (2.26) *X* is S_{β}^* -normal.

Proposition (4.5):Let X be a topological space, if S_{β}^* -IndX = 0, then X is S_{β} -normal space.

Proof: Let F be an S_{β} - closed set in X and U is an S_{β} - open set such that $F \subseteq U$. Since S_{β} -IndX = 0, then there exist S_{β} -open W such that S_{β} -Ind $b_{S_{\beta}}(W) = -1$, hence W is S_{β} -open and S_{β} -closed set therefore $F \subseteq W \subseteq \overline{W}^{S_{\beta}} \subseteq U$ by proposition (2.25) X is S_{β} -normal space.

Proposition (4.6): Let X be a topological space S_{β} - IndX is exists, then S-IndX $\leq S_{\beta}$ -IndX.

Proof: By induction on n. It is clear that n = -1.

Suppose that it is true for *n*-1. Now, suppose that S_{β} -Ind $X \leq n$, to prove that

S-Ind $X \le n$, let F be a closed set in X and G is an open set in X such that $F \subseteq G$, since S_{β} -Ind $X \le n$, then there is S_{β} -open set U in X such that $F \subseteq U \subseteq G$ and S_{β} -Ind $b_{S_{\beta}}(U) \le n-1$, since each S_{β} -open set is S-open set. Then U is S-open set such that $F \subseteq U \subseteq G$ and S-Ind $b(U) \le n-1$. Hence S-Ind $X \le n$.

Theorem (4.7)Let X be a topological space, then S_{β} -IndX = 0 iff S-IndX = 0.

Proof: By proposition (4.6) If $S_{\beta} - \text{Ind}X = 0$, then $S - \text{Ind}X \le 0$, and since $X \ne \emptyset$, then S - IndX = 0.

Now,

Let S-IndX = 0 and Let F is closed set in X and each open set G in X such that $F \subseteq G$.Since S-IndX = 0 then there exists an S-open set U in X such that $F \subseteq U \subseteq G$ and S-Indb(U) ≤ -1 . Then $b(U) = \emptyset$, therefore U is both open and closed set,

since each open and closed set is S-open and S-closed set. Thus $F \subseteq U \subseteq G$, then U is S_{β} -open set and S_{β} -Ind $X \leq 0$ and since $X \neq \emptyset$, then S_{β} -IndX = 0.

5. On S_{β} – Covering Dimension Function

Definition (5.1): The S_{β} -covering dimension (S_{β} -dimX) of a topological X is the least integer n such that every finite S_{β} -open covering of X has S_{β} -open refinement of order not exceeding n or ∞ is if there is no such integer. Thus S_{β} dimX = -1 if and only if X is empty, and S_{β} -dim $X \leq n$ if each finite S_{β} -open covering of X has S_{β} - open refinement of order not exceeding n that

 $S_{\beta} - \dim X \le n - 1$. Finally S_{β} -dim $X = \infty$ if for every integer *n* it is false that $S_{\beta} - \dim X \le n$.

Definition (5.2): The S_{β}^* -covering dimension (S_{β}^* -dimX) of a topological space X is the least integer n such that every finite open covering of X has S_{β} -open refinement of order not exceeding n or ∞ if there is no such integer. Thus S_{β}^* -dimX = -1 if and only if X is empty, and S_{β}^* -dim $X \leq n$ if each finite open covering of X has S_{β} -open refinement of order not exceeding n. We have S_{β}^* -dimX = n if it is true that S_{β}^* -dim $X \leq n$, but it is not true that S_{β}^* -dim $X \leq n - 1$. Finally S_{β}^* -dim $X = \infty$ if for every integer n it is false that S_{β}^* -dim $X \leq n$.

Definition (5.3) [Raad, 1992]: Let X be a topological space then S-dimX = -1 if and only if $X = \emptyset$ and if n is a positive integer or 0, then we say that S-dim $X \le n$ if and only if every finite *S*-open cover of X has *S*-open refinement of order $\le n$.

Remark (5.4) [Raad, 1992]: Since each open set is *S*-open, then it follows that $S-\dim X \leq \dim X$.

Remark (5.5): Since each S_{β} -open set is *S*-open, then it follows that S-dim $X \leq S_{\beta}$ -dimX.

Definition (5.6):Let (X,T) be a topological space, the family \mathbb{C} of S_{β} -open sets is called *S*.*B* if and only if each S_{β} -open set in *X* is a union of members of β .

Theorem (5.7):Let X be a topological space. If X has a S.B of sets which are both S_{β} -open and S_{β} -closed, then S_{β}^* -dimX = 0 for a T_1 -space, the converse is true. **Proof:** By using proposition (2.15) if a space X is a T_1 -space, then $S_{\beta}O(X) = SO(X)$, the proof see[**Raad**, 1992].

Theorem (5.8):Let X be a topological space. If X has a S.B of sets which are both S_{β} -open and S_{β} -closed, then S_{β} -dimX = 0 for an S_{β} - T_1 space, the converse is true.

Proof: Suppose that X has S.B of sets which are both S_{β} -open and S_{β} -closed.

Let $\{U_i\}_{i=1}^k$ be a finite S_{β} -open cover of X, it has an S_{β} -open refinement \mathcal{W} , if $w \in \mathcal{W}$, then $w \subset U_i$ for some *i*. Let each $w \in \mathcal{W}$ be associated with one of the U_i sets containing it and let U_i be the union of these members of \mathcal{W} , thus associated with U_i . Thus V_i is S_{β} -open set and hence $\{V_i\}_{i=1}^k$ forms disjoint S_{β} -open refinement of $\{U_i\}_{i=1}^k$, then S_{β} -dimX = 0Conversely:

Suppose that X is $S_{\beta} - T_1$ space such that S_{β} -dimX = 0. Let $x \in X$ and G be a S_{β} -open set in X such that $x \in G$. Then $\{x\}$ is S_{β} -closed set by using proposition (2.16) and $\{G, X-\{x\}\}$ is finite S_{β} -open of X. Since S_{β} -dimX = 0, then there exists S_{β} -open refinement $\{V, W\}$ of order 0 such that $V \cap W = \emptyset$, $V \cup W = X$, $V \subset G$ and $W \subset X-\{x\}$. Then V is S_{β} -open and S_{β} -closed set in X such that $x \in W^c \subseteq V \subseteq G$ and hence X has a S.B of S_{β} -open and S_{β} -closed.

Remark (5.9) [Pears, 1975]: Let X be a topological space with dim X = 0. Then X is normal space.

Theorem (5.10): Let X be a topological space. If S^*_{β} -dim X = 0, then X is S^*_{β} -normal space.

Proof: Let F_1 and F_2 are disjoint closed sets of X. Then $\{X - F_1, X - F_2\}$ is open cover of X. Since S_{β}^* -dim X = 0, then it is has S_{β} -open refinement of order 0, hence

So that S_{β} -open sets H and G such that $H \cap G = \emptyset$, $H \cup G = X$, therefore

 $H \subset X - F_1$ and $G \subset X - F_2$. Thus $F_1 \subset H^c = G$, $F_2 \subset G^c = H$ and since $H \cap G = \emptyset$, then is X is S^*_{β} -normal space.

Theorem (5.11): Let X be a topological space. If S_{β} -dim X = 0, then X is S_{β} -normal space.

Proof: Let F_1 and F_2 are disjoint S_β -closed sets of X. Then $\{X - F_1, X - F_2\}$ is S_β -open covering of X. Since S_β -dim X = 0, then it is has S_β -open refinement of order 0, hence there exists S_β -open sets H and G such that $H \cap G = \emptyset$, $H \cup G = X$, so that $H \subset X - F_1$ and $G \subset X - F_2$. Thus $F_1 \subset H^c = G$, $F_2 \subset G^c = H$ and since $H \cap G = \emptyset$, then is X is S_β -normal space.

Proposition(5.12) [Pears,1975]: Let X be a topological space and A closed subset of X then dim $A \le \dim X$.

Theorem (5.13): If A clopen subset of a topological space X, then S_{β}^* -dim $A \leq S_{\beta}^*$ -dim X.

Proof: Suppose that S_{β}^* -dim $X \leq n$, let $\{U_1, U_2, ..., U_k\}$ be an open cover of A, then for each $i, U_i = A \cap V_i$, where V_i is an open set in X. The finite open covering $\{V_1, V_2, ..., V_k, X \cdot A\}$ of X has S_{β} -open refinement \mathcal{W} in X of order $\leq n$. Let $\mathcal{V} = \{W \cap A : W \in \mathcal{W}\}$ by corollary (2.5), then \mathcal{V} is S_{β} -open refinement of $\{U_1, U_2, ..., U_k\}$ of order $\leq n$. Thus S_{β}^* -dim $A \leq n$.

6. Relation between the dimensions S_{β} -ind and S_{β} -Ind

Proposition (6.1)[Pears, 1975]: Let X be a topological space, if X is a regular space then $indX \leq IndX$.

Theorem (6.2): Let X be a topological space, if X is regular, then S_{β} -ind $X \leq S_{\beta}$ -IndX.

Proof: By induction on *n* , if n = -1 , then the statement is true.

Suppose that the statement is true for n - 1.

Now,

Suppose that S_{β} -Ind $X \leq n$, to prove S_{β} -ind $X \leq n$. Let $x \in X$ and G be an open set such that $x \in G$ since X is regular **space** then there exists an open set U such that $x \in U \subseteq \overline{U} \subseteq G$ by proposition (2.19).

Also since S_{β} -Ind $X \leq n$ and \overline{U} is closed, $\overline{U} \subseteq G$ then there exists an S_{β} -open set V such that $\overline{U} \subseteq V \subseteq G$ and S_{β} -Ind $b_{S_{\beta}}(V) \leq n-1$, then S_{β} -ind $b_{S_{\beta}}(V) \leq n-1$ [by induction] and S_{β} -ind $X \leq n$, then S_{β} -ind $X \leq S_{\beta}$ -IndX.

Proposition (6.3): Let X be a topological space, if $X S_{\beta} - T_1$ space, then S_{β}^* -ind $X \leq S_{\beta}^*$ -IndX.

Proof: By induction on *n* , if n = -1 , then the statement is true.

Suppose that the statement is true for n - 1.

Now,

Suppose that S_{β}^* -Ind $X \le n$, to prove S_{β}^* -ind $X \le n$. Let $x \in X$ and each S_{β} —open set $G \subset X$ of the point x, since X is S_{β} - T_1 space, then $\{x\} \subseteq G$ such that $\{x\}$ is

 S_{β} -closed set by proposition (2.16). Since S_{β}^* -Ind $X \le n$, then there exists an S_{β} -open set V in X such that $\{x\} \subseteq V \subseteq G$ and

 S_{β}^* -Ind $b_{S_{\beta}}(V) \leq n-1$. Hence S_{β}^* -ind $b_{S_{\beta}}(V) \leq n-1$ and $x \in V \subseteq G$.

Thus S_{β}^* -ind $X \leq n$.

Proposition (6.4): Let X be a topological space, if X is S_{β}^* -regular space, then S_{β}^* -ind $X \leq S_{\beta}^*$ -IndX.

Proof: By induction on *n*, if n = -1, then the statement is true. Suppose that the statement is true for n - 1.

Now, Suppose that S_{β}^* -Ind $X \leq n$, to prove S_{β}^* -ind $X \leq n$. Let $x \in X$ and each S_{β} -open set $G \subset X$ of the point x, since X is S_{β}^* -regular space, then there exists an S_{β} -open set V in X such that $x \in V \subseteq \overline{V}^{S_{\beta}} \subseteq G$. Also since S_{β}^* -Ind $X \leq n$ and $\overline{V}^{S_{\beta}}$ is S_{β} -closed set $\overline{V}^{S_{\beta}} \subseteq G$, then there exists an S_{β} -open set U in X such that $\overline{V}^{S_{\beta}} \subseteq U \subseteq G$ and S_{β}^* -Ind $b_{S_{\beta}}(U) \leq n-1$.

Hence S_{β}^* -ind $b_{S_{\beta}}(U) \le n-1$ and $x \in U \subseteq G$ (by induction), thus S_{β}^* -ind $X \le n$. **Performance**

References

Alis B. Khalaf and Nehmat. K. Ahmed "S_β-open sets and S_β--continuity in topological space" Int. J. Math. Pure. Sci. Eng. Appl., III(1):1:13,(2012).

- Das, P. "Note on Some Applications on Semi Open sets ", Progress of Mathematics, 7(1973).
- Enas Ridha Ali"On Dimension Theory by Using N-Open Set", M.Sc. thesis university college of mathematics and computer science, (2014).
- Hashmiya Ibrahim Nasser "On Some Topological Spaces by Using **N Open** Set" M.Sc. thesis university college of mathematics and computer science,(2012).
- Mashhour, A.S. ; Abd El-monsef, M.E. ; El.Deeb S.N. "On pre-continuous and week pre-continuous mappings" Proc. Math. Phys. Soc. Egypt 53 (1982) 47–53.

Journal of Babylon University/Pure and Applied Sciences/ No.(5)/ Vol.(24): 2016

- Nedaa Hasan Hajee "On Dimension Theory by Using Feebly Open Set", M.Sc. thesis university college of mathematics and computer science, (2011).
- Pears. A.P "On Dimension Theory of General Spaces" Cambridge university press, (1975).
- Pervin, N.J. "Foundation General Topology", A cadmic press, New York, (1964).
- Pervin. N.J "Foundation of General Topology" Academic press, New York, (1964).
- Ra'ad Aziz Hussain AL-Abdulla "On Dimension Theory", M.Sc. thesis university of Baghdad, college of science, (1992).
- Ryzard Engelking "Dimension Theory" (1978).
- Ryzard Engelking "General Topology", Berlin Heldermann, (1989).
- Sama Kadhim Gaber "On b-Dimension Theory" M.Sc.thesis university college of mathematics and computer science, (2010).
- Shareef, A.H. Spre-open sets "Spre-continuity and Spre-compactness in topological spaces" M.Sc. Thesis, College of Science, Sulaimani Univ., (2007).
- Steen, L.A.; Seebach Jr., J.A. "Counterexamples in topology", Holt, Rinehart and Winston, Inc., New York, (1970).