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Abstract

The Matrices group is a group defined over finite field that forms an Abelian group,
which is a suitable choice for constructing a good problem similar to Discrete Logarithm Problem
(DLP) and Elliptic Curves Discrete Logarithm Problem (ECDLP). This idea is encouraged to
define a new one-way trap-door function over finite matrices group. This leads to create cipher
systems based on the difficulty of solution of the presented one-way trap-door function. That is
appearing a clear change in the cryptography, and opens new windows for treatment with special
groups and new operations.

This paper proposes one-way trap-door function defined over Matrices group, We call it
Matrices Discrete Logarithm Problem (MDLP) and introduces the first proposed cryptosystems
that employ the finite matrices group in the public key cryptosystems.

The complication associated with the desined cipher system comes from the wide variety
of possible group structures of the matrix element in the Matrices group, and from the fact that
matrices multiplication is complicated. The security of the system depends on how difficult it is to
determine the integer d, given the square matrix B and the square matrix A where B= A mod g, A
and B are square matrices defined over finite field F, this is referred to as the MDLP. In addition,
that appears to offer equal security for a far smallest bit size, that for two reasons. The first reason
is that the operations are applied -instead of multiplication of two integer numbers- as a matrix-by-
matrix multiplication, in the other hand, the complexity and intractability are increase as much as
the size of base matrix is increased. The second reason is that the order of the Matrices group
IM(Fq)| with nxn base matrix appears at most g"-1 or its factors, that mean the calculation is
applied with g-bit size, needs g"-1 matrix-by-matrix multiplications to solve the MDLP.
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1. Introduction
This paper introduces the first proposal cryptosystems that is employed
Matrices group in cryptography. Unlike previous cryptosystems, matrices work with a
finite group formed by the matrices elements on an Matrices group defined over a
finite field. The cryptosystems includes key distribution, encryption/decryption
schemes, and Digital Signature Algorithm (DSA). The key distribution algorithm is
used to share a secret key, the encryption/decryption algorithm enables confidential
communication, and the DSA is used to authenticate the signer and validate the
integrity of the message. They do not invent new cryptographic algorithm, but they
are the first to implement existing public-key cryptosystem using Matrices group. The
proposal is an analogues to the Diffie-Hellman key exchange protocol, analogues to
ElGamal, Massey-Omura schemes, and DSA.

2. Matrices Group Laws
The paper proposes a definition of a new group. The new group is the Matrices
group defined over finite field M(Fg). In this subsection, we shall study some of
theoretic properties of the Matrices group M(Fq).
Theorem 1 (Matrices Group Laws): The Matrices group (M,*) has the following
group theoretic properties:
(1). Elements: Let M be defined over a field Fq (M(Fq)), then

. a, &, - a4,
M (FCI) :{V By By v By, |r dij EFQ}

a a a

n1 n2 7

is a group of M(Fg), that is generated from square matrix.

(2). Existing of identity: A~ =1~A=Aforall A € M(Fq).

(3). Existing of inverse: Let A € M(Fg) , there is a Matrix of M(F) denoted A
€ M(Fq), so that:

nn

A* A=,
(4). Associativity: Let A, B, C € M(Fy), then:
(A*B) * C=A* (B*C).

Definition 1: Let A be an element square matrix of the group M(Fq), Then A is said
to have order k if

AK=A*A ... * A=

k product

withAX # [ for all <k’ <k (that s, k is the smallest integer such that A*=1). If such a
k exists, then, the subgroup of M(Fq) is said to have finite order k, otherwise, it has
infinite order.

Definition 2: From here on, for the group operations on a Matrices group M, for k e
Zand A e M(Fy) , then:

A= *4* *A, (k times ), for k>0,
Al =1, and
A= (AK for k < 0.

Definition 3: The order of a Matrices group is defined as the number of matrix
element of the Matrices group and denoted by #M.
If A e M(Fq) is of order k, then



H={A|0<i<k1},
is a subgroup of M(Fg) of order k.

Definition 4: Let A be an element matrix of the group M(Fg), Then A is said to
generator matrix if

ord(A) = #M
Then,

M(Fq) ={ A¥| 0<k< #M-1},

Theorem 2: (Matrices SubGroup Laws): Each sequare matrix that is defined over
finite field and have the invers (i.e. the determenant is not equal zero), it can be
generate a subgroup of the Matrices group M(Fq).

Such that:

The square matrix A that is defined over finite field Fq, and |A|#0, it means the invers
of A (A1) is found, then

e The Matrices group (M,*) is closure on the * operation such that:

forall A, B € M(Fq), there exists A*B e M(Fg) .

e Existing of identity

for all A € M(Fyg), there exists A«1=1~A=A.

e Existing of inverse

Let A e M(Fg) , there is a Matrix of M denoted A € M(Fy), so that A* A1 =1.

e Associativity:

Let A, B, C e M(Fy) , then, (A* B) * C = A * (B*C).

e Commutativity:

A-B=B+A forall A,B € M(Fy).

In other words, the Matrices group law makes M into an Abelian group with identity
(neutral) element I.

Finally, Then when A has the inverse A, it generates a subgroup of matrices in the
Matrices group (M,*) by exponentiate the Matrix A from 0 to N, that satisfies the
group conditions.

3. Matrices Discrete Logarithm Problem (Mdlp)

One of the most interesting open problem in cryptography is the realization of
a trapdoor on the discrete logarithm, in which to solve the DLP is hard only if
published parameters are used, while it is easy by using a secret key (trapdoor key)
(Nathanson, 2000) ).

The DLP can be defined on various finite groups as well as multiplicative
group over a finite filed Fq (Mollin, 1989), this idea can be extended to arbitrary
groups and, in particular, to Matrices groups. A typical example except the
multiplicative group is the discrete logarithm problem on Matrices group over Fq , and
many cryptographic schemes are constructed on the MDLP.

Definition 5 (MDLP): For a Matrices group M, let A, B € M(Fy), recall that in the
MDLP, to find an integer k < Z, is such that A*= B.

Since a Matrices group M is made into Abelian group by a matrix-by-matrix
multiplicative operation, “The exponential of a Matrix element on M(Fq)” actually
refers to the repeated multplications. Therefore, B=A' is the i power of Ae M(Fq) is
the i multiple of A. The logarithm of B to the base A would be i (i.e. the inverse of
exponentiation). The MDLP is of interest because its apparent intractability forms the
basis for the security of Matrices group cryptographic schemes.



4. Matrices Cryptosystems (MCS)

Unlike previous cryptosystems, matrices work with a finite Abelian group
formed by the square matrices elements on an Matrices group defined over a finite
field M(Fg). MCS include key distribution, encryption/decryption schemes, and
Digital Signature Algorithm (DSA). The key distribution algorithm is used to share a
secret key, the encryption/decryption algorithm enables confidential communication,
and the DSA is used to authenticate the signer and validate the integrity of the
message.

This section proposes cryptosystems that employs Matrices group. It does not
invent new cryptographic algorithm, but it is the first to implement existing public-
key cryptosystem using Matrices group. The proposal is an analogues to the Diffie-
Hellman key exchange protocol, analogues to EIGamal, Massey-Omura schemes, and
DSA. The matrix-by-matrix multiplication operation in MCS is the counterpart of
modular multiplication in RSA and ElGamal, and exponentiation of matrix in MCS is
the counterpart of the modular exponentiation. To form cryptographic system using
Matrices group, we need to find a “hard problem” corresponding to the difficulty of
factoring the product of two prime or taking the discrete logarithm or elliptic curve
discrete logarithm.

Consider the equation B=A¥, where A and B are two matrices in the Matrices
group and k is an integer. It is relatively easy to calculate B given A and k, but
determining the integer k from a multiple of a matrix A¥, even with the knowledge of
A, B and M(Fy) is a very difficult problem, known as the Matrices Discrete Logarithm
Problem (MDLP).

4.1 Exponentiation over Matrices

The fundamental operation in Matrices cryptographic schemes is that of
matrix exponentiation of a square matrix element by an integer. If not the most
confusing term, certainly the idea of multiplying matrix refers to computing B=A¥,
where A and B are two square matrices in the Matrices group and k is an integer. This
really means that we multiply A to itself k times.

Definition 6 (Exponentiation of a square matrix on an Matrices group by an
integer): Given k € Z, and A is a square matrix element on a Matrices group M(Fq),
then

A= A *4.. ... *4 (k times)...............(1)
And it is so called matrix exponentiation [16], and it is the dominant cost operation in
matrices cryptographic scheme, and it dominates the execution time of matrices
cryptographic schemes, especially the representation of MDLP.

The algorithm that can be used to compute the matrix exponentiation in the
Matrices group is Repeated-Squaring and Multiplication or fast group operation
Method.

4.2 Repeated-Squaring and Multiplication Method
The most fundamental computation on Matrices group is the group operation

a, - A,
A= A4*4.. .. .. *4 (k times,) where A= | : -, : | is a matrix element on a
a‘nl a‘nn

Matrices group over Fq M(Fq) and k are very large positive integer, since the
computation of AX is so fundamental in all matrices related computations and
applications, it is desirable that such computations are carried out as fast as possible.



Remarkably enough, the idea of repeated squaring for fast exponentiation can be used
almost directly for fast group operation on matrices.

Let en-1 €n2 ...... e1 €0 be the binary representation of k. then for i starting from n-1
down to O (en-1 almost 1 and used for initialization), check whether or not e =1. If e
=1, then perform a squaring and a multiplication group operation; otherwise, just
perform a squaring operation. For example: compute A*, since 43=101011, we get
the following table:

Table 1: Compute A* using repeated doubling and addition

i | e | Value Operations Status

5| es 1 A Initialization

4 | e4 0 A= A2 squaring

3| es 1 (A%)>*A= A® Squaring and Multiplication
2 | e 0 ((A%)?*A)*= A0 squaring

1| e 1 ((AH?*A)?)*A= A% Squaring and Multiplication
0 | eo 1 ((((A%**A)H)**A)>*A= A%l | Squaring and Multiplication

We have the following algorithm which implements this idea of repeated squaring and
multiplication (fast group operation) for computing A¥, that is, it reduces the
complexity of the computation of A¥ from k to log k.
Algorithm (Repeated-Squaring and Multiplication )
Input: a matrix A € M(Fq) and positive integer K.
Output: B= A,
1. Write k in the binary expansion form k= en.1 en2 ...... e1 eo Where each e
either 0 or 1(Assume k has n bits)
2. SetB=1.
3. Compute A*:
3.1 Forifromn-1 down to 0 do
32 B=B2
3.3 ifei =1, then B = B*A.
4. Output B: (now B = AX).
5 Design Of Matrices Public-Key Cryptosystems
The section introduces design of public-key cryptography that employs the
Matrices group. More specifically, it’ll introduce matrices cryptosystems analogues to
several well known public-key cryptosystems including key exchange,
encryption/decryption, and DSA schemes.
5.1 Matrices Public-key Cryptosystems
For any cryptographic system based on the DLP, there is an analogy to Matrices
group. In what follows, it’ll introduce matrices cryptosystems analogues to four
widely used public-key cryptosystems, namely Diffie-Hellman key exchange system,
the Massey-Omura, the EI-Gamal public-key cryptosystems and DSA.
1. Analogy of the Diffie-Hellman Key Exchange System
This system is merely a method for exchanging keys; no messages are
involved. Alice and Bob first publicly choose a finite field Fq and a Matrices group

M(Fq) defined over it. Then they publicly choose a matrix B € M(Fq) to serve as their
“Base matrix”. It is a generator of the key. To generate a key, Alice chooses random
integer e between 1 and N, where N is the order number of the of Matrices group

M(Fq), and keeps it secret. She then computes B® € M(Fg) and makes that public. Bob



chooses his own secret random integer d between 1 and N, and makes public B%e
M(Fq). The secret key is then B® e M(Fq). Both Alice and Bob can compute this key.
For example,
Alice knows BY (public knowledge) and her own secret e. Charlie, on the other hand,
only knows B, B® and BY. Without solving the MDLP, (finding d knowing B and BY),
there is no way for him to compute B®® only knowing B¢ and BY. The following
algorithm illustrates this manner.
Algorithm (Diffie-Hellman key exchange system with MDLP)
1. Initialization

e Alice and Bob publicly choose a finite field Fq and the Matrices group M

over Fq (M(Fg)).
e They publicly choose a random “Base matrix” B € M(Fg) such that B
generates a large subgroup of M(Fq).

2. Key generation

e Alice chooses a secret random integer e. She then computes B® e M(Fq).

e Bob chooses a secret random integer d. He then computes BY e M(Fg).

e Make B® and BY public and keep e and d secret.
3. Calculation of the secret key matrix B

e Alice computes the secret key B = (BY)®.

e Bob computes the secret key B = (B®)“.

There is no known fast way to compute B if only knows B, B¢ and B, this is
MDLP.

Example:- Let the square matrix element generator that is defined over F2g is

12
and give 840 element group size where 29*29-1=840.

11 7
G:( 9) the group of the generator G is cyclic because 11*9-12*7=15#0 mod 29,

11 7
Therefore the cyclic group M(F29) on G:[lz 9} of order 840 is

Apply the Diffie-Hellman key exchange system with MDLP
1. [Initialization

e Alice and Bob publicly choose a finite field F2g and the Matrices group M
over Fag (M(F29)).
e They publicly choose a random “Base matrix” B € M(F29) such that

11 7
B= (12 9} generates a large subgroup of M(Fao).

2. Key generation
e Alice chooses a secret random integer e=367. She then computes

367
Be—gT= 11 7 _ 25 22 |
12 9 17 27
e Bob chooses a secret random integer d=692. He then computes
692
RI—R6%2— 11 7 _ 6 14.
12 9 24 2
e Make B® and BY public and keep e and d secret.




3. Calculation of the secret key matrix B

6 14\ (3 3
e Alice computes the secret key B¢ = (BY)e= = .
24 2 1 27

25 22\ (3 3
e Bob computes the secret key B = (B®)d= = .
17 27 1 27

2. Analogy of the Massey-Omura Cryptosystem
In this system the finite field Fq and the Matrices group M(Fq) have been
made publicly known. Alice and Bob both select a random integer e; and e, between 1
and N, where N is the order number of the of Matrices group M(Fg), respectively with
ged(e1, N)=1 and gcd(ez, N)=1. They also compute their inverses di =e:™* mod N (ie.
dier = 1 mod N) and d2 =e,* mod N (ie. dze2 = 1 mod N ), then, keep everything
secret. If Alice wants to send the message Pm (PlainText matrix) to Bob, she first
sends him the message Pm ®. This means nothing to Bob, since he does not know dj.
He ever, he can exponentiate it by his e, and send the message P ¢1%? back to Alice.
Then Alice can help unravel the message by exponentiating this new message by di
which sends Pr #1¢291 = Py, 2 back to Bob. Then Bob can exponentiate this message by
d to get the original message (Pm ®2%2= Pp). During this process Charlie sees Pn®L, Pn
e2, and Pm e1e2_
Without solving the MDLP —finding ez and then its inverse knowing Pr®! and Pp, ®%¢2 -
there is no way for him to find Pm. The following algorithm illustrates this manner.
Algorithm (Massey-Omura Cryptosystem with MDLP)
1. [Initialization
e Alice and Bob publicly choose a finite field Fq and the Matrices group M
over Fq (M(Fg)).
e They publicly known the order number of the of Matrices group M(Fq)
denoted by N.
2. Key generation
e Alice chooses a secret random integer e: between 1 and N, such that
ged(er, N) =1. She then computes its inverse di=e1* mod N.
e Bob chooses a secret random integer e, between 1 and N, such that
ged(ez, N) =1. He then computes its inverse d,=e;* mod N.
o Keepey, di, ey andd> secret.
3. Transmission procedure
Alice sends the message Pm to Bob as follows

e Alice computes Pm®, and sends it to Bob.

e Bob computes Pm®%2 and sends it to Alice.

e Alice computes Pmele2dl = P, €2 and sends it to Bob.
e Bob computes Pm 292=Ppy).

Example:- Let the square matrix element generator that is defined over Foo is

12
and give 840 element group size where 29*29-1=840.

11 7
Gz( 9) the group of the generator G is cyclic because 11*9-712*7=15#0 mod 29,

11 7
Therefore the cyclic group M(F29) on G:(lz 9] of order 840 is

Apply the Massey-Omura Cryptosystem with MDLP



Initialization

e Alice and Bob publicly choose a finite field F29 and the Matrices group
M over Fag (M(F29)).

e They publicly known the order number of the of Matrices group |M(F29)|

11 7
on B= , denoted by N=840.
12 9

Key generation
e Alice chooses a secret random integer e1=547. She then computes its
inverse d1=547"! mod 840=43.
e Bob chooses a secret random integer e»=97. He then computes its
inverse d,=97"! mod 840=433.
o Keepey, di, ez anddz secret.
. Transmission procedure

1 2
Alice sends the message Pm :{3 4] to Bob as follows

1 2" (10 24
Alice computes Pm“:( j =( ],andsends itt oBob.

3 4 7 17
10 24\ (27 1
e Bob computes P fl€2= = , and sends it to
7 17 16 14
Alice.
27 1\ (23 17
e Alice computes Py ele2dl = = = Pm %, and
16 14 11 5

sends it to Bob.

23 1™ (1 2
Bob computes Pmezdz:( j :( J:Pm.

11 5 3 4

3. Analogy of the ElIGamal Cryptosystem
In this system the finite field Fp, the Matrices group M(Fg), and the “Base matrix”

B € M(Fq) are public information. Bob randomly chooses an secret integer d (1<d<N,

where N is the order number of the Matrices group M(Fq) ) and publishes the matrix
BY. If Alice ants to send the message Pm (PlainText matrix) to Bob, she will choose a
secret random integer e (1<e<N) and send (Pm * B®, B°) to Bob. Bob will then
exponentiate the second matrix in the pair by d to get B®Y, the compute the inverse of
the key matrix B® to get (B®®)* and multiply by the first matrix in the pair Pm * B® to
find Pm. In the meantime, Charlie has only seen B® and BY. Without solving the MDLP
(eg. finding d knowing B and B®), there is no way for him to find Pm. The following

algorithm illustrates this manner.
Algorithm (EIGamal Cryptosystem with MDLP)
1. Initialization

e Alice and Bob publicly choose a finite field Fq and the Matrices group M
over Fq (M(Fg)).

e They publicly choose a random “Base matrix” B € M(Fg) such that B
generates a large subgroup of M(Fq).



2. Key generation
e Bob chooses a secret random integer d in interval [2, N].
e Hethencomputes Q =B¢
e Make Q public and keep d secret.
3. Encryption
Alice sends the message Pm to Bob as follows
e Select random integer e in interval [2, N].
e Compute B®.
Compute K= Q¢ (i.e. K=B%),
e Compute ciphertext C= Pm * K.
Transmit the pair matrices (C, B®).
4. Decryption
Bob retrieves the message as follows
e Compute K= (B%)Y, (i.e. K=B®).
e Compute KT
e Multiply K by the ciphertext matrix C:
Pn=C*K%

Example:- Let the square matrix element generator that is defined over F2g is

12
and give 840 element group size where 29*29-1=840.

11 7
G:( 9) the group of the generator G is cyclic because 11*9-12*7=15#0 mod 29,

11 7
Therefore the cyclic group M(F29) on G:[lz 9} of order 840 is

Apply the EIGamal Cryptosystem with MDLP
1. Initialization
e Alice and Bob publicly choose a finite field F29 and the Matrices group

M over Fag (M(Fa29)).

11 7
o They publicly choose a random “Base matrix” B = (12 9) .

2. Key generation
e Bob chooses a secret random integer d =218.

11 7\ (22 17
e Hethencomputes Q= B%=B?¥= = .
12 9 25 13
e Make Q public and keep d secret.
3. Encryption

1 2
Alice sends the message Pm :[3 4} to Bob as follows

e Select random integer e=793.

793
e Compute B®=B"™®= 1Ln-_(s .
12 9 28 0

compute K= oe=[2 V7 ™ (23 23
[ ] =t =t = .
P 25 13 21 4



i 1 2).(23 23) (19 2
e Compute ciphertext C= Py * K= * = .
3 4) (27 4 3 27

. . : 19 2) (24 26
e Transmit the pair matrices (C, B®)=( , ).
3 27)(28 0
4. Decryption
Bob retrieves the message as follows

. (24 26\ (23 23
e Compute K=(B®%%= 28 0 = 27 4l

4 23 23)" 16 24
e Compute K™ mod 29= mod 29= .
27 4 8

e Multiply K by the ciphertext matrix C:
] (19 2 ] (16 24) (1 zj
Pn=C*Kl= * = :
3 27 8 5 3 4
5.2 Matrices Digital Signature Algorithm(MDSA)

The MDSA is analog to the DSA in using the Matrices group. DSS are the
counterpart to handwritten signatures. A digital signature is the number that depends
on the secret key and is only known by the signer and depends on the contents of the
message being signed. Signatures must be verifiable without access to the signer’s
private key. Signatures should be existentially unforgeable under chosen-message
attacks. This asserts that an adversary who is able to obtain Alice’s signatures for any
messages of his choice cannot forge Alice signature on a single other message.

Suppose Alice wants to send a digitally signed message to Bob. They first
choose a finite field Fq, and the Matrices group M(Fq), defined over that field and the
“Base matrix” B with order n. Alice’s key pair is (d, Q), where d is her private integer
key and Q= BY is her public matrix key . To sign a message Pm (PlainText matrix)

Alice does the following:
1. Choose a random integer number k with k: 1 <k <n -1.

a,
2. Compute B":( - ] and r=a1 mod n. If r =0 then go to 1.

Compute k™ mod n.

Compute e =H(Pm).

Compute s=k*(e+dr)modn. If s=0thengoto 1.
Alice signature for the message P is (r, S).

ook w

To verify Alice’s signature (r, s) on the message Pm, Bob obtains an authentic
copy of Alice’s parameters and public key. Bob should validate the obtained
parameters! Bob then does the following:

Verify that r, s are integers in the interval [1, n -1].

1. Compute e =H(Pm).
2. Compute w=s" mod n.
3. Compute ui=ew mod n, and u2=rw mod n.
a, a,
4. Compute [ o ] =BUl* QY |f ( o j: 1, then reject the signature.
5. Otherwise, Compute v =ar1 mod n.
6. Accept the signature if and only if v =r.



If the signature (r, s) on the message Pm Was indeed generated by Alice, the s =k * (e
+dr) mod n. With this information we have
k=ste+dr)mod n=ste+sird=we+wdr
=ur+uxd mod n.
Thus
UL * Q U2_ gui+ u2d — BK.
and so
v=r asrequired.
The following algorithm describes the above mentioned steps.
Algorithm (MDSA)
1. Initialization
e Alice and Bob publicly choose a finite field Fq and the Matrices group M
over Fq (M(Fg)).
e They publicly choose a random base point B € M(Fq) with order n, such
that B generates a large subgroup of M(F).
2. Key generation
e Choose a secret random integer d in interval [2, N].
e He then computes Q = B,
e Make Q public and keep d secret.
3. Signature generation
Alice sends the digitally signed message Pm to Bob as follows
e Select random integer k in interval [2, N].

a :
e Compute (” _.J:Bk.

e Compute r=ai,1 mod n.
e Compute e= H(Pm).
e Compute s=k*(e+dr)modn.
e The signature for Py is (r, s).
4. Signature verification
Bob verifies Alice’s signature (r, s) on message Pm as follows

e Compute e= H(Pm).

e Compute w=s"1mod n.
e Compute ur=ew mod n.
e Compute U2 =rw mod n.

a, a,
e Compute [ 1 j =BU*Ql f [ 1 N j: I, then reject the

signature.
e Otherwise, Compute v=a;1 mod n
e Accept the signature if and only if v =r.

Example:- Let the square matrix element generator that is defined over F2g is

11 7
G:(lz 9) the group of the generator G is cyclic because 11*9-12*7=15#0 mod 29,

and give 840 element group size where 29*29-1=840.



11 7
Therefore the cyclic group M(F29) on G=(12 9j of order 840 is

Apply the MDSA
1. [Initialization
e Alice and Bob publicly choose a finite field Fog and the Matrices group

M over Fag (M(F29)).

11 7
e They publicly choose a random base point B =[12 9} with order

N=840.
2. Key generation
e Choose a secret random integer d =7109.

11 7\ (27 8
e He then computes Q =B = = :
12 9 22 4

e Make Q public and keep d secret.

3. Signature generation

Alice sends the digitally signed message Pm to Bob as follows
e Select random integer k = 242.

242
e Compute Bf= (el 16 .
12 9 15 4

Compute  r=az,1 mod n=21 mod 840=21.

Compute  e= H(Pm): Let e=20.

Compute  s=k (e +dr) mod n=481(20+719*21) mod 840=359.
e The signature for Pn is (r, s)= (21, 359)

4. Signature verification

Bob verifies Alice’s signature (r, s) on message Pm as follows

Compute e= H(Pm): Let e=20.

Compute w =5 mod n=599.

Compute ur=ew mod n=20*599 mod 29=220.

Compute uz =rw mod n=21*599 mod 29=819.

a, 11 7\ 27 8\*"°
. Compute [ll ]:B ur « Q uz2 — ( J * ( j

12 9 22 4
_(6 27}{25 5]_(21 lGj
9 19) (21 7) 15 4 )
e Compute v=ay1 mod n=21 mod 840=21

e Accept the signature where, v =r=21.
6. The Computational Complexity

The Computational Complexity of the DLP computing is compared to

proposed problem MDLP of encryption and decryption function as follows:
1. DLP:

e Let the size of the input message unit be n.

e The complexity of the computing b = a*mod p is:

T(b) = T(@) = O(log n) arithmetic (multiplication) operation, using Fast

Exponential Algorithm (Yan, 2000.)
Then,



T(a*) = O(log® n) bit operation.
2. MDLP:

e Let the size of the input message unit be n.

e Let the size of the Base Square Matrix be m.

e The complexity of the computing B = A*mod p is:

T(B) = T(A¥) = O(log n) group (matrix-by-matrix multiplication) operation,

using Repeated-Squaring and Multiplication Algorithm.

Then,

T(AY) = 0O(m? log n) arithmetic (multiplication) operation.

= O(m? log® n) bit operation.

7. The Running Time Comparison

The proposed system is programmed by Delphi7 programming language on P4
PC computer with CPU of 3.2 G.B and RAM of 512 M.B. Then the methods is
applied on different size messages, which takes plaintext of K Bytes then encrypts it
and computes the running time of its operation, then decrypts its and computes the
running time of the decryption. Next, 10 K Bytes, 20 K Bytes, 30 K Bytes, 40 K
Bytes, 50 K Bytes and M Byte and computes the running time of the encryption and
decryption of each messages.

Table 2 shows the running time of the EI-Gamal method with DLP over Fg7 and
the base number is 23, the public key is 58 and the secret key is 43. The order of the
multiplicative group over Fq is g-1, then, the order of the multiplicative group over
Fo7 is 96. The DLP over Fo7 is solved by 0 msec.

The running time of the EI-Gamal method with MDLP over Fo7 and the base 2x2

.. (17 93 . .. (67 9 .
matrix is , the public key 2x2 matrix is and the secret key is
43 39 73 66

8394. The order of the Matrices group of base matrix 2x2 over Fo7 is 9408, 9408
equal 97*%97-1, then, The order of the Matrices group of base matrix 2x2 over Fq is g
1. The MDLP over Fg7 with base matrix 2x2 is solved by 16 msec.

The running time of the EI-Gamal method with MDLP over Fg7 and the base 3x3

11 29 39 93 26 52
matrix is | 43 53 61|, the public key 3x3 matrix is | 56 26 71| and the secret
79 83 91 65 89 1

key is 100000. The order of the Matrices group of base matrix 3x3 over Fo7 is
912672, 912672 equal 97*97*97-1, then, The order of the Matrices group of base
matrix 3x3 over Fq is g*-1.The MDLP over Fg7 with base matrix 3x3 is solved by 188
msec.

The running time of the EI-Gamal method with MDLP over Fo7 and the base 4x4

11 29 39 43 72 88 38 9

.. |53 61 79 83 : .. |22 70 4 54
matrix is , the public key 4x4 matrix is and

91 31 7 23 23 85 47 73

17 57 73 57 62 5 40 O

the secret key is 1000000. The order of the Matrices group of base matrix ¢x¢ over
Fo7 IS AAevayva, AAevayva equal 97*97*97*97-1, then, The order of the Matrices

group of base matrix 4x4 over Fq is q*-1.The MDLP over Fo7 with base matrix 4x4 is
solved by 35375 msec.



Therefore, we conclude the order of the Matrices group of base matrix nxn over Fq is
q"-1.

The following table explain the running time of the both encryption and decryption of
each method:

Table2: Total Running Time of encryption/decryption methods in msec

El-Gamal El-Gamal El-Gamal El-Gamal
Message Size . with MDLP [{ with MDLP || with MDLP
with DLP
2Xx2 3x3 4x4

K Bytes
10 K Bytes 234 250

20 K Bytes 468 515
30 K Bytes 703 781
40 K Bytes 938 1046
50 K Bytes 1172 1296

M Byte 2343 2594

Table 3: shows the Running Time of solving and analysis of DLP and MDLP
over Fo7 with 2x2, 3x3 and 4x4 base matrices.

Table 3: Running Time of solving DLP and MDLP over Fo7

Problem Type MDLP 2x2 | MDLP 3x3 [| MDLP 4x4

Running Time in msec

There is a clear growth of the time execution when use the Matrices group
and increase as long as the matrix size is increased. This increasing with small
numbers, what is happen when a large number is applied, such as 100 digit
number, 200 digit number or more, the complexity is increased rapidly, show
Figure 1.

Time in msec

Yoo

Problem
I I I Type
DLP MDLP MDLP MDLP
2x%2 3x3 4x4
Fiaure 1 The complexitv of DLP and MDLPs




8. Security Of Matrices Cryptography(Mc)

The complication associated with MC comes from the wide variety of possible
group structures of the matrix element in the Matrices group and from the fact that
matrix multiplication is somewhat complicated.

The security of MC depends on how difficult it is to determine the integer d,
given the square matrix B and the square matrix A where B= A? mod q. This is
referred to as the MDLP. Also that it appears to offer equal security for a far smallest
bit size.

The group structure of the Matrices group has a complex operation such that,
multiplying a matrix-by-matrix, therefore, the group structure of the matrices
increases complexity as long as the matrix size is increased. This gives more
complicated operation than group structure of the ECC.

Also it appears to offer equal security for the smallest bit size, for two reasons.
The first reason is that the operations are applied -instead of multiplication of two
integer numbers- as matrix-by-matrix multiplications, in the other hand, the
complexity and intractability are increased as much as the size of base matrix is
increased. The second reason is that the size (order) of the Matrices group M(Fq) of
matrix of order n appears at most q" -1 or its factors that means the calculation is
applied with g-bit size, while to solve the MDLP needs g" -1 matrix multiplications.

9. Conclusion

The project defined the Matrices group that proved as an Abelian group to use it
in the proposed cryptosystems. Then, discover that the Matrices group has a one way
function similar to DLP and ECDLP, which MDLP. The construction of cipher
system is based on the difficulty of solution of the MDLP that is a clear change in the
cryptography, and opens new windows for treatment with special group and new
operations. There is a computational advantage in using the matrices cryptography
with the shortest key length that reduces the overall calculations with secure system.
The structures of the square matrices consist of many numbers that provide the ability
to encipher large blocks of plaintext. Each matrix consists of four, nine, sixteen, and
so on, that makes the cryptogram may encipher efficiently with the shortest key size.
The MDLP appears more complex than ECDLP, because the matrices operations
increase the complexity as long as the matrix size is increased.

The MDLP over Fq is more intractable than the DLP in Fq and ECDLP in

E(Fg). It is this feature that makes cryptographic system based on the MDLP even
more secure than that based on the DLP and ECDLP, because the M(Fq) gives a large
group over small field size. Since the group M(Fgq) with nxn base matrix may give
group of order g"-1, therefore, some of the strongest algorithms for solving DLP or
ECDLP cannot be adaptive to the MDLP.
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