
1

IJCCCE, VOL.9, NO.1, 2009

*Department of Electrical &Electronics Eng.University of Technology, Baghdad/Iraq

Implementation of Genetic Algorithm Using FPGA with Applications

Dr. Hanan A. R. Akkar * & Omar Arif Abdul-Rahman *

Received on: 14/1/2008

 Accepted on: 10/6/2009

Abstract

This paper presents a design of a general purpose GA. It is described using the Very high

speed integrated circuits Hardware Description Language (VHDL), which is one of the

Hardware Description Languages (HDLs). The complete system is implemented in a single

Field Programmable Gate Array (FPGA) platform using the Foundation 2.1i, which is a software

tool from XILINX. The feasibility of the purposed FPGA-based GA (FPGAGA) is demonstrated

by testing it using two case studies. The objective of the first test is to maximize mathematical

functions (f(x) = 2x, f(x) = x+5 and f(x) =2x
3
 -45x

2
 +300x) over the domain 15x0 .

Simulation results show that the adopted design is able to find the maximum obtainable values

for all the functions. The objective of the second test is to solve circuit partitioning problem by

distributing given modules (or cells) over two blocks. The number of inter-block connections

and the number of modules assigned for each block should be minimum. Simulation results

show that the final arrangements reached by the FPGAGA for the given arrangements (consist

of 5, 10 and 15 modules) is well optimized in term" of the number of inter-block connections

and the modules assigned for each block.

VHDLHDLs

FPGA2.1 i

XILINX

FPGAGA
15x0

f(x) = 2x, f(x)= x+5 , f(x) =2x
3
 -45x

2
 +300x

(FPGAGA)

circuit partitioning

(FPGAGA)

51015

2

IJCCCE, VOL.9, NO.1, 2009 Implementation of Genetic Algorithm Using FPGA

with Applications

1. Introduction

Genetic algorithms (GAs) are robust

search and optimization algorithms that

mimic the theory of evolution and natural

selection. GAs were originally developed by

John Holland in 1975 and have been applied

to many applications, including power

system control, fault detection, control

systems, signal processing and circuit

partitioning problems [1, 2]. However, the

software implementation of GAs when

applied to increasingly complex problems

and a large search spaces, can cause

unacceptable delays. Hence, an alternative

to this approach is to implement a GA in

hardware. The combination of pipelining

and parallelism in a hardware

implementation of a GA increases the speed

of the system when compared to its software

counterpart. This allows the hardware

implementation to be applied to various

complex applications [3, 4].

Since most of the GA’s operations

are simple, a hardware implementation is

feasible. Although this was not the case

before the advent of Field Programmable

Gate Arrays (FPGA), e.g. those from Xilinx

(an FPGA vendor) that are programmed via

a bit pattern are stored in a Static Random

Access Memory (SRAM). This is because a

general-purpose GA engine requires certain

parts of its design, notably the function to be

optimized, to be easily changed. Typically

the function to be optimized is the only

component that requires changing in a

general-purpose GA. The other operations

are generic and can be implemented in an

Application Specific Integrated Circuit

(ASIC) or other non-programmable medium

if desired [5, 6].

This paper describes the FPGA-

based GA (FPGAGA), which is a self-

contained implementation of a hardware-

based GA. Because of the re-

programmability of the FPGA, the proposed

design is a general-purpose GA engine

which is useful in many applications where

conventional software-based GA are too

slow. It is described using the Very High

Speed Integrated Circuits Hardware

Description Language (VHDL) to facilitate

the scaling. On the other hand, this VHDL

code is synthesized and implemented using

the software from Xilinx (foundation 2.1i).

2. Previous Works in the Hardware GAs

GAs have been widely applied to

various fields since 1975. There have been

many examples of their applications in many

fields especially in the engineering fields.

This section presents examples of the GAs

implementations to some of these

applications. Finally, it covers several

attempts of the FPGA implementation of

GAs.

Graham and Nelson (1995)

submitted a paper that described the Splash2

Parallel Genetic Algorithm(SPGA), which is

a hardware GA that searches for optimal

solutions to symmetric Traveling Salesman

Problems(TSPs). This family of problems

involves finding the shortest path through a

collection of n cities, visiting each city

exactly once and returning to the starting

city. Each processor in SPGA consists of

four FPGA and associated external

memories and was found to perform 6.8 to

10.6 times the speed of equivalent software

on a state-of-the-art workstation. Multiple

processor SPGA systems, which use up to

eight processors, find good TSP solutions

much more quickly than single processor

and software-based implementations of the

genetic algorithm. The four-processor

island-parallel SPGA implementation out

performed all other SPGA configurations

tested. This is the first known hardware

implementation of a GA for this problem[4].

Turton and Arslan (1995) submitted

a paper that proposed a new hardware based

3

IJCCCE, VOL.9, NO.1, 2009 Implementation of Genetic Algorithm Using FPGA

with Applications

Parallel Genetic Algorithm (PGA) using

order-based crossover rather than the

conventional two-point crossover operator.

Thus, the proposed PGA would be capable

of optimizing a new category of real-time

combinatorial problems. Disc Scheduling is

an example of such type of problems. It was

found that the hardware implementation of

this order-based genetic algorithm is capable

of scheduling disc-access requests in

approximately 2 milliseconds and that the

PGA is more effective than any of the other

techniques for optimizing the average access

time [5].

Depending on what is published by

Stephen et al (1997) "A Hardware Engine

for Genetic Algorithms" [6], this represents

an important paper for implementation of a

general-purpose genetic algorithm using

FPGA.

 However, the current work attempts the

following:

1. To write a VHDL source code for a

general-purpose genetic algorithm,

while, it is omitted from the above

mentioned paper.

2. To implement the design using single

FPGA platform using Spartan-XL series

rather than 5 FPGA platforms using

XC4003 series.

3. To implement the shared memory

internally rather than externally. This

will add speed merit to the design.

4. To implement more complex functions

(circuit partitioning) rather than

implementing only simple mathematical

functions.

3. The FPGA-Based GA System Design

Conceptually, the FPGA-based GA

(FPGAGA) fits into a general computing

environment into the following way [6]:

 The front end of the FPGAGA system

consists of a simple interface program

running on a personal computer or

workstation. Here, the Foundation 2.1i and

related technology is chosen as the front end

of the FPGAGA. The GA parameters are

written into the front end, which programs

them into the internal memory of FPGA.

Additionally, the code that describes the GA

behavior is written using a specific language

(VHDL in this case) into the front end. Then

the front end translates the specifications

into a hardware image and programs the

FPGA, which in turn implements the GA.

The FPGAGA operates upon receiving a

(go) signal from the front end. When the

system detects a high go signal, the system

operates based on the parameters which

already programmed in the internal shared

memory. Currently the only used

termination condition is a fixed number of

generations specified by the user. Therefore,

the process of computation repeats until the

termination criterion reached. At that time,

the system sends a done signal to the front

end. Hence, the final population will be

ready to be viewed and analyzed or further

processing can be performed.

4. The Architecture of FPGAGA

The FPGAGA (Figure (1)) is

designed to satisfy several criteria. First, the

components should be simple and easily

scalable. This allow us to arbitrarily scale

the design (e.g. allow for larger population

members) as compatible with the FPGA

platform’s constraints that the FPGAGA is

implemented on. Second, due to the modular

design simplicity, some modules can exploit

the concurrency within themselves. To this

end, the SM (Selection Module) and the

CMM (Crossover/Mutation Module) operate

on two population members simultaneously.

Finally, the design should exploit the

advantages of pipelining. Note that in Figure

(1) when a module completes a task it can

4

IJCCCE, VOL.9, NO.1, 2009 Implementation of Genetic Algorithm Using FPGA

with Applications

immediately awaits more input to repeat the

processing. Due to pipelining, GA

operations do not have to be suspended

while other GA operations run. The modules

in Figure (1) are patterned after the GA

operators defined in Goldberg’s simple

genetic algorithm (SGA). The FPGAGA

modules operate concurrently with each

other and together forms a coarse grain

pipeline. The basic functionality of the

FPGAGA design of Figure (1) is as the

following [6]:

a) The front end starts the operation of the

FPGAGA by sending a go signal to the

memory interface and control module

MIC (Memory Interface and Control

Unit). The MIC acts as the main control

unit of the FPGAGA during the start-up

and shut-down and it is the FPGAGA

sole interface to the outside world. After

start-up and before shut-down, control is

distributed, all modules operate

autonomously and asynchronously.

b) The MIC notifies the Fitness Module

(FM), the Crossover / Mutation Module

(CMM), the pseudo-Random Number

Generator (RNG), and the Population

Sequencer Module (PSM) that the

FPGAGA begins execution. Each of

these modules requests its required user-

specified parameters from MIC, which

reads it from the internal shared

memory.

c) The PSM starts the pipeline by

requesting population members from

MIC and passing them along to the

selection module SM.

d) The task of SM is to receive new

members from PSM and judge them

until a pair of sufficiently fit members is

found. At that time, it passes the pair to

the CMM, rests itself, and restarts the

selection process.

e) When the CMM receives a selected pair

of members from the SM, it decides

weither to perform the crossover and

mutation based on the values sent from

the RNG. When done, the new members

are sent to the FM for evaluation.

f) The FM evaluates the two new members

from the CMM and writes the new

members and their fitness's at the

internal memory via the CM. The FM

also maintains information about the

current state of the FPGAGA that is used

by the SM to select the new members

and by the FM to determine when the

FPGAGA is finished.

g) The above steps continue until FM

determines that the current FPGAGA

run is finished. It then notifies the MIC

about the completion; MIC in turn shuts

down the FPGAGA modules and sends a

done signal to the front end.

5. FPGAGA Simulation, Implementation

and Evaluation of Results

The FPGAGA system that has been

implemented in this work consists of seven

modules, the pseudo-Random Number

Generator (RNG), the memory module, the

Memory Interface and Control module

(MIC), the Population Sequencer Module

(PSM), the Selection Module (SM), the

Crossover/Mutation Module (CMM) and the

Fitness Module (FM). Here, Fitness module

is used to maximize simple fitness functions,

which are as the following:

1. f(x) = 2x.

2. f(x) = x + 5.

3. f(x) =2x
3
-45x

2
+300x.

Then, it is used to solve the circuit

partitioning problem for different module

arrangements consisting of 5, 10 and 15

modules. In this paper all the above stated

modules are described using the VHDL,

except for the memory module which is

created and added to the design using the

Foundation CORE Generator (Foundation

5

IJCCCE, VOL.9, NO.1, 2009 Implementation of Genetic Algorithm Using FPGA

with Applications

design tool). Then, the Foundation synthesis

and implementation tools are used to target

the proposed design in the S40XLBG256,

which is the chosen FPGA platform from

Spartan-XL family, since it contains suitable

hardware resources and employ distributed

memory technology, which allows internal

memory to be implemented in the design[9].

5.1 Steps of the Work

In this paper, the implementation of

the FPGAGA design to the chosen platform

involves the following steps;

a) The FPGAGA low level modules

mentioned in the pervious section are

described using the VHDL. The syntax

of the module is checked and any error is

removed using the Foundation HDL

Editor (Foundation entry tool). Then

Foundation Simulator (Foundation

simulation tool) is used to perform the

functional simulation to check the

correct functionality of each module

separately.

b) The user-specified parameters are

written along with the initial population

into a special format file. This file is

used by the Foundation CORE

Generator to load them in the internal

memory. While the design’s hardware

parameters are written in the top level

module, which is used also to connect

the lower level modules.

c) The design is synthesized and

implemented using the synthesis and

implementation tools of the Foundation

2.1i. Then timing simulation is

performed to check the performance of

the implemented design. Simulation

results are analyzed and the

implementation reports are summarized.

5.2 The Hardware Parameters

The hardware parameters are

defined in the ROOT Module. They

provide the required scalability for the

proposed design. The primary hardware

parameters are as the following:

a) The width in bits of the crossover and

mutation probabilities and the random

numbers sent from RNG to CMM is

denoted as p.

b) The maximum width in bits of the

population members is denoted n.

c) The maximum width in bits of the

fitness values is denoted f.

d) The precision used in scaling down the

sum of fitness's for selection in SM is

denoted r.

e) The size of the cellular automaton in

RNG is denoted casize.

f) The maximum of the population is

denoted m.

g) The maximum number of generations is

denoted maxnumgens.

The other parameters defined in the

ROOT Module depend entirely on the above

parameters, which are as the following:

a) The width in bits of the random numbers

sent from RNG to CMM is donated logn,

which is the base-2 logarithm of n.

b) The maximum width in bits of the coded

indices, which are sent by different

modules to the MIC, is denoted

lognumparam, which is the base-2

logarithm of the number of parameters

specified in s.

c) The maximum width in bits of the coded

indices, which are sent by the PSM to

the MIC, is denoted logm, which is the

base-2 logarithm of the m.

d) The size of FM's register used to store

the maximum number of generations for

a given application is denoted logmaxng,

which is the base-2 logarithm of the

maxnumgens.

e) The maximum width in bits of an item (a

population member along with its

fitness) that is stored in a memory

6

IJCCCE, VOL.9, NO.1, 2009 Implementation of Genetic Algorithm Using FPGA

with Applications

location is denoted membw, which is

equal to the product of f plus n.

f) The maximum width in bits of user-

specified parameters that is requested by

FM is denoted maxof_logmf_logmaxng,

which is equal to the maximum value

between (logm + f) and logmaxnumgens.

g) The maximum width in bits of an item

stored in the memory is denoted

maxof_memwidth, which is equal to the

maximum value among the casize, p,

membwidth, maxof_logmf_logmaxng.

h) The width in bits of the address bus of

the RAM is denoted addrw.

i) The width in bits of I/O data bus of the

RAM is denoted valw.

j) The width in bits for the difference

between logn and n is denoted d. This

parameter is used by CMM to ensure

that the crossover and/or the mutation

operators respect the bit groups when

produced new members.

The value for these parameters are

determined as required by a given

application and must be compatible with

hardware constraints for the chosen FPGA

platform.

5.3 Case Studies

To demonstrate the FPGAGA

feasibility, the FPGAGA is first tested on

simple fitness functions. Then it is tested on

more complex fitness functions. At each

test, the FM is modified to describe the

fitness function of the given problem. Then

a random initial population is created and

evaluated (using the RNG and FM

individually). Once the user-controlled and

hardware parameters are specified, the

Foundation synthesis and implementation

tools are used to target the FPGAGA system

in the given FPGA platform. This section

presents the simulation results, the

performance analysis and summarization of

the implementation reports of these tests.

5.3.1 Simple Fitness Functions

The FPGAGA is tested by

optimizing the functions f(x) =2x, f(x) =x+5

and f(x) =2x
3

-45x
2

+300x [6]. At each new

test, the VHDL code of the state Evaluation

of the FM is modified to describe the given

function. The functional simulation is

performed successfully. The correct

functionality of the module is verified by

scrutinizing the simulation results.

5.3.1.1 Simulation Results of the FPGAGA

System Maximizing the Function f(x) = 2x

The parameters used to implement

the FPGAGA in order to maximize the

given function for this test (f(x) =2x) are

shown in tables (1) and (2) (test 1). While

the results of simulation that was performed

after the successful implementation of the

FPGAGA system are shown in Figure (2).

The maximum fitness value obtained

measures the performance of the FPGAGA

system. Also, the average fitness value

measures how close the population members

from the maximum value. The function is

maximized over the domain 15x0 ;

hence the maximum obtainable fitness will

be 30. It is obvious from the graph of

Figure(2) that the FPGAGA system reached

this value from the 2
nd

 generation (run), and

maintains this value through the successive

generations. Also, the average fitness

increases gradually until it reaches the value

of 30 at 11
th

 generation and successive

generations. This indicates that all

population members reached the value that

achieves the maximum fitness from the 11
th

generation. These results shows how good

the FPGAGA is for maximizing the function

f(x) = 2x. The entire simulation run took

12,673 clock cycles.

7

IJCCCE, VOL.9, NO.1, 2009 Implementation of Genetic Algorithm Using FPGA

with Applications

5.3.1.2 Simulation Results of the FPGAGA

System Maximizing the Function f(x) = x + 5

The parameters used to implement

the FPGAGA in order to maximize the

given function for this test (f(x) = x +5) are

shown in tables (1) and (2) (test 2). While

the results of simulation that was performed

after the successful implementation of the

FPGAGA system are shown in Figure (3).

The function f(x) = x +5 is

maximized over the domain 15x0 ;

hence the maximum obtainable fitness value

will be 20. The simulation results obtained

after 16 FPGAGA runs are shown in

Figure(3). It is clear from the graph that

maximum fitness obtained by the FPGAGA

system reaches the value of 20 from the 2
nd

generation (run). While the average fitness

increases gradually until it reaches the value

of 20 at the 12
th

 generation and successive

generations. This indicates that the

maximum fitness value obtained measures

the performance of the FPGAGA system.

5.3.1.3 Simulation Results of the FPGAGA

System Maximizing the Function f(x) =2x
3

-

45x
2
+300x

The parameters used to implement

the FPGAGA in order to maximize the

given function for this test (f(x) =2x
3

-45x
2

+300x) are shown in tables (1) and (2) (test

3). While the results of simulation that is

performed after the successful

implementation of the FPGAGA system are

shown in Figure (4).The function f(x) =2x
3

-

45x
2

+300x is maximized over the

domain 15x0 ; hence the maximum

obtainable fitness value will be 1125. The

simulation results obtained after 16

FPGAGA runs are shown in Figure (4). It is

clear from the graph that the maximum

fitness obtained by the FPGAGA system

reaches the value of 1125 from the 2
nd

generation (run) and the successive

generations. While the average fitness

increases gradually until it reaches the value

of 1125 at the 7
th

 generation and the

successive generations. This indicates that

all population members reach the value that

gives the maximum obtainable fitness from

generation 7
th

. These results show how good

the implemented FPGAGA system is in

maximizing the function f(x) =2x
3

-45x
2

+300x. The entire simulation took 12,993

clock cycles. Therefore, the difference is

negligible if compared with the number of

clock cycles of the previous tests simulation

run. This is due to the fact that state

Evaluation is executed in single clock cycle

regardless of the complexity of the given

function.
5.3.1.4 Summary of Implementation Reports

The Implementation reports can be

summarized as follows:

a) The hardware cost for the simple fitness

functions tests is summarized in table

(3). It is clear that the hardware

utilization is directly related to the

complexity of the given application and

the technique of implementation. For

example, the hardwire utilization at the

case f(x) =2x
3
 -45x

2
 +300x is increased

by 73% compared to the case f(x) = x +

5, while it is increased by 74% compared

to case f(x) = 2x. On the other hand, the

difference between case f(x) = x + 5 and

f(x) = 2x is negligible (about 1%).

b) In all tests, the design is implemented on

the same platform to ease the

comparisons. The hardware utilization is

55% for the case f(x) = 2x, and it is 56%

for the case f(x) = x + 5, while it is 97%

for the case f(x) =2x
3
 - 45x

2
 +300x.

Therefore, the chosen platform has a

suitable capacity to implement the given

functions.

c) The processing time evaluation is shown

in table (4). Here, the expected execution

8

IJCCCE, VOL.9, NO.1, 2009 Implementation of Genetic Algorithm Using FPGA

with Applications

time of the real system is related to the

complexity of the given application and

the technique of implementation. The

maximum value of the worst case

connection delay is (18.592ns), while the

maximum value of the clock frequency

with which the system operates properly

is (19.558MHz). On the other hand, the

longest expected execution time is

(634.779 µs). These figures give an

impression about how fast the hardware

implementation of the GA is.

d) No errors are declared in all reports.

5.3.2 Case Two (Circuit Partitioning)

Circuit partitioning is the task of

dividing a circuit into smaller parts. The

objective of the circuit partitioning is to

divide a circuit into parts as the sizes so that

of the components are within prescribed

ranges and the complexity of connections

between the components is minimized. As

the size of present-day computers chip

increases (i.e. chips contain more than ten

millions transistors in sub-micron areas), the

interconnection delay (connection between

two transistors) becomes a dominant factor

over the gate delay. The interconnection

delay is associated with the numbers and

length of the connected wire, therefore one

of the main objectives of the VLSI design is

to limit delay within the circuit and allow for

a higher clock frequency. Circuit

partitioning is an important approach in

reducing wire-length, and increasing the

speed of the overall design. Hence, the main

objectives that may be satisfied by the

desired partition are [7, 8]:

 Minimization of the number of cuts

(inter-partition connections).

 Minimization in the number of modules

(elements) assigned to each partition.

Since circuit partitioning is showed to be an

NP(Non-deterministic Polynomial time)

complete problem, the proposed design of

the FPGAGA is used to solve the

partitioning problem.There is a scheme that

has been proposed to apply to GAs to

minimize the number of cuts. A design is

composed of c components and a particular

partitioning (population member) is

represented by c-bit string P (as shown in

figure (5)), where the ith bit is 1 if and only

if component i lies in block B.

Accompanying this bit string is a set of c-bit

strings Nj, one per inter-component net in

the design, where the ith bit of Nj is 1 if and

only if component i is connected to Nj. So

net j lies in block B of partition P if one of

the bits in P Nj is 1, where is the

bitwise AND operator. Likewise, net j lies in

block A of partition P if one of the bits in

P Nj is 1, where P is the bitwise NOT

of the P. Thus, a net j crosses a chip

boundary if and only if some bits from P

Nj is 1 and some bit from P Nj is 1. This

can easily be determined with combinational

logic. A partition cost fitness (Fcut) will be,

then, the total number of boundary crossing.

Since our objective is to minimize the cost

fitness, the following cost-to-fitness

transformation:-

FP = Fmax – Fcut … (1)

Where Fmax is an input coefficient and it will

be chosen as the maximum number of inter-

component net for the initial circuit

arrangement [6].

Then a control will be used to check

weither the given partition respects the

prescribed partition size (the number of

modules assigned to each partition should

not exceed 40%-50% of the total number of

modules). Any partition violating this range

will be punished by setting its resultant

fitness (FR) to 1. Consequently, its chances

of survival in the next generations will be

minimized.

9

IJCCCE, VOL.9, NO.1, 2009 Implementation of Genetic Algorithm Using FPGA

with Applications

This approach will be implemented

in the following manner (as shown in

figure(6)). First store P in the register of

length c-bit. Each bit represents which of the

block A or B its components lies in. then for

each net Nj, a counter initializes itself to 0

and cycles through the values v 0,1 . For

each value v, compare it to Pi (the index of

the block holding component i) for all i. If

they are equal, then component i lies in

block v. The results for all i are logically

ORed yielding a single bit indicating which

partition that Nj lies in. This result is fed into

an accumulator which counts the number of

blocks that Nj lies in. After looping through

all values v 0,1 , the accumulator is

checked. If it holds a value equal to 0, then

Nj crosses a chip boundary and Fcut will be

updated. This process will be repeated for all

Nj. Finally, FP will be evaluated as defined

by Eq.(1). Then the number of zeros in the

given partition will be counted. If the

resultant number is within the predefined

partition size, FR will be set to FP.

Otherwise, FR will be set to 1.

In this paper, The FPGAGA is used

to solve the partitioning for three different

arrangements, which are of 5, 10 and 15

modules [8]. At each new test, the VHDL

code of the state Evaluation of the FM is

modified to describe the given

arrangements. The functional simulation is

performed successfully. The correct

functionality of the module is verified by

scrutinizing the simulation results.

The implementation and synthesis

steps are performed successfully for all tests.

This section presents the simulation results,

performance analysis and summarization of

the implementation reports for these tests.

5.3.2.1 Simulation Results of the FPGAGA

System Optimizing the 5 Modules

Arrangement

The parameters used to implement

the FPGAGA in order to maximize the

given function for this test (5-module

arrangements) are shown in tables (5) and

(6) (test 1). While the results of simulation

that was performed after the successful

implementation of the FPGAGA system are

shown in Figure (7).

The simulation results, which is

obtained after 16 FPGAGA runs, are

summarized in the Figure (7). It is clear that

the maximum fitness of 3 is obtained from

the 2
nd

 generations, while the average fitness

increases gradually until it reaches the value

of 3 at the 7
th

 generation and the successive

generations. This indicates that all

population members reach the value that

gives the optimum fitness of 3. By

comparing the initial arrangement and the

final arrangement reached by the FPGAGA

in figure (8), it can be noticed how efficient

the system is at reducing the inter-

component connections and distributing the

modules fairly over the two modules. The

entire simulation run takes 21,305 clock

cycles.

5.3.2.2 Simulation Results of the FPGAGA

System Optimizing the 10 Modules

Arrangement

The parameters used to implement

the FPGAGA in order to maximize the

given function for this test (10-module

arrangements) are shown in tables (5) and

(6) (test 2).

The simulation results, which are

obtained from the FPGAGA simulation runs

are summarized in Figure (9). It can be

noted that an optimum fitness of 4 is

obtained from the 2
nd

 generation, while the

average fitness reaches the value of 4 at the

14
th

 generation. The initial and final

arrangement reached by the FPGAGA are

10

IJCCCE, VOL.9, NO.1, 2009 Implementation of Genetic Algorithm Using FPGA

with Applications

shown in Figure(10). Here the efficiency of

the FPGAGA is evident since the cut-set is

reduced from 6 to 2 and the modules are

distributed equally over the two blocks. The

entire simulation run took 29,258 clock

cycles. This figure represents an increase by

37% compared to the previous test number

of clock cycles.

5.3.2.3 Simulation Results of the FPGAGA

System Optimizing the 15 Modules

Arrangement

The parameters used to implement

the FPGAGA in order to maximize the

given function for this test (15-module

arrangements) are shown in tables (5) and

(6) (test 3). While the results of the

simulation that is performed after the

successful implementation of the FPGAGA

system are shown in Figure (11). It can be

shown that an optimum fitness of 7 appears

in the 4
th

-9
th

 generations, and 13
th

 -16
th

generations. On the other hand, the

maximum average fitness value is 5.9375 at

the 14
th

 generation. This oscillation in the

maximum and average fitness is mainly due

to the fact that the search space increases as

the length of the chromosome increased.

However, it is obvious that the final

arrangement, which is shown in Figure (12),

is well optimized in terms of the number of

inter-blocks connections and the size of each

block. The entire simulation took 41,865

clock cycles. Although the number of blocks

is tripled compared with the first case the

simulation time is increased by 97%. This

increase in executions time clock cycles is

mainly due to the execution of some parts of

fitness function depending on the length of

the given arrangement, however, the

increase in the rate of execution time in term

of clock cycles remain less than that of the

number of modules for the given

arrangement.

5.3.2.4 Summary of the Implementation

Reports

The Implementation reports can be

summarized as follows:

a) The hardware cost for the circuit

partitioning problem tests is summarized

in table (7). It is clear from the table that

the hardware utilization is directly

related to the number of the modules in

the given arrangements and the

technique of implementation. For

example, the hardware utilization for the

15-module test is increased by 48%

compared to the 5-module test, while it

is increased by 19% for 10-module test.

b) In all the tests the design was

implemented on the same platform to

ease the comparisons. The hardware

utilization is 58% for the 5 module test;

it is 72% for the 10-module test, while it

is 86% for 15 modules test. Therefore

the chosen platform has the suitable

capacity to implement the given

arrangements.

c) The processing time evaluation is shown

in table (8). Here also, the technique of

implementation and the number of the

modules in the given arrangements is the

decisive factor. The maximum worst

case connection delay is (13.875 ns),

while the maximum clock frequency

with which the system operates properly

is (31.595MHz). On the other hand, the

longest expected execution is

(1325.51µs). These values emphasize

the speed of the FPGA implementation

for the GA.

d) No errors are declared in all the reports

6. Conclusions

This paper presents the FPGAGA

which is a design to implement the genetic

11

IJCCCE, VOL.9, NO.1, 2009 Implementation of Genetic Algorithm Using FPGA

with Applications

algorithms on FPGA platform. The design is

described using the VHDL which allows

parameterized modules to ease scalability.

Each of the FPGAGA modules is verified to

be functionally correct through numerous

simulations. After the correct functionality

of each module has been verified, the

modules are connected to each other and the

system is synthesized and implemented

successfully using the Foundation 2.1i

synthesis and implementation tools. The

FPGAGA possesses the speed of hardware

while retaining the flexibility of the software

implementation due to the reprogram ability

of FPGA. Therefore the system is a general-

purpose GA engine which is useful in many

applications where software based GA

implementations is too slow.

 Simulations results for the FPGAGA

maximizing the simple functions are good.

In all tests the systems are able to find the

maximum obtainable value for the given

functions. This demonstrates that FPGAGA

is an efficient system for maximizing the

given functions.

 The simulation results for FPGAGA

when used to solve the circuit partition

problem show the high performance of the

adopted design. In each test the final

arrangement reached by FPGAGA

effectively minimized the cut-set and the

number of modules assigned to each

partition.

 The number of clock cycles increases in

relation to the complexity of the given

problems, however the expected execution

time emphasizes the FPGA implementation

speed advantage and demonstrates that the

FPGAGA successfully combined the

benefits of efficient GA with the benefits of

the FPGA implementation. It can be noted

from the implementation reports that the

technique used to implement the fitness

function for a given application affects

partially the overall processing time.

Therefore a reduction in the processing time

can be achieved by modifying the used

technique to implement the fitness function

for any given application since these

modifications respects the area of the

available FPGA platform. Processing time

can be also reduced by increasing the system

clock frequency which mainly depends on

the state of art in FPGA technology. This

technology will surely advance more in the

future.

(6)

References

[1]Wikipedia, the free encyclopedia,

"Genetic Algorithm",

http://en.wikipedia.org/wiki/genetic_alg

orthim, 2006.

[2] Holland, J. H., "Genetic algorithms in

search optimization and machine
learning", Ann Arbor, the University of

Michigan Press, USA, 1992.

[3] Graham, P. S., "A description, analysis,

and comparison of hardware and a

software implementation of the splash

genetic algorithm for optimizing

Symmetric traveling salesman

problems", M.Sc. Thesis, Brigham

Young University, USA, October 1996,
http://citeseer.ist.psu.edu/481234.html.

[4] Graham, P. and Nelson, B. "A hardware

genetic algorithm for the traveling

salesman problem on splash2",

proceedings of the 5
th

 international

workshop on Field-programmable logic

and applications, UK, pp.352-361, 1995,

http://citeseer.ist.psu.edu/graham95hard

ware.html.

[5] Turton, B. C. H., Arslan, T. "A parallel

genetic VLSI architecture for

combinatorial real-time applications-

disc scheduling", genetic algorithms in

engineering systems: innovations and

applications 12-14 September 1995,

Conference Publication No 414 © IEE,

12

IJCCCE, VOL.9, NO.1, 2009 Implementation of Genetic Algorithm Using FPGA

with Applications

UK,

1995,http://citeseer.ist.psu.edu/turton95p

arallel.html

[6] Stephen D. S., Sharad S., and Ashok S.

"A hardware engine for genetic

algorithms", Technical report UNL-

CSE-97-001, University of Nebraska-

Lincoln, July, USA, 4, 1997, http://
citeseer.ist.psu.edu/scott97hardware.

[7] Kwon, Y., Park, B. and Kyung, C.

"SCATOMi: scheduling driven circuit

partitioning algorithm for multiple

FPGAs using time-multiplexed, off-

chip, multicasting interconnection

architecture", Proceedings of the 21
st

International Conference on Computer

Design (ICCD’03) 1063-6404/03, USA,

2003,

http://csdl2.computer.org/persagen/DLA

bsToc.jsp?resourcePath=/dl/proceedings

/&toc=comp/proceedings/iccd/2003/202

5/00/2025toc.xml.

[8] Pomeranz, I. and Reddy, S. M. "Fault

location based on circuit partitioning",

Proceedings of the 1996 International

Conference on Computer Design

(ICCD'96) 1063-6404/96, Netherlanda,

1996, http://www.iccd-

conference.org/proceedings/1996/75540

242.pdf.

[9] O. Arif Abdual-Rahman, Implementation

of genetic algorithms using FPGA,

M.Sc. Thesis, University of Technology,

Department of Electrical and Electronic

Engineering, Baghdad, 2007.

Rand no. gen.

(RNG)

Fitness (FM)

Crossover /mut.

(CMM)

Selection (SM)

Control module

(CM)

Population

sequencer (PSM)

In
te

rn
a

l m
e

m
o

ry

Front end

sum fitnesses to

selection module

random numbers

random

numbers

member

and

fitness

new members /

fitnesses to write

and their

addresses

member’s

address

member and

fitness

memory requests

parameters

and data

Figure (1) The architecture of the FPGAGA [6].

13

IJCCCE, VOL.9, NO.1, 2009 Implementation of Genetic Algorithm Using FPGA

with Applications

Table (1): User-Controlled Parameters for the simple functions test.

 Test 1 Test 2 Test 3

Size of population 16 16 16

The seed “AAAA” (H
*
) “AAAA” (H

*
) “AAAA” (H

*
)

The mutation probability 0.00195 0.00195 0.00195

The crossover probability 0.998 0.998 0.998

Initial sum of population 102 187 8965

Number of generations 16 16 16

*: refers to the value given in the hexadecimal system of numbers.

Table (2): Hardware parameters for simple functions tests.

Primary parameters donation Test 1 Test 2 Test 3

p 9 9 9

n 4 4 4

f 5 5 11

r 4 4 4

casize 16 16 16

m 16 16 16

maxnumgens 10 10 10

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FPGAGA runs

Fi
tn

es
s

va
lu

es

max

ave

Figure (2) Simulation results for the case f(x) = 2x.

14

IJCCCE, VOL.9, NO.1, 2009 Implementation of Genetic Algorithm Using FPGA

with Applications

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FPGAGA runs

F
it

n
es

s
va

lu
es

MAX

AVE

Figure (3) Simulation results for the case f(x) = x + 5.

-75

125

325

525

725

925

1125

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FPGAGA runs

F
it

n
es

s
va

lu
es

MAX

AVE

Figure (4) Simulation results for the case 2x
3
 -45x

2
 +300x.

15

IJCCCE, VOL.9, NO.1, 2009 Implementation of Genetic Algorithm Using FPGA

with Applications

Table (3): Hardware utilization for the simple fitness functions.

 f(x) = 2x f(x) = x + 5 f(x) =2x
3

-45x
2
+300x

CLB 438 442 764

CLB F.F. 560 564 757

4input LUT 543 549 1013

3input LUT 149 149 195

16x1 RAM 72 72 120

I / O Blocks 36 36 36

Gate Count 12726 12730 21645

Add. Gates 1728 1728 1728

Table (4): Processing time evaluations for simple functions.

 f(x) = 2x f(x) = x + 5 f(x) =2x
3

-45x
2
+300x

Longest delay (ns) 12.892 14.812 18.592

Maximum frequency

(MHz)
30.914 30.213 19.558

No. of clock cycles 12673 12889 12993

Expected execution

time (µs)
409.944 426.604 634.779

16

IJCCCE, VOL.9, NO.1, 2009 Implementation of Genetic Algorithm Using FPGA

with Applications

Figure (5) A Netlist and Partition Solution [8].

 P1 P2 Pc-1 Pc

P (population member)

Nj
1

Nj
2

Nj
c-1

Nj
c

Nj (each one bit

wide)

co
m

pa
ra

to
rs

1-bit counter

1-bit

accumulator

If zero then

updates

partition fitness

Figure (6) Circuit to evaluate 2-way partition.

17

IJCCCE, VOL.9, NO.1, 2009 Implementation of Genetic Algorithm Using FPGA

with Applications

Table (5): User-Controlled Parameters for the circuit partitioning tests.

 Test 1 Test 2 Test 3

Size of population 16 16 16

The seed “AAAA” (H
*
) “AAAA” (H

*
) “AAAA” (H

*
)

The mutation probability 0.00195 0.00195 0.00195

The crossover probability 0.998 0.998 0.998

Initial sum of population 19 22 28

Number of generations 16 16 16

*: refers to the value given in the hexadecimal system of numbers.

Table (6): Hardware parameters for circuit partitioning tests.

Primary parameters donation Test 1 Test 2 Test 3

P 9 9 9

N 5 10 15

F 3 3 4

R 4 4 4

Casize 16 16 16

M 16 16 16

Maxnumgens 10 10 10

18

IJCCCE, VOL.9, NO.1, 2009 Implementation of Genetic Algorithm Using FPGA

with Applications

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FPGAGA RUNS

F
in

tn
e

s
s

 V
a

lu
e

s

MAX

AVR

Figure (7) Simulation results for the 5-modules case.

Cell

1

Cell

2

Cell

3

Cell

4
Cell

5

Cutset = 1

Block A Block B

Net 2 Net 1

Net 0

Net 3

Figure (8) The initial and final arrangement that reach by the FPGAGA after 16 runs.

Cell

1

Cell

2

Cell

3

Cell

4

Cell

5

Cutset = 4

Net 0

Net 4

Net 1

Net 2

Block A Block B

19

IJCCCE, VOL.9, NO.1, 2009 Implementation of Genetic Algorithm Using FPGA

with Applications

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FPGAGA runs

F
it

n
e

s
s

 V
a

lu
e

s

MAX

AVR

Figure (9) Simulation results for the 10-module case.

Cell

1

Cell

2

Cell

3

Cell

4

Cell

5

Cell

6

Cell

7

Cell

8

Cell

9
Cell

10

Net 0

Net 1

Net 2

Net 3
Net 4

Net 5

Cutset = 6

Block A Block B

Cell

1

Cell

2

Cell

3

Cell

4

Cell

5

Cell

6

Cell

7

Cell

8

Cell

9
Cell

10

Net 4 Net 1 Net 3 Net 2 Net 5

Net 0

Cutset = 2

Block A Block B

Figure (10) The initial and final arrangement that reach by the FPGAGA after 16 runs.

20

IJCCCE, VOL.9, NO.1, 2009 Implementation of Genetic Algorithm Using FPGA

with Applications

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FPGAGA runs

Fi
tn

es
s

Va
lu

es

MAX

AVR

Figure (11) Simulation results for the 15-modules case.

C

1

C

2

C

3

C

4

C

5

C

6

C

7

C

8

C

9

C

10

C

11

C

12

C

13

C

14

C

15

Net 1
Net 2

Net 3

Net 4
Net 5

Net 6

Net 7

Net 8

Cutset = 9

Block A Block B

Net 0

C

1

C

2

C

3

C

4

C

5

C

6

C

7

C

8

C

9

C

10

C

11

C

12

C

13

C

14

C

15

Cutset = 2

Block A Block B

Net 6

Net 4
Net 3

Net 2

Net 7

Net 5
Net 1

Net 8

Net 0

Figure (12) The initial and the best final arrangement that is reached by the FPGAGA after 16

runs.

21

IJCCCE, VOL.9, NO.1, 2009 Implementation of Genetic Algorithm Using FPGA

with Applications

Table (7): Hardware utilization for the circuit partitioning problem.

 5 modules 10 modules 15 modules

CLB 459 566 678

CLB F.F. 593 759 948

4input LUT 596 707 800

3input LUT 153 188 239

16x1 RAM 64 104 152

I / O Blocks 36 36 36

Gate Count 12542 16890 21880

Add. Gates 1728 1728 1728

Table (8): Processing time evaluations for the circuit partitioning problem.

 5 modules 10 modules 15 modules

Longest delay (ns) 11.300 12.407 13.875

Maximum frequency

(MHz)
38.199 36.478 31.595

No. of clock cycles 21 305 29 258 41 865

Expected execution

time (µs)
557.737 802.074 1325.51

