

IJCCCE, VOL.9, NO.1, 2009 Design and Implementation of anImprovement

 of Blowfish Encryption Algorithm

*

95

Design and Implementation of an Improvement

Of Blowfish Encryption Algorithm

Ashwaq T. Hashim* Dr. Saleh M. Al-Qarrawy* & Janan A. Mahdi*

Received on: 23/4/2008

Accepted on: 9/7/2009

Abstract

Block cipher is a major part of cipher algorithm like stream cipher and

other techniques. Its power comes from dealing with plaintext as parts and

operating on each block independently. Blowfish is a secret-key block cipher

proposed by B. Shneier. It is a Feistel network, iterating a simple encryption

function 16 times. The block size is 8-bytes and the key can be any length up to

56-bytes.

In this paper, a Blowfish was improved to encrypt 16-bytes using a

variable key length from 8-bytes up to 144-bytes. During the design of Improved

Blowfish algorithm, the pragmatic aim was to satisfy as many goals as possible

while keeping the cipher simple. Only by keeping a cipher simple one can

achieve a well-understood level of security, good performance, and a versatility

of design that makes the cipher highly adaptable to future demands. The

improved algorithm reduced the memory requirement by using a single S-box

instead of four S-boxes without compromising security.

The security of improved Blowfish algorithm will be increased by several

techniques where the block size and key length were increased, using more

complex function before the first round and after the last round and using a

complex function to avoid a symmetric to the output of S-box.

لخلاصةا

plaintextBlowfish

 B. Shneier

16 8-bytes 56-bytes

 Blowfish bytes 16-8-bytes

144-bytesBlowfish

Blowfish

S-box

IJCCCE, VOL.9, NO.1, 2009 Design and Implementation of anImprovement

 of Blowfish Encryption Algorithm

*

96

1. Introduction

 The security of symmetric

cryptosystem is a function of two

parameters: the strength of the

algorithm and the length of the key.

The algorithm must be so secure that

there is no better way to break it than

with a brute-force attack. The

security of the algorithm must reside

in the key, therefore, there is a

balance between choosing long key

and the time required to complete

the enciphering operation [1].

 The name of block cipher

came from the fact that block cipher

encrypts plaintext as blocks. These

blocks differ in size between block

cipher algorithms, for example, in

DES the plaintext is divided into

blocks of length 64, but it is 32 in

IDEA. If the length of block cipher

equal one then, it will become

stream cipher. If the length is large

then some attacks will work better.

 The basic ingredients of

modern fast software block

encryption schemes are computer

instructions like ROTATE, ADD,

XOR etc. Different subsets of such

operations will yield an interesting

variety of different permutation

groups, e.g. symmetric groups. For

example simple pair of ROTATE

and an ADDITION module is

already powerful enough to generate

every possible encryption function

on its set of input blocks. On the

other hand, any possible

combination of ROTATE and XOR

operations can only produce a subset

of at most nn 2

functions within

the symmetric group of order n ! [2].

 The fixed initial and final

permutations of DES have been

long regarded as cryptographically

worthless. Khufu XORs the text

block with key material at the

beginning and the end of the

algorithm.

 This paper present some

existing modern cipher such as

ABC, a substitution-permutation

network comprising 17 rounds with

3 different kinds of round functions.

It is derived from MMB and

SAFFER block cipher [3] and

Unbalanced Feistel Networks and

Block-Cipher Design (UFNs) consist

of a series of rounds in which one

part of the block operates on the rest

of the block [4]. And also

PRESENT: An Ultra-Lightweight

which is block cipher. It is an

example of an SP-network and

consists of 31 rounds. The block

length is 64 bits and two key lengths

of 80 and 128 bits are supported [5].

2 Blowfish Algorithm

 Blowfish is a block cipher

that encrypts data in 8-byte blocks.

The algorithm consists of two parts:

a key-expansion part and a data-

encryption part. Key expansion

converts a variable-length key of at

most 64 bytes (512 bits) into several

subkey arrays totaling 4168 bytes

[6].

2.1 Subkeys

 Blowfish uses a large number

of subkeys. These keys must be

precomputed before any data

encryption or decryption [6].

The P-array consists of 18 32-bit

subkeys:

P1, P2,… P18.

There are also four 32-bit S-boxes

with 256 entries each:

 S1,0, S1,1,.…, S1,255;

 S2,0, S2,1,.…, S2,255;

 S3,0, S3,1,.…, S3,255;

http://en.wikipedia.org/wiki/Substitution-permutation_network
http://en.wikipedia.org/wiki/Substitution-permutation_network

IJCCCE, VOL.9, NO.1, 2009 Design and Implementation of anImprovement

 of Blowfish Encryption Algorithm

*

97

 S4,0, S4,1,.…, S4,255;

2.2Encryptionand Decryption
The underlying philosophy behind

Blowfish is that simplicity of

designed yields algorithm that is

easier to implement. Through the use

of a streamlined Feistel network and

a simple S-box substitution and a

simple P-box substitution. Feistel

network makes up the body of the

blowfish is designed to be as simple

as possible, while still retaining the

desirable cryptographic properties of

the structure.

 Figure (1) illustrates the

architecture of the Blowfish

algorithm with 16-rounds. The input

is a 64-bit data element, X, which is

divided into two 32-bit halves: XL

and XR

For I= 1 to 16:

XL = XL XOR Pi

XR = F (XL) XOR XR

swap XL and XR

 After the sixteenth round,

swap XL and XR again to undo

the last swap. Then,

XR = XR XOR P17 and

XL = XL XOR P18.

Finally, recombine xL and xR to get

the ciphertext [7].

 Each bit of the xL is only

used as the input to one S-box. In

DES many bits are used as inputs to

two S-boxes, which strengthen the

algorithm considerably against

differential attacks.

The number of rounds is 16

and this number affects the size of

the P-array and therefore the subkey-

generation process; 16 iterations

permits key lengths up to 512 bits.

2.3 Function F:
 The function F is as follows,

see Fig. 2, [7]:

Divide XL into four eight-bit

quarters: a, b, c, and d. Then,

 F(xL) = ((S1,a + S2,b mod 232)

XOR S3,c) + S4,d mod 232.

 The non-reversible function

is designed for strength, speed, and

simplicity. The function that

combines the four S-box outputs is

as fast as possible. A simpler

function would be to XOR the four

values, but mixing addition mod 2
32

and XOR combines two different

algebraic groups with no additional

instructions. The alternation of

addition and XOR ends with an

addition operation because an XOR

combines the final result with XR.

Decryption process is exactly the

same as encryption, except that P1,

P2,…….., P18 are used in the

reverse order.

2.4 Subkeys Generation

 The subkeys are calculated

using the Blowfish algorithm as

follows:

1. Initialize first the P-array and

then the four S-boxes, in order,

with a fixed string. This string

consists of the hexadecimal

digits of pi (less the initial 3):

 P1 = 0x243f6a88,

 P3 = 0x13198a2e,

 P2 = 0x85a308d3,

 P4 = 0x03707344, etc.

2. XOR P1 with the first 32 bits of

the key, XOR P2 with the second

32-bits of the key, and so on for all

bits of the key (possibly up to P16).

Repeatedly cycle through the key

bits until the entire P-array has been

XORed with key bits. (For every

short key, there is at least one

equivalent longer key; for example,

if A is a 64-bit key, then AA, AAA,

etc., are equivalent keys.)

IJCCCE, VOL.9, NO.1, 2009 Design and Implementation of anImprovement

 of Blowfish Encryption Algorithm

*

98

3. Encrypt the all-zero string with

the Blowfish algorithm, using the

subkeys described in steps (1) and

(2)

4. Replace P1 and P2 with the

output of step (3).

5. Encrypt the output of step (3)

using the Blowfish algorithm with

the modified subkeys.

6. Replace P3 and P4 with the

output of step (5).

7. Continue the process, replacing all

entries of the P array, and then all

four S-boxes in order, with the

output of the continuously changing

Blowfish algorithm.

 In total, 521 iterations are

required to generate all required

subkeys. Applications can store the

subkeys rather than execute this

derivation process multiple times

[7].

3. The improved Algorithm
In general the improved

algorithm differs from the previous

Blowfish algorithm, which encrypts

and decrypts 64-bit block size and

the key can be any length up to 512

bits. The improvement algorithm is

used to encrypt and decrypt 128 bits

block size and the key can be any

length up to 1152 bits (144 bytes). It

is aimed at decreasing memory

requirement by fewer and smaller S-

boxes. Figure (3) shows the structure

of improvement algorithm. It

consists of splitting the plaintext into

two 64-bits halves. Feistel ciphers

are a special class of iterated block

ciphers, where the ciphertext is

calculated from the plaintext by

repeated application of the same

transformation or round function. In

a Feistel cipher, the text being

encrypted is divided into two halves.

The round function is applied to one

half using a subkey and the output of

F function is XORed with the other

half. The two halves are then

swapped. Each round follows the

same pattern except for the last

round where there is no swap. A nice

feature of a Feistel cipher is that

encryption and decryption are

structurally identical, through the

subkeys used during encryption at

each round are taken in reverse order

during decryption.

3.1InitialPermutation (P-

Function)

 The first step in the algorithm

is the initial permutation function,

which is applied before the first and

after the last round. It is required to

provide the necessary diffusion and

confusion to the input block, where

it's key dependent permutation such

that additive differences will be

destroyed as the key change. This

could provide a protection against

linear and differential cryptanalysis.

The previous algorithm used XOR as

a reversible mixing function before

the first and after the last round.

While the improved algorithm more

complicated reversible mixing

function is used before and after the

last round. This would further

confuse the entry values into the

Feistel network and ensure a

complete avalanche effect after the

first two rounds.

Improved algorithm applies

key dependent initial permutation as

shown in Fig. (4). P-function has

128-bit input A and 128-bit output D.

It Adopts “byte transposition” and the

40-bit subkey)| KP(KP 21 to control

data rotations.

Let  43211 ,,, mmmmKP  , and

 43212 ,,, nnnnKP  , where mj and

jn 5-bit subkey and not equal to zero,

IJCCCE, VOL.9, NO.1, 2009 Design and Implementation of anImprovement

 of Blowfish Encryption Algorithm

*

99

j= 1,…, 4. The function

 21 KP |, KPAPD  is defined by

following:

 Right rotation: jjj mab  , for

j=1,…,4.

 Byte transposition: ljjl bc  , for j,

l=1,...,4.

 Left rotation:
jjj ncd  , for

j=1,…,4.

Each input word ja

affects all output words. In, P-

function, the permutations are key

dependent so that it could avoid

linking plaintexts to input to the

first F-function and ciphertexts to

input to the last F-function. The

P-function generates a number of

permutations by using rotation

and transposition. Where the

generated group by rotating

operation is isomorphic to cyclic

group of order n. The number of

permutations, which are

generated by transposition, is

equal to n! [2].

3.2 Encryption

The Encryption algorithm of

the improved blowfish can be

described as shown bellow. It is a

Feistel network consisting of 16-

rounds as described in Fig. (3).

Encryption algorithm

Input: A = plaintext M. {128-bit

data element}.

Step1: D= P (A, P [0]). {P-

function to performed initial

permutation}

Step2: Divide D into two 64-bits

XL, XR

Step3: For i =1, …, 16 do

 Z = F (XLi)

 XRi = P[i] XOR Z XOR

XRi

 Swap XLi and XRi

Step4: Swap Li and Ri undo the

last round

Step5: Recombined A=(XL| XR}.

Step6: D=P (A, P[18]).

Output: Ciphertext D.

3.3 Function F

 In the improved algorithm

XLi is divided into four 16-bit

quarters a, b, c, and d (see Fig. (5)).

The previous Blowfish algorithm

uses each quarter as index to the one

of the S-boxes, so that it uses four S-

boxes while in the proposal all

quarters use one common S-box.

And consequently the number of S-

boxes is reduced from four to one.

The entries are overlapped in

a single S-box: entry 0 would consist

of byte 0 through 7, entry 1 through

1 to 8, etc. This simplification would

reduce the memory requirements for

the four S-boxes from 2097152-byte

(216×8 ×4) to single S-box of 65543

bytes. Additional steps will be

required to eliminate the symmetries

when different bytes of the input are

equal, or when the 64-bits input to

function F is a bitwise permutation

of another 64-bits input. A more

complex combining function in the

proposed system is used to eliminate

the symmetries (which will be

described later in the next section).

Function F algorithm

Input: XL {the length of XL is 64-

bits}

 Set x1=0, x2=0, x3=0, x4=0

 Set n1=0, n2=0, n3=0, n4=0

Step1: Divide XL into four 16-bits:

a, b, c and d

Step2: For i =1 up to 8 Do

 x1=x1 OR (S[a+i])

 ROTATE_RIGHT (x1 8)

 x2=x2 OR (S[b+i])

 ROTATE_RIGHT (x2, 8)

IJCCCE, VOL.9, NO.1, 2009 Design and Implementation of anImprovement

 of Blowfish Encryption Algorithm

*

100

 x3=x3 OR (S[c+i])

 ROTATE_RIGHT (x3, 8)

 x4=x4 OR (S[d+i])

 ROTATE_RIGHT (x4, 8)

 End

Step3: n1= x1 AND 0xF

 n2= x2>>4 AND 0xF

 n3= x3>>8 AND 0xF

 n4= x4>>16 AND 0xF

 Y1=G (x1, n1)

 Y2=G (x2, n2)

 Y3=G (x2, n3)

 Y2=G (x4, n4)

 Z=(((Y1 + Y2) MOD 264) ^

Y3) + Y4) MOD 264

Output: Z {the length of Z is)

3.4 G-Function

In G-function (see Fig. 6), it

uses rotations to achieve data

permutation and multiplication to

achieve diffusion. The function

has 64 bits input and 64-bits

output and the function D=G (X,

N) is defined by following:

1.Divide X into four 16-bits

quadratic 4321 ,,, aaaa .

2. jk = ja or 0x01, for j=1,…,4 (Let

jk be odd).

3. 11 (kc  <<<N) * 4k

4. 2c = 2(k >>>N) *
 3k

5. 3c = 2k * (3k <<<N)

6. 4c = 1k * (4k >>>N)

7. Combine ,,, 321 ccc and 4c in D.

The number of rotation N is

different for each output of S-box

because in each time it depends on

the 4-bits, which truncate from

variable position in each output.

Hence we realize that if there are

two or more similar inputs to the S-

box there are no same outputs.

 3.4 Subkeys

The range of values, which a

key will take, became large. Where a

large key space is necessary to

prevent exhaustive search for a key

(Solving the problem of finding the

correct value for a key by testing

possible values until the correct one

is found).

The proposed system still

uses the same key generation process

because it is designed to preserve the

entire entropy of the key and to

distribute that entropy uniformly

throughout the subkey. It is also

designed to distribute the set of

allowed subkeys randomly

throughout the domain of possible

subkey [6].

The improved algorithm uses:

1. The P-array of 18 64-bits

subkeys:

2. P1, P2, …, P18.

3. There is one 8-bit S-box with

65543 entries: S1, S2,

…S65543.

The P-array and S-boxes

must be precomputed before any

data encryption or decryption. The

same procedure, which is used in the

previous Blowfish algorithm ,is used

in this work to generate these

subkeys.

4. Security of Improved blowfish

algorithm

 The most important requirement

is stated succinctly in the AES

announcement [1]: „The security

provided by an algorithm is the most

important factor in the evaluation.’

 The improved Blowfish

algorithm increased the security of

the original Blowfish algorithm by

using block size of 128-bits and

allows 144 key lengths. The time-

consuming subkey-generation

process adds considerable

IJCCCE, VOL.9, NO.1, 2009 Design and Implementation of anImprovement

 of Blowfish Encryption Algorithm

*

101

complexity for a brute-force attack

algorithm.

The improved algorithm

increased the number of iterations

which will be required to test a

single key. The complexity of

algorithm is increased also by using

a combination of basic operations.

Hence by using G-function we

achieve diffusion and confusion to

the outputs of S-box. Each output of

word jd is effected by two words,

where j=1, …, 4, So that there is no

outputs of G-function are the same.

On the other hand, the improved

Blowfish algorithm increased the

security by using the P-function, we

note that each input word ja affects

all output words and each output

word is affected by all input words.

In, P-function, the permutations are

key dependent so that it could avoid

linking plaintexts to input to the first

F-function and ciphertexts to input

to the last F-function. The P-

function and G-function use the

combinations of basic operations to

achieve a large number of

encryption functions, i.e.

permutations of binary n-bit vectors,

high structural complexity.

4.1 An Attacker of the Improved

Blowfish Algorithm:

Differential cryptanalysts

work against block cipher algorithms

that use constant S-boxes. The attack

is heavily dependent on the structure

of S-boxes; it looks specifically at

ciphertext pairs whose plaintext has

particular differences. The improved

algorithm is patient to this type of

attack and this belongs to many

reasons:

 This type of attack is largely

theoretical. The enormous time

and data requirements to mount a

differential cryptanalytic attack

put it almost beyond the reach of

everyone.

 Key-dependent

permutation function is used

before and after the last round

such that the input bits are

exchanged under the control of

subkeys, so that the additive

difference will be destroyed, as

the bits are exchanged, this could

provide protection against linear

and differential cryptanalys is.

The block size of 64-bits makes

Blowfish algorithm vulnerable to

the matching ciphertext attack.

Where after encryption of 322

blocks, equal ciphertexts can be

expected and information is

lacked about plaintext. So that,

the improved Blowfish algorithm

with 128-bits block size is

resistant to matching ciphertext

attack. It is required to
642

ciphertext.

4.2 Avalanche Effect
 In this section a statistical

test on the ciphertext that produced

from encryption the plaintext ” This

is a simple example of the block

cipher system using Blowfish

algorithm” uses a key “block cipher

algorithm”.

Horst Feistel referred to the

avalanche effect as: “a small change

in the key gives rise to a large

change in the ciphertext”. [9]. Table

(1) shows the avalanche effect on the

plaintext when only one bit is

changed in the key by using a block

size of 64 bits and executing

Blowfish algorithm before

improvement.

Table (2) shows the

avalanche effect on the same

plaintext when only one bit is

IJCCCE, VOL.9, NO.1, 2009 Design and Implementation of anImprovement

 of Blowfish Encryption Algorithm

*

102

changed in the same key by using a

block size of 64 bits and executing

Blowfish algorithm after

improvement.

Table (3) shows the

avalanche effect on the same

plaintext when only one bit is

changed in the same key by using a

block size of 128 bits and executing

Blowfish algorithm before

improvement.

 Tables 1, 2 and 3 are show

that the changing are 24 to 38 bits

out of 64 bits, to 43 bits out of 64

bits and 66 to 74 bits out of 128 bits

when performing the algorithm

before improvement, After

performing the improved Blowfish

algorithm respectively which mean

that 37.5% to 59.5% of each block

of the ciphertext is changed. After

performing the improved Blowfish

algorithm, the changing are 25

which mean that 39% to 67.2% of

each block of the ciphertext is

changed. However the changing are

of the block size which mean that

51.6% to 58% of each block of the

ciphertext is changed.

4.4 Complementation property

 A block cipher satisfies the

complementation property if for all

plaintext blocks P and all keys K, are

given:

 C=E (P, K)

Then

 C΄=E΄(P΄, K΄)

Where

 C΄: complement of C

 P΄: complement of P

 K΄: complement of K

H Gusafrson et al. state in

their paper [9], that “ if a block

cipher satisfies the complementation

property this reduces the key search

to half the number of keys possible

in a chosen plaintext attack”. To

show the complementation property

on the improved algorithm, the key

„block cipher algorithm’ to encipher

a given plaintext. Two blocks size of

64 bits and 128 bits are used to

encipher the same plaintext using the

same key. After that the encipher

algorithm is applied to the

complement plaintext using the

complement of the key. The

complement property is not satisfied

for improved Blowfish algorithm

with block size 64-bits and 128-bits.

4.3 Memory requirement

 One of the aims of the improved

algorithm is to reduce the memory

requirement without compromising

security. Hence, the Blowfish‟s S-

boxes are reduced to one S-box and

the number of byte of this S-box is

also reduced. Table (4), illustrates

the memory requirement for the S-

box to the Blowfish algorithm before

and after improvement. It is clear

from this table that the improved

The design philosophy of proposed

algorithm depends on:

- Mixing operation from

different algebraic group: XOR,

addition, and multiplication.

- Using the subkey to control

data permutation and data

substitution.

- Reducing memory requirement

without compromising security.

The proposed algorithm has the

following features:

1. It uses the same algorithm criteria

for encryption and decryption

with the same key schedules, and

supports variable key-length

from 8 bytes up to 144 bytes.

2. It is based on simple theory

principles and simple arithmetic

operations and easy to

implement. So, it is completely

IJCCCE, VOL.9, NO.1, 2009 Design and Implementation of anImprovement

 of Blowfish Encryption Algorithm

*

103

specified, easy to understand the

operation steps of the algorithm.

3. Improved algorithm is secure,

compact and simple block

cipher. It adopts key-dependent

permutations and substitutions to

provide protection against

differential cryptanalysis and

linear cryptanalysis.

 4. Each function of the proposed

algorithm is dependent on its

key, this wills preve nt fixed

output and increase the non-

linearity of the algorithm.

lowfish algorithm with 64-bits

requires very small memory

compared with the Blowfish with

64-bits.

5 Time requirement

 Speed was not the primary

goal of the AES competition. In this

section, a comparison between the

time requirements to encrypt 1 M

bits using Blowfish algorithm before

and after improvement.

Table (5) shows that the

improved Blowfish algorithm is not

as fast as the previous Blowfish

algorithm, this disadvantage largely

disappears when it is considered the

likely platforms and applications of

the 21st century.

Conclusions
The proposed Blowfish

algorithm is a block cipher that

encrypts data in 16-byte blocks. Key

expansion converts a variable length

key of 144 bytes into several sub key

arrays totaling 65687 bytes. The

proposed algorithm has 16 rounds.

Its implementation and operation is

very

so this will preve nt fixed output and

increase the non-linearity of the

algorithm.

 depends on:

- Mixing operation from

different algebraic group: XOR,

addition, and multiplication.

- Using the subkey to control

data permutation and data

substitution.

- Reducing memory requirement

without compromising security.

The proposed algorithm has the

following features:

1. It uses the same algorithm criteria

for encryption and decryption

with the same key schedules, and

supports variable key-length

from 8 bytes up to 144 bytes.

2. It is based on simple theory

principles and simple arithmetic

operations and easy to implement.

So, it is completely specified, easy to

understand the operation steps of the

algorithm.

3. Improved algorithm is secure,

compact and simple block

cipher. It adopts key-dependent

permutations and substitutions to

provide protection against

differential cryptanalysis and

linear cryptanalysis.

 4. Each function of the proposed

algorithm is dependent on its

key, so this will preve nt fixed

output and increase the non-

linearity of the algorithm.

 5. Because of the large key and

input block size of the proposed

algorithm, exhaustive key search

and the matching ciphertext

attack are infeasible.

6. The small-number of bits to

large-number of bits (to and

from S-box) will have

weaknesses with respect to

linear cryptanalysis, but these

weaknesses are hidden both by

performing the G-function to

the four outputs of S-box,

IJCCCE, VOL.9, NO.1, 2009 Design and Implementation of anImprovement

 of Blowfish Encryption Algorithm

*

104

combining and making them

depending on the key.

7. The improved Blowfish

algorithm is not as fast as the

previous Blowfish algorithm;

disadvantage largely disappears

with development of

technology.

References

[1] Bruce Shnier “Applied

Cryptography Second Edition

Protocols. Algorithms, and

Source, and Source Code in

C”, John Wiley and Sons, Inc.,

1996.

 [2] Thilo Zieschang, “ Combinatorial

Properties of Basic Encryption

Operations”, Advances in

Cryptology Eurocrypt‟97,

International Conference on the

Theory And Application of

Cryptographic Techniques

Konstanz, Germany, May 11-15,

1997 Proceedings, Springer,

1997.

[3] Dieter Schmidt "ABC - A Block

Cipher”, Wikipedia the free

Encycleopedia, May 27, 2002.

[4] Bruce Schneier and John

Kelsey,” Unbalanced Feistel

Networks and Block

CipherDesign”, Counterpane

Systems, 101 East Minnehaha

Parkway, Minneapolis, MN 55419,

2005,

 [5] A. Bogdanov1, L.R.

Knudsen, G. Leander1, C. Paar, A.

Poschmann, M.J.B. Robshaw, Y.

Seurin, and C. Vikkelsoe,”

PRESENT: An Ultra-Lightweight

Block Cipher”, 2007, www.ist-

ubisecsens.org

[6] Dr. Dobb‟s Journal, September

1995.

[7] Fast Software Encryption

Cambridge Security Workshop

Proceedings (December 1993),

Springer-Verlag, pp. 191-204

1994.

[8] Fred halsall “ Multimedia

Communications Applications,

Networks, Protocols, And

Standards, ADDISON-WESLEY,

2001.

[9] Shakir M. “A new feedback

symmetric block cipher method”,

Ph. D, Thesis Univ. of tech,

Baghdad, 1997.

Ciphertext

64 bits

Fig (1) Blowfish Architecture

Cipherte

xt

64 bits

Plainte

xt

64 bits

http://citeseer.ist.psu.edu/schmidt02abc.html
http://citeseer.ist.psu.edu/schmidt02abc.html
http://en.wikipedia.org/wiki/May_27
http://en.wikipedia.org/wiki/2002

IJCCCE, VOL.9, NO.1, 2009 Design and Implementation of anImprovement

 of Blowfish Encryption Algorithm

*

105

Fig. (3) Improved Blowfish Algorithm

IJCCCE, VOL.9, NO.1, 2009 Design and Implementation of anImprovement

 of Blowfish Encryption Algorithm

*

106

IJCCCE, VOL.9, NO.1, 2009 Design and Implementation of anImprovement

 of Blowfish Encryption Algorithm

*

107

Table (3) Avalanche Effect of Improved Blowfish of 128-bitsblock size: Change one bit in

IJCCCE, VOL.9, NO.1, 2009 Design and Implementation of anImprovement

 of Blowfish Encryption Algorithm

*

108

IJCCCE, VOL.9, NO.1, 2009 Design and Implementation of anImprovement

 of Blowfish Encryption Algorithm

*

109

Table (3) Avalanche Effect of Improved Blowfish of 128-bitsblock size: Change one bit in

key

Block

No.

Ciphertext 128-bits in Hexadecimal Avalanche

1

0xba021566600b2efaa057aaf6a1411123

0xcb52ca63c5f6c4c8dd059d35f33e1225

66

2

0xf8d2cad810becf636dc3cbbf079c1d3a

0x5e3559c5c89e79d4fe66b857bebce685

74

3

0x39c66217cfa6ba516a2288cff8a093c7

0x5e796c88dca76e18875827420b625440

71

4

0x587a661c67d3903fee95536ba07825d1

0xca1ba7b4fb66d4609422250bdb3c8343

68

5

0xcb52ca63c5f6c4c8dd059d35f33e1225

0x8980b69a9203489cc7e022168ca4f047

68

Key1 block cipher algorithm

Key2 alock cipher algorithm

Table (4) Memory requirement comparisons of S-box

Algorithm Block size

(bits)

Memory requirement

(byte)

Blowfish 64 4096

Blowfish 128 2,097,152

Improved Blowfish 64 259

Improved Blowfish 128 65,543

Table (5) Speed Comparisons of Blowfish Algorithm on a Pentium II

Algorithm

Block size

(bits)

Speed

M bit/sec

Blowfish 64 0.3

Improved Blowfish 64 4.6

Improved Blowfish 128 3.8

