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Abstract 

 

This paper presents a design of a general purpose GA. It is described using the Very high 

speed integrated circuits Hardware Description Language (VHDL), which is one of the 

Hardware Description Languages (HDLs). The complete system is implemented in a single 

Field Programmable Gate Array (FPGA) platform using the Foundation 2.1i, which is a software 

tool from XILINX. The feasibility of the purposed FPGA-based GA (FPGAGA) is demonstrated 

by testing it using two case studies. The objective of the first test is to maximize mathematical 

functions (f(x) = 2x, f(x) = x+5 and f(x) =2x
3
 -45x

2
 +300x) over the domain 15x0  . 

Simulation results show that the adopted design is able to find the maximum obtainable values 

for all the functions. The objective of the second test is to solve circuit partitioning problem by 

distributing given modules (or cells) over two blocks. The number of inter-block connections 

and the number of modules assigned for each block should be minimum. Simulation results 

show that the final arrangements reached by the FPGAGA for the given arrangements (consist 

of 5, 10 and 15 modules)  is well optimized in term" of the number of inter-block connections 

and the modules assigned for each block.  

 

 

VHDLHDLs

FPGA2.1 i

XILINX 

FPGAGA
15x0   

f(x) = 2x, f(x)= x+5 , f(x) =2x
3
 -45x

2
 +300x

(FPGAGA)

circuit partitioning

(FPGAGA)

51015



2

 

IJCCCE, VOL.9, NO.1, 2009                                                                       Implementation of Genetic Algorithm Using FPGA 

with Applications 

                                                 
 

 

 

 

 

 

1. Introduction  

 

Genetic algorithms (GAs) are robust 

search and optimization algorithms that 

mimic the theory of evolution and natural 

selection. GAs were originally developed by 

John Holland in 1975 and have been applied 

to many applications, including power 

system control, fault detection, control 

systems, signal processing and circuit 

partitioning problems [1, 2]. However, the 

software implementation of GAs when 

applied to increasingly complex problems 

and a large search spaces, can cause 

unacceptable delays. Hence, an alternative 

to this approach is to implement a GA in 

hardware. The combination of pipelining 

and parallelism in a hardware 

implementation of a GA increases the speed 

of the system when compared to its software 

counterpart. This allows the hardware 

implementation to be applied to various 

complex applications [3, 4]. 

Since most of the GA’s operations 

are simple, a hardware implementation is 

feasible. Although this was not the case 

before the advent of Field Programmable 

Gate Arrays (FPGA), e.g. those from Xilinx 

( an FPGA vendor) that are programmed via 

a bit pattern are stored in a Static Random 

Access Memory (SRAM). This is because a 

general-purpose GA engine requires certain 

parts of its design, notably the function to be 

optimized, to be easily changed. Typically 

the function to be optimized is the only 

component that requires changing in a 

general-purpose GA. The other operations 

are generic and can be implemented in an 

Application Specific Integrated Circuit 

(ASIC) or other non-programmable medium 

if desired [5, 6]. 

This paper describes the FPGA-

based GA (FPGAGA), which is a self-

contained implementation of a hardware-

based GA. Because of the re-

programmability of the FPGA, the proposed  

design is a general-purpose GA engine  

which is useful in many applications where 

conventional software-based GA are too 

slow. It is described using the Very High  

Speed Integrated Circuits Hardware 

Description Language (VHDL) to facilitate 

the scaling. On the other hand, this VHDL 

code is synthesized and implemented using 

the software from Xilinx (foundation 2.1i). 

2. Previous Works in the Hardware GAs 

GAs have been widely applied to 

various fields since 1975. There have been 

many examples of their applications in many 

fields especially in the engineering fields. 

This section presents examples of the GAs 

implementations to some of these 

applications. Finally, it covers several 

attempts of the FPGA implementation of 

GAs.  

Graham and Nelson (1995) 

submitted a paper that described the Splash2 

Parallel Genetic Algorithm(SPGA), which is 

a hardware GA that searches for optimal 

solutions to symmetric Traveling Salesman 

Problems(TSPs). This family of problems 

involves finding the shortest path through a 

collection of n cities, visiting each city 

exactly once and returning to the starting 

city. Each processor in SPGA consists of 

four FPGA and associated external 

memories and was found to perform 6.8 to 

10.6 times the speed of equivalent software 

on a state-of-the-art workstation. Multiple 

processor SPGA systems, which use up to 

eight processors, find good TSP solutions 

much more quickly than single processor 

and software-based implementations of the 

genetic algorithm. The four-processor 

island-parallel SPGA implementation out 

performed all other SPGA configurations 

tested. This is the first known hardware 

implementation of a GA for this problem[4]. 

Turton and Arslan (1995) submitted 

a paper that proposed a new hardware based 
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Parallel Genetic Algorithm (PGA) using 

order-based crossover rather than the 

conventional two-point crossover operator. 

Thus, the proposed  PGA would be capable 

of optimizing a new category of real-time 

combinatorial problems. Disc Scheduling is 

an example of such type of problems. It was 

found that  the hardware implementation of 

this order-based genetic algorithm is capable 

of scheduling disc-access requests in 

approximately 2 milliseconds and that the 

PGA is more effective than any of the other 

techniques for optimizing the average access 

time [5]. 

Depending on what is published by 

Stephen et al (1997) "A Hardware Engine 

for Genetic Algorithms" [6], this represents 

an important paper for implementation of a 

general-purpose genetic algorithm using 

FPGA. 

 However, the current work attempts the 

following: 

1. To write a VHDL source code for a 

general-purpose genetic algorithm, 

while, it is omitted from the above 

mentioned paper. 

2. To implement the design using single 

FPGA platform using Spartan-XL series 

rather than 5 FPGA platforms using 

XC4003 series. 

3. To implement the shared memory 

internally rather than externally. This 

will add speed merit to the design. 

4. To implement more complex functions 

(circuit partitioning) rather than 

implementing only simple mathematical 

functions.  

 

3. The FPGA-Based GA System Design 

 

Conceptually, the FPGA-based GA 

(FPGAGA) fits into a general computing 

environment into the following way [6]: 

     The front end of the   FPGAGA system 

consists of a simple interface program 

running on a personal computer or 

workstation. Here, the Foundation 2.1i and 

related technology is chosen as the front end 

of the FPGAGA. The GA parameters are 

written into the front end, which programs 

them into the internal memory of FPGA. 

Additionally, the code that describes the GA 

behavior is written using a specific language 

(VHDL in this case) into the front end. Then 

the front end translates the specifications 

into a hardware image and programs the 

FPGA, which in turn implements the GA. 

The FPGAGA operates upon receiving a 

(go) signal from the front end. When the 

system detects a high go signal, the system 

operates based on the parameters which 

already programmed in the internal shared 

memory. Currently the only used 

termination condition is a fixed number of 

generations specified by the user. Therefore, 

the process of computation repeats until the 

termination criterion reached. At that time, 

the system sends a done signal to the front 

end. Hence, the final population will be 

ready to be viewed and analyzed or further 

processing can be performed. 

 

4. The Architecture of FPGAGA 

 

The FPGAGA (Figure (1)) is 

designed to satisfy several criteria. First, the 

components should be simple and easily 

scalable. This allow us to arbitrarily scale 

the design (e.g. allow for larger population 

members) as compatible with the FPGA 

platform’s constraints that the FPGAGA is 

implemented on. Second, due to the modular 

design simplicity, some modules can exploit 

the concurrency within themselves. To this 

end, the SM (Selection Module) and the 

CMM (Crossover/Mutation Module) operate 

on two population members simultaneously. 

Finally, the design should exploit the 

advantages of pipelining. Note that in Figure 

(1) when a module completes a task it can 
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immediately awaits more input to repeat the 

processing. Due to pipelining, GA 

operations do not have to be suspended 

while other GA operations run. The modules 

in Figure (1) are patterned after the GA 

operators defined in Goldberg’s simple 

genetic algorithm (SGA). The FPGAGA 

modules operate concurrently with each 

other and together forms a coarse grain 

pipeline. The basic functionality of the 

FPGAGA design of Figure (1) is as the 

following [6]: 

a) The front end starts the operation of the 

FPGAGA by sending a go signal to the 

memory interface and control module 

MIC (Memory Interface and Control 

Unit).  The MIC acts as the main control 

unit of the FPGAGA during the start-up 

and shut-down and it is the FPGAGA 

sole interface to the outside world. After 

start-up and before shut-down, control is 

distributed, all modules operate 

autonomously and asynchronously. 

b) The MIC notifies the Fitness Module 

(FM), the Crossover / Mutation Module 

(CMM), the pseudo-Random Number 

Generator (RNG), and the Population 

Sequencer Module (PSM) that the 

FPGAGA begins execution. Each of 

these modules requests its required user-

specified parameters from MIC, which 

reads it from the internal shared 

memory. 

c) The PSM starts the pipeline by 

requesting population members from 

MIC and passing them along to the 

selection module SM. 

d) The task of SM is to receive new 

members from PSM and judge them 

until a pair of sufficiently fit members is 

found. At that time, it passes the pair to 

the CMM, rests itself, and restarts the 

selection process. 

e) When the CMM receives a selected pair 

of members from the SM, it decides 

weither to perform the crossover and 

mutation based on the values sent from 

the RNG. When done, the new members 

are sent to the FM for evaluation. 

f) The FM evaluates the two new members 

from the CMM and writes the new 

members and their fitness's at the 

internal memory via the CM. The FM 

also maintains information about the 

current state of the FPGAGA that is used 

by the SM to select the new members 

and by the FM to determine when the 

FPGAGA is finished. 

g) The above steps continue until FM 

determines that the current FPGAGA 

run is finished.  It then notifies the MIC 

about the completion; MIC in turn shuts 

down the FPGAGA modules and sends a 

done signal to the front end. 

 

5. FPGAGA Simulation, Implementation 

and Evaluation of Results  

 

The FPGAGA system that has been 

implemented in this work consists of seven 

modules, the pseudo-Random Number 

Generator (RNG), the  memory module, the 

Memory Interface and Control module 

(MIC), the Population Sequencer Module 

(PSM), the Selection Module (SM), the 

Crossover/Mutation Module (CMM) and the 

Fitness Module (FM). Here, Fitness module 

is used to maximize simple fitness functions, 

which are as the following: 

1. f(x) = 2x. 

2. f(x) = x + 5. 

3. f(x) =2x
3 
-45x

2 
+300x.  

Then, it is used to solve the circuit 

partitioning problem for different module 

arrangements consisting of 5, 10 and 15 

modules. In this paper all the above stated 

modules are described using the VHDL, 

except for the memory module which is 

created and added to the design using the 

Foundation CORE Generator (Foundation 
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design tool). Then, the Foundation synthesis 

and implementation tools are used to target 

the proposed  design in the S40XLBG256, 

which is the chosen FPGA platform from 

Spartan-XL family, since it contains suitable 

hardware resources and employ distributed 

memory technology, which allows internal 

memory to be implemented in the design[9]. 

 

5.1 Steps of the Work 

In this paper, the implementation of 

the FPGAGA design to the chosen platform 

involves the following steps; 

a) The FPGAGA low level modules 

mentioned in the pervious section are 

described using the VHDL. The syntax 

of the module is checked and any error is 

removed using the Foundation HDL 

Editor (Foundation entry tool). Then 

Foundation Simulator (Foundation 

simulation tool) is used to perform the 

functional simulation to check the 

correct functionality of each module 

separately. 

b) The user-specified parameters are 

written along with the initial population 

into a special format file. This file is 

used by the Foundation CORE 

Generator to load them in the internal 

memory. While the design’s hardware 

parameters are written in the top level 

module, which is used also to connect 

the lower level modules. 

c) The design is synthesized and 

implemented using the synthesis and 

implementation tools of the Foundation 

2.1i. Then timing simulation is 

performed to check the performance of 

the implemented design. Simulation 

results are analyzed and the 

implementation reports are summarized.  

 

5.2 The Hardware Parameters 

 

The hardware parameters are 

defined in the ROOT Module. They 

provide the required scalability for the 

proposed design. The primary hardware 

parameters are as the following: 

a) The width in bits of the crossover and 

mutation probabilities and the random 

numbers sent from RNG to CMM  is 

denoted as p.  

b) The maximum width in bits of the 

population members is denoted n. 

c) The maximum width in bits of the 

fitness values is denoted f. 

d) The precision used in scaling down the 

sum of fitness's for selection in SM is 

denoted r.  

e) The size of the cellular automaton in 

RNG is denoted casize. 

f) The maximum of the population is 

denoted m.  

g) The maximum number of generations is 

denoted maxnumgens. 

The other parameters defined in the 

ROOT Module depend entirely on the above 

parameters, which are as the following: 

a) The width in bits of the random numbers 

sent from RNG to CMM is donated logn, 

which is the base-2 logarithm of n. 

b) The maximum width in bits of the coded 

indices, which are sent by different 

modules to the MIC, is denoted 

lognumparam, which is the base-2 

logarithm of the number of parameters 

specified in s.  

c) The maximum width in bits of the coded 

indices, which are sent by the PSM to 

the MIC, is denoted logm, which is the 

base-2 logarithm of the m. 

d) The size of FM's register used to store 

the maximum number of generations for 

a given application is denoted logmaxng, 

which is the base-2 logarithm of the 

maxnumgens. 

e) The maximum width in bits of an item (a 

population member along with its 

fitness) that is stored in a memory 
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location is denoted membw, which is 

equal to the product of f plus n. 

f) The maximum width in bits of user-

specified parameters that is requested by 

FM is denoted maxof_logmf_logmaxng, 

which is equal to the maximum value 

between (logm + f) and logmaxnumgens. 

g) The maximum width in bits of an item 

stored in the memory is denoted 

maxof_memwidth, which is equal to the 

maximum value among the casize, p, 

membwidth, maxof_logmf_logmaxng.  

h) The width in bits of the address bus of 

the RAM is denoted addrw. 

i) The width in bits of I/O data bus of the 

RAM is denoted valw. 

j) The width in bits for the difference 

between logn and n is denoted d. This 

parameter is used by CMM to ensure 

that the crossover and/or the mutation 

operators respect the bit groups when 

produced new members.   

The value for these parameters are 

determined as required by a given 

application and must be compatible with 

hardware constraints for the chosen FPGA 

platform.  

 

5.3 Case Studies 

To demonstrate the FPGAGA 

feasibility, the FPGAGA is first tested on 

simple fitness functions. Then it is tested on 

more complex fitness functions. At each 

test, the FM is modified to describe the 

fitness function of the given problem. Then 

a random initial population is created and 

evaluated (using the RNG and FM 

individually). Once the user-controlled and 

hardware parameters are specified, the 

Foundation synthesis and implementation 

tools are used to target the FPGAGA system 

in the given FPGA platform. This section 

presents the simulation results, the 

performance analysis and  summarization of 

the  implementation reports of these tests. 

 

5.3.1 Simple Fitness Functions 

The FPGAGA is tested by 

optimizing the functions f(x) =2x, f(x) =x+5 

and f(x) =2x
3 

-45x
2 

+300x [6]. At each new 

test, the VHDL code of the state Evaluation 

of the FM is modified to describe the given 

function. The functional simulation is 

performed successfully. The correct 

functionality of the module is verified by 

scrutinizing the simulation results. 

 
5.3.1.1 Simulation Results of the FPGAGA 

System Maximizing the Function f(x) = 2x 

 

The parameters used to implement 

the FPGAGA in order to maximize the 

given function for this test (f(x) =2x) are 

shown in tables (1) and (2) (test 1). While 

the results of simulation that was performed 

after the successful implementation of the 

FPGAGA system are shown in Figure (2). 

The maximum fitness value obtained 

measures the performance of the FPGAGA 

system. Also, the average fitness value 

measures how close the population members 

from the maximum value. The function is 

maximized over the domain 15x0  ; 

hence the maximum obtainable fitness will 

be 30. It is obvious from the graph of 

Figure(2) that the FPGAGA system reached 

this value from the 2
nd

 generation (run), and 

maintains this value through the successive 

generations. Also, the average fitness 

increases gradually until it reaches the value 

of 30 at 11
th

 generation and successive 

generations. This indicates that all 

population members reached the value that 

achieves the maximum fitness from the 11
th

 

generation. These results shows how good 

the FPGAGA is for maximizing the function 

f(x) = 2x. The entire simulation run took 

12,673 clock cycles. 
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5.3.1.2 Simulation Results of the FPGAGA 

System Maximizing the Function f(x) = x + 5 

 

The parameters used to implement 

the FPGAGA in order to maximize the 

given function for this test (f(x) = x +5) are 

shown in tables (1) and (2) (test 2). While 

the results of simulation that was performed 

after the successful implementation of the 

FPGAGA system are shown in Figure (3). 

The function f(x) = x +5 is 

maximized over the domain 15x0  ; 

hence the maximum obtainable fitness value 

will be 20.  The simulation results obtained 

after 16 FPGAGA runs are shown in 

Figure(3). It is clear from the graph that 

maximum fitness obtained by the FPGAGA 

system reaches the value of 20 from the 2
nd

 

generation (run). While the average fitness 

increases gradually until it reaches the value 

of 20 at the 12
th

 generation and successive 

generations. This indicates that the 

maximum fitness value obtained measures 

the performance of the FPGAGA system.  

 
5.3.1.3 Simulation Results of the FPGAGA 

System Maximizing the Function f(x) =2x
3 

-

45x
2 
+300x 

 

The parameters used to implement 

the FPGAGA in order to maximize the 

given function for this test (f(x) =2x
3 

-45x
2 

+300x) are shown in tables (1) and (2) (test 

3). While the results of simulation that is 

performed after the successful 

implementation of the FPGAGA system are 

shown in Figure (4).The function f(x) =2x
3 

-

45x
2 

+300x is maximized over the 

domain 15x0  ; hence the maximum 

obtainable fitness value will be 1125.  The 

simulation results obtained after 16 

FPGAGA runs are shown in Figure (4). It is 

clear from the graph that the maximum 

fitness obtained by the FPGAGA system 

reaches the value of 1125 from the 2
nd

 

generation (run) and the successive 

generations. While the average fitness 

increases gradually until it reaches the value 

of 1125 at the 7
th

 generation and the 

successive generations. This indicates that 

all population members reach the value that 

gives the maximum obtainable fitness from 

generation 7
th

. These results show how good 

the implemented FPGAGA system is in 

maximizing the function   f(x) =2x
3 

-45x
2 

+300x. The entire simulation took 12,993 

clock cycles. Therefore, the difference is 

negligible if compared with the number of 

clock cycles of the previous tests simulation 

run. This is due to the fact that state 

Evaluation is executed in single clock cycle 

regardless of the complexity of the given 

function.  
5.3.1.4 Summary of Implementation Reports 

The Implementation reports can be 

summarized as follows: 

a) The hardware cost for the simple fitness 

functions tests is summarized in table 

(3). It is clear that the hardware 

utilization is directly related to the 

complexity of the given application and 

the technique of implementation. For 

example, the hardwire utilization at the 

case f(x) =2x
3
 -45x

2
 +300x is increased 

by 73% compared to the case f(x) = x + 

5, while it is increased by 74% compared 

to case f(x) = 2x. On the other hand, the 

difference between case f(x) = x + 5 and 

f(x) = 2x is negligible (about 1%).  

b) In all tests, the design is implemented on 

the same platform to ease the 

comparisons. The hardware utilization is 

55% for the case f(x) = 2x, and it is 56% 

for the case f(x) = x + 5, while it is 97% 

for the case f(x) =2x
3
 - 45x

2
 +300x. 

Therefore, the chosen platform has a 

suitable capacity to implement the given 

functions. 

c) The processing time evaluation is shown 

in table (4). Here, the expected execution 
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time of the real system is related to the 

complexity of the given application and 

the technique of implementation. The 

maximum value of the worst case 

connection delay is (18.592ns), while the 

maximum value of the clock frequency 

with which the system operates properly 

is (19.558MHz). On the other hand, the 

longest expected execution time is 

(634.779 µs). These figures give an 

impression about how fast the hardware 

implementation of the GA is. 

d) No errors are declared in all reports. 

 

5.3.2 Case Two (Circuit Partitioning)    

Circuit partitioning is the task of 

dividing a circuit into smaller parts. The 

objective of the circuit partitioning is to 

divide a circuit into parts as the sizes so that 

of the components are within prescribed 

ranges and the complexity of connections 

between the components is minimized. As 

the size of present-day computers chip 

increases (i.e. chips contain more than ten 

millions transistors in sub-micron areas), the 

interconnection delay (connection between 

two transistors) becomes a dominant factor 

over the gate delay. The interconnection 

delay is associated with the numbers and 

length of the connected wire, therefore one 

of the main objectives of the VLSI design is 

to limit delay within the circuit and allow for 

a higher clock frequency. Circuit 

partitioning is an important approach in 

reducing wire-length, and increasing the 

speed of the overall design. Hence, the main 

objectives that may be satisfied by the 

desired partition are [7, 8]: 

 Minimization of the number of cuts 

(inter-partition connections). 

 Minimization in the number of modules 

(elements) assigned to each partition. 

Since circuit partitioning is showed to be an 

NP(Non-deterministic Polynomial time) 

complete problem, the proposed design of 

the FPGAGA is used to solve the 

partitioning problem.There is a scheme that 

has been proposed to apply to GAs to 

minimize the number of cuts. A design is 

composed of c components and a particular 

partitioning (population member) is 

represented by c-bit string P (as shown in  

figure (5)), where the ith bit is 1 if and only 

if component i lies in block B. 

Accompanying this bit string is a set of c-bit 

strings Nj, one per inter-component net in 

the design, where the ith bit of Nj is 1 if and 

only if component i is connected to Nj. So 

net j lies in block B of partition P if one of 

the bits in P  Nj is 1, where   is the 

bitwise AND operator. Likewise, net j lies in 

block A of partition P if one of the bits in 

P  Nj  is 1, where P is the bitwise NOT 

of the P. Thus, a net j crosses a chip 

boundary if and only if some bits from P  

Nj is 1 and some bit from P  Nj is 1. This 

can easily be determined with combinational 

logic. A partition cost fitness (Fcut) will be, 

then, the total number of boundary crossing. 

Since our objective is to minimize the cost 

fitness, the following cost-to-fitness 

transformation:- 

 

FP = Fmax – Fcut                       … (1)                                                  

 

Where Fmax is an input coefficient and it will 

be chosen as the maximum number of inter-

component net for the initial circuit 

arrangement [6]. 

Then a control will be used to check 

weither the given partition respects the 

prescribed partition size (the number of 

modules assigned to each partition should 

not exceed 40%-50% of the total number of 

modules). Any partition violating this range 

will be punished by setting its resultant 

fitness (FR) to 1. Consequently, its chances 

of survival in the next generations will be 

minimized. 
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This approach will be implemented 

in the following manner (as shown in  

figure(6)). First store P in the register of 

length c-bit. Each bit represents which of the 

block A or B its components lies in. then for 

each net Nj, a counter initializes itself to 0 

and cycles through the values v  0,1 . For 

each value v, compare it to Pi ( the index of 

the block holding component i) for all i. If 

they are equal, then component i lies in 

block v. The results for all i are logically 

ORed yielding a single bit indicating which 

partition that Nj lies in. This result is fed into 

an accumulator which counts the number of 

blocks that Nj lies in. After looping through 

all values v  0,1 , the accumulator is 

checked. If it holds a value equal to 0, then 

Nj crosses a chip boundary and Fcut will be 

updated. This process will be repeated for all 

Nj. Finally, FP will be evaluated as defined 

by Eq.(1). Then the number of zeros in the 

given partition will be counted. If the 

resultant number is within the predefined 

partition size, FR will be set to FP. 

Otherwise, FR will be set to 1.  

In this paper, The FPGAGA is used 

to solve the partitioning for three different 

arrangements, which are of 5, 10 and 15 

modules [8]. At each new test, the VHDL 

code of the state Evaluation of the FM is 

modified to describe the given 

arrangements. The functional simulation is 

performed successfully. The correct 

functionality of the module is verified by 

scrutinizing the simulation results. 

The implementation and synthesis 

steps are performed successfully for all tests. 

This section presents the simulation results, 

performance analysis and summarization of 

the  implementation reports for these tests. 

 
5.3.2.1 Simulation Results of the FPGAGA 

System Optimizing the 5 Modules 

Arrangement  

 

The parameters used to implement 

the FPGAGA in order to maximize the 

given function for this test (5-module 

arrangements) are shown in tables (5) and 

(6) (test 1). While the results of simulation 

that was performed after the successful 

implementation of the FPGAGA system are 

shown in Figure (7). 

The simulation results, which is 

obtained after 16 FPGAGA runs, are 

summarized in the Figure (7). It is clear that 

the maximum fitness of 3 is obtained from 

the 2
nd

 generations, while the average fitness 

increases gradually until it reaches the value 

of 3 at the 7
th

 generation and the successive 

generations. This indicates that all 

population members reach the value that 

gives the optimum fitness of 3. By 

comparing the initial arrangement and the 

final arrangement reached by the FPGAGA 

in figure (8), it can be noticed how efficient 

the system is at reducing the inter-

component connections and distributing the 

modules fairly over the two modules. The 

entire simulation run takes 21,305 clock 

cycles.  

 
5.3.2.2 Simulation Results of the FPGAGA 

System Optimizing the 10 Modules 

Arrangement 

 

The parameters used to implement 

the FPGAGA in order to maximize the 

given function for this test (10-module 

arrangements) are shown in tables (5) and 

(6) (test 2).  

The simulation results, which are 

obtained from the FPGAGA simulation runs 

are summarized in Figure (9). It can be 

noted that an optimum fitness of 4 is 

obtained from the 2
nd

 generation, while the 

average fitness reaches the value of 4 at the 

14
th

 generation. The initial and final 

arrangement reached by the FPGAGA are 
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shown in Figure(10). Here the efficiency of 

the FPGAGA is evident since the cut-set is 

reduced from 6 to 2 and the modules are 

distributed equally over the two blocks. The 

entire simulation run took 29,258 clock 

cycles. This figure represents an increase by 

37% compared to the previous test number 

of clock cycles.  

 
5.3.2.3 Simulation Results of the FPGAGA 

System Optimizing the 15 Modules 

Arrangement 

 

The parameters used to implement 

the FPGAGA in order to maximize the 

given function for this test (15-module 

arrangements) are shown in tables (5) and 

(6) (test 3). While the results of the 

simulation that is performed after the 

successful implementation of the FPGAGA 

system are shown in Figure (11). It can be 

shown that an optimum fitness of 7 appears 

in the 4
th

-9
th

 generations, and 13
th

 -16
th

 

generations. On the other hand, the 

maximum average fitness value is 5.9375 at 

the 14
th

 generation. This oscillation in the 

maximum and average fitness is mainly due 

to the fact that the search space increases as 

the length of the chromosome increased. 

However, it is obvious that the final 

arrangement, which is shown in Figure (12), 

is well optimized in terms of the number of 

inter-blocks connections and the size of each 

block. The entire simulation took 41,865 

clock cycles. Although the number of blocks 

is tripled compared with the first case the 

simulation time is increased by 97%. This 

increase in executions time clock cycles is 

mainly due to the execution of some parts of 

fitness function depending on the length of 

the given arrangement, however, the 

increase in the rate of execution time in term 

of clock cycles remain less than that of the 

number of modules for the given 

arrangement. 

 
5.3.2.4 Summary of the Implementation 

Reports 

 

The Implementation reports can be 

summarized as follows: 

a) The hardware cost for the circuit 

partitioning problem tests is summarized 

in table (7). It is clear from the table that 

the hardware utilization is directly 

related to the number of the modules in 

the given arrangements and the 

technique of implementation. For 

example, the hardware utilization for the 

15-module test is increased by 48% 

compared to the 5-module test, while it 

is increased by 19% for 10-module test.  

b) In all the tests the design was 

implemented on the same platform to 

ease the comparisons. The hardware 

utilization is 58% for the 5 module test; 

it is 72% for the 10-module test, while it 

is 86% for 15 modules test. Therefore 

the chosen platform has the suitable 

capacity to implement the given 

arrangements. 

c) The processing time evaluation is shown 

in table (8). Here also, the technique of 

implementation and the number of the 

modules in the given arrangements is the 

decisive factor. The maximum worst 

case connection delay is (13.875 ns), 

while the maximum clock frequency 

with which the system operates properly 

is (31.595MHz). On the other hand, the 

longest expected execution is 

(1325.51µs). These values emphasize 

the speed of the FPGA implementation 

for the GA. 

d) No errors are declared in all the reports 

 

6. Conclusions 

 

This paper presents the FPGAGA 

which is a design to implement the genetic 
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algorithms on FPGA platform. The design is 

described using the VHDL which allows 

parameterized modules to ease scalability. 

Each of the FPGAGA modules is verified to 

be functionally correct through numerous 

simulations. After the correct functionality 

of each module has been verified, the 

modules are connected to each other and the 

system is synthesized and implemented 

successfully using the Foundation 2.1i 

synthesis and implementation tools. The 

FPGAGA possesses the speed of hardware 

while retaining the flexibility of the software 

implementation due to the reprogram ability 

of FPGA. Therefore the system is a general-

purpose GA engine which is useful in many 

applications where software based GA 

implementations is too slow. 

     Simulations results for the FPGAGA 

maximizing the simple functions are good. 

In all tests the systems are able to find the 

maximum obtainable value for the given 

functions. This demonstrates that FPGAGA 

is an efficient system for maximizing the 

given functions. 

     The simulation results for FPGAGA 

when used to solve the circuit partition 

problem show the high performance of the 

adopted design. In each test the final 

arrangement reached by FPGAGA 

effectively minimized the cut-set and the 

number of modules assigned to each 

partition. 

      The number of clock cycles increases in 

relation to the complexity of the given 

problems, however the expected execution 

time emphasizes the FPGA implementation 

speed advantage and demonstrates that the 

FPGAGA successfully combined the 

benefits of efficient GA with the benefits of 

the FPGA implementation. It can be noted 

from the implementation reports that the 

technique used to implement the fitness 

function for a given application affects 

partially the overall processing time. 

Therefore a reduction in the processing time 

can be achieved by modifying the used 

technique to implement the fitness function 

for any given application since these 

modifications respects the area of the 

available FPGA platform. Processing time 

can be also reduced by increasing the system 

clock frequency which mainly depends on 

the state of art in FPGA technology. This 

technology will surely advance more in the 

future. 

(6) 
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Figure (1) The architecture of the FPGAGA [6]. 
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Table (1): User-Controlled Parameters for the simple functions test. 

 Test 1 Test 2 Test 3 

Size of population 16 16 16 

The seed “AAAA” (H
*
) “AAAA” (H

*
) “AAAA” (H

*
) 

The mutation probability 0.00195 0.00195 0.00195 

The crossover probability 0.998 0.998 0.998 

Initial sum of population 102 187 8965 

Number of generations 16 16 16 

*: refers to the value given in the hexadecimal system of numbers. 

Table (2): Hardware parameters for simple functions tests. 

Primary parameters donation Test 1 Test 2 Test 3 

p 9 9 9 

n 4 4 4 

f 5 5 11 

r 4 4 4 

casize 16 16 16 

m 16 16 16 

maxnumgens 10 10 10 

0

5
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25

30
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Figure (2) Simulation results for the case f(x) = 2x. 
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Figure (3) Simulation results for the case f(x) = x + 5. 
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Figure (4) Simulation results for the case 2x
3
 -45x

2
 +300x. 
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Table (3): Hardware utilization for the simple fitness functions. 
 

 f(x) = 2x f(x) = x + 5 f(x) =2x
3 

-45x
2 
+300x 

CLB 438 442 764 

CLB F.F. 560 564 757 

4input LUT 543 549 1013 

3input LUT 149 149 195 

16x1 RAM 72 72 120 

I / O Blocks 36 36 36 

Gate Count 12726 12730 21645 

Add. Gates 1728 1728 1728 

 

 

Table (4): Processing time evaluations for simple functions. 

 
 

 f(x) = 2x f(x) = x + 5 f(x) =2x
3 

-45x
2 
+300x 

Longest delay (ns) 12.892 14.812 18.592 

Maximum frequency 

(MHz) 
30.914 30.213 19.558 

No. of clock cycles 12673 12889 12993 

Expected execution 

time (µs) 
409.944 426.604 634.779 
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Figure (5) A Netlist and Partition Solution [8]. 

 

 P1 P2 Pc-1 Pc

P ( population member)

Nj
1

Nj
2

Nj
c-1

Nj
c

Nj (each one bit 

wide)

co
m

pa
ra

to
rs

1-bit counter

1-bit 

accumulator

If zero then 

updates 

partition fitness

 

Figure (6) Circuit to evaluate 2-way partition. 
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Table (5): User-Controlled Parameters for the circuit partitioning tests. 

 

 Test 1 Test 2 Test 3 

Size of population 16 16 16 

The seed “AAAA” (H
*
) “AAAA” (H

*
) “AAAA” (H

*
) 

The mutation probability 0.00195 0.00195 0.00195 

The crossover probability 0.998 0.998 0.998 

Initial sum of population 19 22 28 

Number of generations 16 16 16 

 
*: refers to the value given in the hexadecimal system of numbers. 

Table (6): Hardware parameters for circuit partitioning tests. 

Primary parameters donation Test 1 Test 2 Test 3 

P 9 9 9 

N 5 10 15 

F 3 3 4 

R 4 4 4 

Casize 16 16 16 

M 16 16 16 

Maxnumgens 10 10 10 
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Figure (7) Simulation results for the 5-modules case. 
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Figure (8) The initial and final arrangement that reach by the FPGAGA after 16 runs. 
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Figure (9) Simulation results for the 10-module case. 
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Figure (10) The initial and final arrangement that reach by the FPGAGA after 16 runs. 
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Figure (11) Simulation results for the 15-modules case. 
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Figure (12) The initial and the best final arrangement that is reached by the FPGAGA after 16 

runs. 
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Table (7): Hardware utilization for the circuit partitioning problem. 

 

 5 modules 10 modules 15 modules 

CLB 459 566 678 

CLB F.F. 593 759 948 

4input LUT 596 707 800 

3input LUT 153 188 239 

16x1 RAM 64 104 152 

I / O Blocks 36 36 36 

Gate Count 12542 16890 21880 

Add. Gates 1728 1728 1728 

 

 

 
Table (8): Processing time evaluations for the circuit partitioning problem. 

 

 5 modules 10 modules 15 modules 

Longest delay (ns) 11.300 12.407 13.875 

Maximum frequency 

(MHz) 
38.199 36.478 31.595 

No. of clock cycles 21 305 29 258 41 865 

Expected execution 

time (µs) 
557.737 802.074 1325.51 

 

 

 

 


