On Contra (δ , $g\delta$)–Continuous Functions

Zainab Aodia Athbanaih

University of Al-Qadissiya, College of Education

Abstract

In 1980 T. Noiri introduce δ – sets to define a new class of functions called δ -continuous and in 1996 Dontchev and Ganster introduce and studied a new class of sets called δ -generalized closed and in 2000 Dontchev and others introduce $g\delta$ – closed sets. In this paper we use these sets to define and study a new type of functions called contra $(\delta, g\delta)$ -continuous as a new type of contra continuous the functions contra δ -continuous is stronger than contra continuous function , contra $g\delta$ – continuous functions and weaker than Rc-continuous and each one of them are independent with $(\delta, g\delta)$ - continuous functions.

Preservation theorems of this functions are investigated also several properties concerning this functions are obtain . The relationships between the δ –closed set with the other sets that have so important to get many results are investigated . finally we study the relationships between this functions with the other functions .

الخلاصة

في عام 1980 قدم تكاشي نويرا المجموعات – δ ليعرف نوع جديد من الدوال هي الدوال المستمرة – δ . وفي عام 1996 أيضاً Dontchev و Dontchev قدموا دورسوا نوع جديد من المجموعات المغلقة هي (δ – المعممة المغلقة) وفي عام 2000 أيضاً Dontchev وباحثين اخرين قدموا المجموعات المغلقة – $g\delta$. في هذا البحث استخدمنا هذه المجموعات لتعريف نوع جديد من الدوال وهي الدوال الضد مستمرة – δ وي هذا البحث استخدمنا هذه المجموعات لتعريف نوع جديد من الدوال وهي الدوال المندم وباحثين اخرين قدموا المجموعات المغلقة – δ . وفي هذا البحث استخدمنا هذه المجموعات لتعريف نوع جديد من الدوال وهي الدوال الضد مستمرة – δ وول عام 2000 أيضاً وهي الدوال الضد مستمرة – δ وول عام 2000 وباحثين اخرين قدموا المجموعات المغلقة – δ . وفي هذا البحث استخدمنا هذه المجموعات لتعريف نوع جديد من الدوال وهي الدوال الضد مستمرة – δ ورق عام 2000 وهي الدوال الضد مستمرة – δ وول واحدة منهما مستقلة عن الدوال المستمرة – δ وول واحدة منهما مستقلة عن الدوال المستمرة – δ و ورق عام 2000 واحدة منهما مستقلة عن الدوال المستمرة – δ و ورق عام 2000 واحدة ورق ورق والمعن ورال المستمرة – δ ورف واحدة منهما مستقلة عن الدوال المستمرة – δ و و δ ورق من الدوال الضد مستمرة والضد مستمرة – δ واضعف من الدوال المستمرة – δ واحدة منهما مستقلة عن الدوال المستمرة – δ و ورق عالي المستمرة – δ و حدق منهما مستقلة عن الدوال المستمرة – δ و δ و δ و δ ورق م و δ واحدة منهما مستقلة عن الدوال المستمرة – δ و معرف واحدة منهما مستقلة عن الدوال المستمرة – δ و معرف واحدة على مول الدوال مع معن الدوال المتعلقة بتلك (δ و δ و). وللحفاظ على مبرهنات عن تلك الدوال تم الاستقصاء او التحري عنها كذلك حصلنا على بعض الخواص المتعلقة بتلك الدوال ، علاقة المجموعات المغلقة – δ ومجموعات اخرى لها الممية في الحصول على بعض النتائج . وأخيراً درسنا علاقة هذه الدوال مع دوال اخرى . ووال اخرى .

1. Introduction

In 1996, Dontchev introduce a new class of functions called contra – continuous functions, in 1999 Jafari and Noiri introduce and studied a new functions called contra super – continuous, and in 2001 they present and study a new functions called contra α - continuous.

In this paper we introduce the notion of contra $(\delta, g\delta)$ - continuous, where contra δ -continuous functions is stronger than both contra-continuous and contra $g\delta$ -continuous. We astablish several properties of such functions . especially basic properties and preservation theorems of these functions are investigated . moreover , we investigate the relationships between δ -closed sets and other sets also the relation ships between these functions .

2. Preliminaries

Through the present note (X,T_X) and (Y,T_Y) (or simply X and Y) always topological spaces.

A subset A of a space X is said to be regular open (resp. regular closed, δ – open, g - closed, clopen, $g\delta$ - closed) if A = int(cl(A)) (resp. A = cl(int(A)), $A = \bigcup_{i \in I} u_i$ where u_i is

Journal of Babylon University/Pure and Applied Sciences/ No.(1)/ Vol.(18): 2010

[Noiri,1980] regular open v_i , if $cl(A) \subseteq u$ whenever $A \subseteq u$ and u is open [Dontchev,2000], open and closed, if $cl(A) \subseteq u$ whenever $A \subseteq u$ and u is δ – open [Dontchev,2000]. Apoint $x \in X$ is said to be δ – cluster point of a et S if $S \cap u \neq \mathcal{G}$, for every regular open set u containing x. The set of all δ – cluster points of S is called δ - closure of S and denoted by $cl\delta(A)$. if $cl\delta(A) = A$, then A is called δ - closed [Noiri,1980], or equivalently A is called δ - closed if $A = \bigcap v_i$, where v_i is regular closed

The collection of all δ – closed (resp. δ – open , $g\delta$ - closed , g - clopen , g closed, regular closed) sets will denoted by $\delta c(X)$ (resp. $\delta o(X)$, $g \delta c(X)$, g c(X), gco(X), Ro(X)) also the complement of δ – open (resp. $g\delta$ - closed, g - closed, regular closed) sets is called δ – closed (resp. $g\delta$ - open, g - open, regular open).

Its worth to be noticed that the family of all δ – open subsets of a space X is a topology on X which is denoted by T_{δ} - space and some time is called semi – regularization of X . As a consequence of definitions we have $T_{\delta} \subseteq T$.

finally anon – empty topological space (X,T) is called hyper connected or irreducible [Dontchev, 2000] if every non – empty open subset of X is dense.

3. Properties of $(\delta, g\delta)$ - Closed Sets

proposition 3.1

Let A be a subset of aspace X: 1- If A is regular open, then A is open. 2- If A is δ – closed, then A is closed. **Proof** :-1- Is clearly 2- Let A be a δ – closed set, $A^c = B$ is δ – open

 $B = int(cl(u_i))$, since $int(cl(u_i))$ is regular so by part (1), $int(cl(u_i))$ is open and countable unions of open sets are open, $int(cl(u_i)) = B$ is open, so $B = \bigcup_{i=1}^{i} (u_i)$,

$$(B^c) = \left(\bigcup_{i \in I} u_i\right)^c = \bigcap_{i \in I} u_i = A$$
 is closed.

Remark 3.2

The converse of Proposition (3.1) is not true in general. To see this we give the following example.

Example 3.3

Let $X = \{a, b, c, d\}$ and $T_X = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$ be a topology defined on X. Let $A = \{d\} \subset X$, A is closed set but not δ – closed. Since $A^c = \{a, b, c\}$ not δ – open. Also $\{a,b\} \subset X$, is open but not regular open.

Proposition 3.4

Let A be a subset of a space X. 1- If A is regular open, then A is δ – open. 2- If A is δ – closed, then A is $g\delta$ - closed. 3- If A is closed, then A is g - closed. 4- If A is g - closed, then A is $g\delta$ - closed. **Proof :-**

1- Let A be a regular open set, $A = int(cl(A)) = \bigcup_{i=1}^{1} (int(cl(A)))$ is δ - open

2- Let $x \in X$, $A \subseteq X$ is δ - closed, so $A = cl\delta(A)$

 $x \in A$, so $x \in cl\delta(A)$, therefore for every $u \in \tau$, *u* is regular open and $x \in u$, $A \cap u \neq \phi$, this means that $A \subset u$, for every *u* regular open in *X* and since *A* is δ – closed so by lemma (3.1) part (2).

A is closed so $cl(A) \subset u$. and u is δ – open by part (1) thus $cl(A) \subset u$, then $A \subset u$, for every $u \delta$ – openset.

Therefore A is $g\delta$ - closed.

3- Let $A \subset X$, A is closed, let $x \in X$, then $x \in cl(A)$, $\forall u \in \tau$, $x \in u$, $u \cap A \neq \phi$, this means that $A \subset u$, and u is open, also since A is closed, $cl(A) \subset u$, thus $cl(A) \subset u$, when $A \subset u$ and u is open.

Therefore A is g - closed.

4- Let A be a g - closed set, so $A \subseteq u$, where u is open and $cl(A) \subseteq u$, by part (2) from lemma (3.1) there exist $M \ \delta$ – open set, such that $M \subseteq u$ and $A \subseteq M \subseteq u$, so $cl(A) \subseteq M$, $M \subseteq u$ Thus $cl(A) \subseteq M$, when $A \subseteq M$, M is δ – open in X. Therefort A is $g\delta$ - closed.

Remark 3.5

The converse of lemma (3.4) is not true in general , to see this, we give the following counter example .

Examples 3.6

1- Let $X = \{a, b, c, d\}$ and $T_X = \{\phi, X, \{a, c, d\}, \{b, c, d\}, \{c, d\}\}$ be a topology defined on X.

Let $A = \{a, b\} \subseteq X$ is $g\delta$ - closed but not δ - closed. Also $B = \{a, b, c\} \subseteq X$ is g - closed but not closed.

2- Let $X = \{a, b, c, d\}$ and $T_X = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$ be a topology defined on X.

Let $A = \{a, c\} \subseteq X$ is $g\delta$ - closed but not g - closed.

Lemma 3.7 [Dontchev,2000]

Let (X,T) be a topological space , and $(A_i)_{i\in I}$ be alocally finite family , $A_i \subset X, \forall i \in I$:

f $(A_i)_{i \in I}$ is $g\delta$ - closed sets, $\forall i \in I$, then $A = \bigcup_{i \in I} A_i$ is also $g\delta$ - closed.

Proposition 3.8

Let (X,T) be a topological space , and $(A_i)_{i\in I}$ be alocally finite family , $A_i \subset X, \forall i \in I$:

If $(A_i)_{i \in I}$ is δ - closed set, $\forall i \in I$, then $A = \bigcap_{i \in I} A_i$ is also δ - closed.

Proof :-

Let $(A_i)_{i \in I}$ is δ – closed set, $\forall i \in I$, A_i is δ – closed this means that $A_i = cl\delta(A_i)$, $\forall i \in I$, so $\bigcap_{i \in I} A_i = \bigcap_{i \in I} cl\delta(A_i)$, since by lemma 3.1 part (2) A is closed

so
$$cl\delta(A_i) = cl(A_i)$$
. Thus $\bigcap_{i \in I} cl\delta(A_i) = \bigcap_{i \in I} cl(A_i) = cl(\bigcap_{i \in I} A_i) = cl\delta(\bigcap_{i \in I} A_i)$ so

 $\bigcap_{i\in I} A_i = cl\delta\left(\bigcap_{i\in I} A_i\right), \text{ therefort } \bigcap_{i\in I} A_i \text{ is } \delta - \text{closed }.$

Proposition 3.9

The following properties are equivalent for a subset A of a space X:

- 1- A is clopen.
- 2- A is regular open and regular closed.
- 3- A is δ open and δ closed.
- 4- A is δ open and $g\delta$ closed.

Proof :-

 $1 \rightarrow 2$: clearly since A is open and closed.

 $2 \rightarrow 3$: by proposition (3.4) part (1).

 $3 \rightarrow 4$: by proposition(3.4) part (2).

 $4 \to 3$: A is δ – open from part (4), let A is $g\delta$ - closed set so $cl(A) \subset u$, when $A \subset u$ and u is δ – open by proposition (3.4) (1), there exist $M \subseteq u$, M is regular open such that $A \subseteq M \subseteq u$, since $cl(A) \subseteq cl\delta(A) \subseteq M$ when $A \subset M$, M is regular open in X.

Thus $cl\delta(A) \subseteq M$, when $A \subset M$, M is regular open, therefore A is δ -closed. $3 \rightarrow 2$ and $2 \rightarrow 1$: clearly by proposition (3.1)

Lemma 3.10 [Dontchev,2000]

For a topological space (X,T) the following conditions are equivalent :

1- X is T_{δ} - space.

2- X is almost weakly hausdorff and semi – regular [NavalaG,2000].

Lemma 3.11

Let (X, T_{δ}) be a topological space , $A \subseteq X$:

1- If A is closed, then A is δ – closed.

2- If A is $g\delta$ - closed, then A is δ - closed.

Proof :-

1- Let $A \subset X$ be a closed set, $A^c = B \in T_{\delta}$ - space, since so $B = \bigcup_{i=1}^{n} u_i$, $u_i \in Ro(X)$ open, $B^c = (\bigcup u_i)^c = \bigcap_{i=1}^{n} (u_i)^c = \bigcap_{i=1}^{n} v_i$ where $v_i \in Rc(X)$, so $A - B^c = \bigcap_{i=1}^{n} v_i$, therefort A is δ - closed. 2- closed.

Proposition 3.12

Let A be an open or dense (resp. δ – closed) subset of a space X, and $B \in \delta o(X)$ (resp. $B \in g \delta c(X)$) then $A \cap B \in \delta o(A)$ (resp. $A \cap B \in g \delta c(A)$). **Proof :-**

Clearly that if A is dense set .

To prove that $A \cap B \in \delta o(A)$, let $B \in \delta o(X)$, so $B = \bigcup_{i=1}^{n} u_i$, $u_i \in Ro(X)$, if A is open in X

$$(A \cap B)_A = \left(A \cap \left(\bigcup_{i=1}^n (cl(\operatorname{int}(u_i))) \right) \right) \cap A = \left(\bigcup_{i=1}^n ((\operatorname{int}(A)) \cap \operatorname{int}(cl(u_i))) \right) \cap A = \bigcup_{i=1}^n (\operatorname{int}(cl(A) \cap u_i) \cap A) \subset \left[\bigcup_{i=1}^n (\operatorname{int}(cl(A \cap u_i))) \right] \cap A$$

So
$$(A \cap B)_A \subset \left[\bigcup_{i=1}^n (\operatorname{int}(cl(A \cap u_i)))\right] \cap A$$

Also
 $\left[\bigcup_{i=1}^n (\operatorname{int}(cl(A \cap u_i)))\right] \cap A \subset \bigcup_{i=1}^n (\operatorname{int}(cl(A \cap cl(u_i))) \cap A)) \subset \bigcup_{i=1}^n (\operatorname{int}(cl(A) \cap cl(u_i))) \cap \operatorname{int}(A))$
 $\subseteq \bigcup_{i=1}^n (\operatorname{int}(cl(A)cl(u_i)) \cap A) = \bigcup_{i=1}^n ((\operatorname{int}(cl(A))) \cap \operatorname{int}(cl(u_i)))) \cap A) = \bigcup_{i=1}^n ((\operatorname{int}(cl(A)))) \cap A) \cap ((\operatorname{int}(cl(u_i)))) \cap A)$
 $= \bigcup_{i=1}^n (\operatorname{int}(cl(u_i)) \cap A)_A = \left(\bigcup_{i=1}^n (\operatorname{int}(cl(u_i)))) \cap A\right) = (A \cap B)_A$
so $\left[\bigcup_{i=1}^n (\operatorname{int}(cl(A \cap u_i)))\right] \cap A \subset (A \cap B)_A$
Therefore $(A \cap B)_A = \left[\bigcup_{i=1}^n (\operatorname{int}(cl(A \cap u_i))))\right] \cap A$
To prove that $A \cap B \in g \& (A)$, let $A \in \& (X)$ and $B \in g \& (X)$, let $p \in clA(A \cap B)$, so
 $p \in (cl(A \cap B) \cap A)$
 $p \in (cl(A) \cap cl(B) \cap A)$, since $A \in \& (X)$, $cl(A) = cl\&(A) = A$, therefore
 $p \in cl\&(A) \land p \in cl(B)$ and $p \in A$.

 $p \in cl\delta(A)$, this means that for every $u \in Ro(X)$, $p \in u$ and $u \cap A \neq \phi$ so $A \subset u$ and $u \in Ro(X)$ also $p \in cl(B)$, this means that for every N open in X and $p \in N$,

 $N \cap B \neq \phi$, so $B \subset N$ and $p \in A$, by proposition (3.1) (1) $u \subset N$, so $u \cap N \neq \phi$ and $u \cap N \in Ro(X)$, so $(u \cap N) \cap A \in Ro(A)$. Thus $p \in (A \cap B) \cap A \subset (u \cap N) \cap A$ $(u \cap N) \cap A \in Ro(A)$ by proposition (3.4) (1), $(u \cap N) \cap A \in \delta o(A)$ therefore $clA(A \cap B) \subset (u \cap N) \cap A$, when ever $(A \cap B)_A \subset (u \cap N)_A$. Thus $A \cap B \in g \delta c(A)$.

proposition 3.13

Let $Y \subseteq X$, if $A \in \delta o(Y)$ (resp. $A \in g \delta o(Y)$) and $Y \in \delta o(X)$ (resp. $Y \in g c o(X)$), then $A \in \delta o(X)$ (resp. $A \in g \delta o(X)$).

Proof :-

To prove that $A \in g\delta_0(X)$ Let $A \in g\delta_0(Y)$, $A^c = v \in g\delta_c(X)$, let $G \in \delta_0(X)$, where $v \in G$. Then $v \subseteq G \cap Y$. Since v is $g\delta$ -closed relative to Y. We have $cl(v) \subseteq G \cap Y$, so $cl(v) \cap Y \subseteq G$. Since $(Y \cap cl(v)) \cup (X \setminus cl(v)) \subseteq G \cup X \setminus cl(v)$, it follows that $Y \cap X \subseteq G \cup (X \setminus cl(v)) = u \in \delta_0(X)$, since $Y \in gco(X)$ then $cl(Y) = int(Y) = Y \subseteq u$. But $cl(v) \subseteq cl(Y)$. Therefore $cl(v) \subseteq u = G \cup (X \setminus cl(v))$ which implies that $cl(v) \subseteq G$, $v \in g\delta_c(X)$. Thus $v^c = (A^c)^c = A \in g\delta_0(X)$. To prove that $A \in \delta_0(X)$ suppose that $A^c = B \in \delta_c(Y)$ so $B = cl\delta(B)$ and $Y = cl\delta(Y) \in \delta_c(X)$ $cl\delta(B) \cap (Y)_X = cl\delta(B) \cap (Y \cap X) = cl\delta(B) \cap (cl\delta(Y) \cap X) = (cl\delta(B) \cap cl\delta(Y)) \cap (cl\delta(B) \cap X)$

 $= cl\delta(B \cap Y) \cap (cl\delta(B) \cap X) = cl\delta(B) \cap (cl\delta(B) \cap X) = (cl\delta(B) \cap X) = B \cap X$ $B \in \delta c(X) \text{, thereforte } B^{c} = (A^{c})^{c} = A \in \delta o(X)$

Lemma 3.14 [Dontchev,2000]

If X is almost weakly hausdorff space , let $A \subseteq X$ is $g\delta$ - closed then it is closed set .

Lemma 3.15 [Dontchev,2000]

For anon – empty topological space (X,T) the following conditions are equivalent :

1- X is hyperconnected.

2- Every subset of X is $g\delta$ - closed and X is connected.

4. Continuity of contra $(\delta, g\delta)$ - continuous functions Definition 4.1

A function $f: X \to Y$ is called :

1- contra δ – cont. (resp. contra $g\delta$ - cont.) at a point $x \in X$, if for each open subset v in Y containing f(x), there exists a δ – closed (resp. $g\delta$ - closed) subset u in X containing x such that $f(u) \subset v$.

2- contra δ – cont . (resp . contra $g\delta$ - cont .) if it have this property at each point of X . **Example 4.2**

Let $X = Y = \{a, b, c\}$, $T_X = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$ and $T_Y = \{\phi, Y, \{c\}, \{b, c\}, \{a, c\}\}$ are topological spaces defined on X and Y respectively, let $f : X \to Y$ be the Identity function.

Note that f is contra $(\delta, g\delta)$ - continuous functions.

Proposition 4.3

For a function $f: X \to Y$, the following are equivalent :

1- f is contra δ - cont. (resp. contra $g\delta$ - cont.).

2- for every open set v of Y, $f^{-1}(v) \in \delta c(X)$ (resp. $f^{-1}(v) \in g \delta c(X)$).

3- for every closed V of Y, $f^{-1}(v) \in \delta o(X)$ (resp. $f^{-1}(v) \in g \delta o(X)$).

Proof :-

 $1 \to 2$: Let v be an open subset of Y, and let $x \in f^{-1}(v)$, since $f(x) \in v$, there exists $u_x \in \delta c(x)$ (resp. $u_x \in g \delta c(X)$ containing x such that $u_x \in f^{-1}(v)$. We obtain that $f^{-1}(v) = \bigcup_{x \in f^{-1}(v)} u_x$ by lemma (3.7) $f^{-1}(v)$ is δ - closed (resp. $x \in f^{-1}(v)$, $g\delta$ - closed) in X.

 $2 \rightarrow 3$: Let *v* be a closed subset of *Y*. Then *Y*/*v* is open, by part (2), $f^{-1}(Y/v) = X/f^{-1}(v)$ is δ - closed (resp. $g\delta$ - closed), thus $f^{-1}(v)$ is δ - open (resp. $g\delta$ - open) in *X*

 $3 \to 1$: Let *v* be a closed subset of *Y* containing f(x), from part (3), $f^{-1}(v)$ is δ – open (resp. $g\delta$ - open), take $u = f^{-1}(v)$. Then $f(u) \subset v$. Therefore *f* is contra δ – cont. (resp. contra $g\delta$ - cont.).

Proposition 4.4

Let $f: X \to Y$ be contra δ – cont. (resp. contra $g\delta$ - cont.) functions, if $u \in o(X)$ or dense (resp. $u \in \delta c(X)$), then $f/u: u \to y$ is contra δ – cont. (contra $g\delta$ - cont.)

Proof :-

To prove that f/u is contra δ – cont.

Let v be aclosed in Y. $(f/u)^{-1}(v) = f^{-1}(v) \cap u$, since f is contra δ - cont., $f^{-1}(v) \in \delta o(X)$. By proposition (3.12), $f^{-1}(v) \cap u \in \delta o(u)$ thus f/u is contra δ - cont. **Remark 4.5**

The converse of proposition (4.4) is not true in general . To see this, we give the following counter example .

Example 4.6

Let $X = Y = \{a, b, c\}$, $T_X = \{\phi, X, \{a\}\}$ and $T_Y = \{\phi, Y, \{a\}\}$ are topological space defined on X and Y respectively, let $f : X \to Y$ be the Identity function.

Let $A = \{a\} \subset X$, see that $f/A : A \to Y$ is contra $(\delta, g\delta)$ - cont. But f is not contra $(\delta, g\delta)$ - cont. function.

Proposition 4.7

Let $f: X \to Y$ be a function and let $\{u_{\alpha} | \alpha \in \Lambda\}$ be a cover of X such that $u_{\alpha} \in \delta o(X)$ (resp. $u_{\alpha} \in gco(X)$), if $f/u_{\alpha} : u_{\alpha} \to Y$ is contra δ - cont. (resp. contra $g\delta$ - cont.), for each $\alpha \in I$, then f is contra δ - cont. (resp. contra $g\delta$ - cont.) **Proof :-**

Let v be any closed subset of Y, $f^{-1}(v) = \bigcup_{\alpha \in I} (f^{-1}(v) \cap u_{\alpha}) = \bigcup_{\alpha \in I} (f/u_{\alpha})^{-1}(v)$, since f/u_{α} is contra δ - cont. (resp. contra $g\delta$ - cont.) for each $\alpha \in I$. So by proposition (3.8) and proposition (3.12), $f^{-1}(v) \in \delta c(X)$ (resp. $f^{-1}(v) \in g\delta c(X)$). Thus we have f is contra δ - cont. (resp. contra $g\delta$ - cont.)

Remark 4.8

The composition of two contra - continuous functions need not be contra $(\delta, g\delta)$ - continuous functions. To see this we give the following counter example.

Example 4.9

1- Let $X = Y = Z = \{a, b, c\}$, $T_X = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$, $T_Y = \{\phi, Y, \{b, c\}\}$ and $T_Z = \{\phi, Z\}$ are topological spaces defined on X, Y and Z respectively. Let $f : X \to Y$ and $g : Y \to Z$ be the Identity functions.

Note that f and g are contra δ - cont., but $g \circ f : X \to Z$ is not contra δ - cont. Since $(g \circ f)(a) = a \in Z, \exists u = \{a, c\}$ is δ - closed in X.

 $(g \circ f)(u) = g(f(u)) = g(f\{a,c\}) = g(\{a,c\}) = \{a,c\} \subset Z$ but $\{a,c\}$ is not open and not δ - closed in Y.

2- Let $X = Y = \{a, b, c\}$, $T_X = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $T_Y = \{\phi, Y, \{c\}, \{b, c\}, \{a, c\}\}$ are topological space defined on X and Y respectively. Let $f : X \to Y$ and $g : Y \to X$ be the Identity functions.

Note that f and g are contra $g\delta$ – cont. functions but $g \circ f : X \to X$ is not contra $g\delta$ – cont. functions.

Remark 4.10

The composition of contra δ – cont . and contra $g\delta$ – continuous need not be contra δ – cont . (resp . contra $g\delta$ - cont .). To see this we give the following counter example .

Example 4.11

Let $X = Y = Z = \{a, b, c\}$, let $T_X = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$, $T_Y = \{\phi, Y, \{b, c\}\}$ and $T_Z = \{\phi, Z, \{c\}, \{b, c\}, \{a, c\}\}$ are topological space defined on X, Y and Z respectively. Let $f : X \to Y$ and $g : Y \to Z$ be the Identity functions.

Note that f is contra δ – cont. and g contra $g\delta$ - cont. but $g \circ f : X \to Z$ is not contra $(\delta, g\delta)$ - cont.

Definitions 4.12 [Dontchev,2000] , [Noiri,1980] , [Noiri,1986] , [Ling and Reilly,1996] , [Noiri,2001]

A function $f: X \to Y$ is called :

1- $g\delta$ - cont. (resp. $g\delta$ - irresolute, δ - closed, contra cont.) if $f^{-1}(v)$ is $g\delta$ - closed (resp. $g\delta$ - closed, δ - closed, closed) in X, for each closed (resp. $g\delta$ - closed, δ - closed, closed,

2- δ - cont. if for each $x \in X$ and each open set v of Y containing f(x), there exist an open set u of X containing x such that $f(\operatorname{int}(cl(u))) \subset \operatorname{int}(cl(u))$.

3- Super cont. (resp. perfectly cont., $Rc - cont \cdot \delta^* - cont$ if $f^{-1}(v)$ is open (resp. clopen, regular closed, $\delta - open$) set in X.

Proposition 4.13

Let $f: X \to Y$ and $g: Y \to Z$ be a functions, the following properties hold: 1- If f is δ - closed (resp. contra δ - cont. if X is T_{δ} - space) and f is contra $g\delta$ - cont. and g contra $g\delta$ - cont. (resp.g is open cont.), then $g \circ f$ is contra δ - cont. 2- If Y is T_{δ} - space, f is $g\delta$ - cont., and g is contra δ - cont., then $g \circ f$ is contra $g\delta$ - cont.

3- If f is $g\delta$ - irresolute (resp. contra $g\delta$ - cont., g - cont.), and g is contra $g\delta$ - cont. (resp. open cont., contra cont.), then then $g \circ f$ is contra $g\delta$ - cont.

4- If Y° is almost weakly hausdorff space, f is $g\delta$ -irresolute and g is contra cont., then $g \circ f$ is contra $g\delta$ -cont.

5. Relation ships

Proposition 5.1

If $f: X \to Y$ is contra δ - cont., then f is contra - cont. (resp. contra $g\delta$ - cont.).

Proof :-

By definition (4.1) and proposition (3.1)(2), proposition (3.4)(2).

Remark 5.2

The converse of theorem (5.1) is not true in general, we will give the sufficient condition before the following example .

Example 5.3

Let $X = Y = \{a, b, c\}$, let $T_X = \{\phi, X, \{a\}, \{a, b\}\}$ and $T_Y = \{\phi, Y, \{c\}, \{b, c\}\}$ be topological spaces defined on X and Y respectively, let $f : X \to Y$ is the Identity function.

Note that f is contra cont . and contra $g\delta$ - cont . but not contra δ - cont .

Proposition 5.4

A function $f:(X,T) \to (Y,T)$ is contra δ - cont . , if and only if $f:(X,T_{\delta}) \to (Y,T)$ is contra cont . (resp. contra $g\delta$ - cont .).

Proof :-

 \Rightarrow By proposition (5.1) \Leftarrow By definition (4.11) and lemma (3.11) (1) (resp. by definition (4.1) and lemma (3.11) (2)

Proposition 5.5

If $f: X \to Y$ is a perfectly cont. function, then f is Rc – cont.

Proof :-

By definition (4.12) and proposition (3.9).

Proposition 5.6

If $f: X \to Y$ is $\operatorname{Rc-cont}$. function, then f is contra δ – cont.

Proof :-

By definition (4.12) and by proposition (3.4) (1) .

Proposition 5.7

If $f: X \to Y$ is contra δ – cont., then f is contra $g\delta$ – cont.

Proof :-

By definition (4.1) and by proposition (3.4) (2)

Remark 5.8

The converse of theorem (5.5) is not true in general . To see this, we give the following counter example .

Example 5.9

Let $X = Y = \{a, b, c\}$, let $T_X = \{\phi, X, \{b\}, \{c\}, \{b, c\}\}$ and $T_Y = \{\phi, Y, \{a, c\}\}$ be topological spaces defined on X and Y respectively, let $f : X \to Y$ is the Identity function.

Note that f is Rc – cont. and contra $(\delta, g\delta)$ - cont. but not perfectly cont.

Proposition 5.10

Let $f: X \to Y$ be a function, the following statement are equivalent:

1- f is perfectly continuous.

2- f is super cont. and Rc – cont.

3- f is δ^* - cont. and contra δ – cont.

4- f is δ^* - cont. and contra $g\delta$ - cont.

Proof :-

The proof is immediately from proposition (3.9)

Remark 5.11

The converse of theorem (5.10) is not true in general. Also see example (5.9) where f is Rc – cont. and contra $(\delta, g\delta)$ - cont. but not super cont. δ^* - cont., and perfectly cont.

Remark 5.12

The concepts of contra $(\delta, g\delta)$ - cont . and $(\delta, g\delta)$ - cont . are independent of each other to see this we give the following counter example .

Example 5.13

1- Let $X = \{a, b, c\}$, $T_X = \{\phi, X, \{b\}, \{c\}, \{b, c\}\}$ be a topology on X, let $f : X \to X$ is the Identity function.

Note that f is δ – cont. but not contra $(\delta, g\delta)$ - cont and $g\delta$ - cont.

2- Let $X = Y = \{a, b, c, d\}$, let $T_X = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$ and $T_Y = \{\phi, Y, \{b, c, d\}\}$ be topological spaces defined on X and Y respectively, let $f : X \to Y$ is the Identity function.

Note that f is contra $(\delta, g\delta)$ - cont. but not $g\delta$ - cont. and it is δ - cont.

Proposition 5.14

If $f: X \to Y$ is contra δ – cont., and Y is connected, then f is δ – cont. **Proof :-**

Let $f(x) \in v$, $v \in c(Y)$, since f is contra δ - cont., there exist $u \in \delta o(X)$, such that $x \in u$ and $f(u) \subset v$ since Y is connected, so the only open and closed sets are ϕ, Y , so v = cl(v) = int(v) = Y.

Thus $f(u) \subset \operatorname{int}(cl(v))$, also there exists $u_1 \subset u$ and $x \in u_1$ by proposition (3.4) and $u_1 \in Ro(X)$, so $f(u_1) \subset f(u)$, thus $f(u_1) \subset f(u) \subset \operatorname{int}(cl(v))$ Therefort f is δ - cont.

Proposition 5.15

If $f: X \to Y$ is contra $g\delta$ - cont., and Y is hyper connected, then f is $g\delta$ - cont.

Proof :-

Let $f(x) \in v$, $v \in o(Y)$, since f is contra $g\delta - \text{cont}$, there exist $u \in g\delta c(X)$, such that $x \in u$ and $f(u) \subset v$, since Y is hyperconnected, $f(u) \subset v = \text{int}(v) \subset cl(v) = Y$ therefort f is $g\delta - \text{cont}$.

By the above stated results , the inter relations of these functions are decided ; the refore , we obtain the following

References

- Dontchev, J. Aroklarni I. and BalachandRan, K. 000, "on Generalized δ -Closed Sets and almost Weakly Hausdorff Space", universe of Helsinki Finland and Bharathiar, India, 18, 17 30.
- Dontchev, J. 1996, "Contra–Continuous Functions and Strongly δ –Closed Space", J. math., math. Sci. 19, 303 310.
- Dontchev; J. Ganster, M. 1996, "on δ –Generalized Closed Sets and T₃₄ Space", men. fac . Sci . kochi . univer . ser . A , math . 17, 15 31 .
- Jafari, S.O., and T, Noiri ,1999, "Contra Super–Continuous Functions" Annales univ. Sci . Budapest 42 , 27 34 .
- Ling G.J. and Reilly, L. 1996, "Nearly Compact Space and δ^* -Continuous Functions", Indian J. pure apply math. 7, 435 444.

Navala G.B.G ,16/7/2000, "Definition Bank in General Topology", vvi = from internet.

Noiri , T. 1980, "on δ – Continuous Functions ", J . Korean math . Soc . , 16, 161 – 166 .

- Noiri, T. 1986, "Strong Froms of Continuity in Topologicul Space", Dep. of math. Yatsushiro college of technology, Japan 11, 107 113.
- Noiri, T. Jafari, S. 001, "Contra α -Continuous Functions between Topological Spaces". Dep, of Math. and physics. Roskild . and Yatsushiro kumamoto , Japan . J . Sci . 2 (2) 153-67.
- Rosas, E., Curpintero, C., and Vielma, J., 2001, "Generalization of Contra –Continuous Functions", universe of oriente, cumana, merida, Venezuela, Divulgaciones math. 9 (2), 173 – 181.