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Abstract 

The Matrices group is a group defined over finite field that forms an Abelian group, 

which is a suitable choice for constructing a good problem similar to Discrete Logarithm Problem 

(DLP) and Elliptic Curves Discrete Logarithm Problem (ECDLP). This idea is encouraged to 

define a new one-way trap-door function over finite matrices group. This leads to create cipher 

systems based on the difficulty of solution of the presented one-way trap-door function. That is 

appearing a clear change in the cryptography, and opens new windows for treatment with special 

groups and new operations. 

This paper proposes one-way trap-door function defined over Matrices group, We call it 

Matrices Discrete Logarithm Problem (MDLP) and introduces the first proposed cryptosystems 

that employ the finite matrices group in the public key cryptosystems.  

The complication associated with the desined cipher system comes from the wide variety 

of possible group structures of the matrix element in the Matrices group, and from the fact that 

matrices multiplication is complicated. The security of the system depends on how difficult it is to 

determine the integer d, given the square matrix B and the square matrix A where B= Ad mod q, A 

and B are square matrices defined over finite field Fq, this is referred to as the MDLP. In addition, 

that appears to offer equal security for a far smallest bit size, that for two reasons. The first reason 

is that the operations are applied -instead of multiplication of two integer numbers- as a matrix-by-

matrix multiplication, in the other hand, the complexity and intractability are increase as much as 

the size of base matrix is increased. The second reason is that the order of the Matrices group 

|M(Fq)| with n×n base matrix appears at most qn-1 or its factors, that mean the calculation is 

applied with q-bit size, needs qn-1 matrix-by-matrix multiplications to solve the MDLP. 
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 الخلاصة
صا جيرر ا أخيرر   م   ررن صل رر   م رر اذ هررزمرر ا اليقيررا   هررز زمرر ا م   ررا حقررا اصتهررو اصم تشررز  اصتررز ت رر و زمرر ا اصموررت    ان 
صت ر ا  رج   اصرا  هرذ  ا (.ECDLPصا اصق غ  يتم اصم تورو  رز اصم ت رز ايهقيقجرز  )أ(  م DLPصا اصق غ  يتم اصم توو )أم  لشا صم 

 مرراظا ا  ر    ام   يررا  هرذا ا   اصرا ت  ير   اصرا ج يرر ا هز  اصرا لر ن اصمورري ا ات  يرا اعتجرر   اصم   را حقرا زمرر ا اصمورت     اصم تشيررا.
  ررذ    ص رر   يترتف ا  ررت  ماص اص ت لرا ضررف  ررزا  تغير   يظشرر  ك ذصر  اصررا لر ن اصمورري ا ات  يرا اعتجرر   اصمه مررا. تررو  رت   حقررا ور  لاتت تي  

 اصخ وا  اص مقي   اصج ي ا.  زم و ل صم  تج ي ا صق
اقترر اد  اصررا لرر ن اصمورري ا ات  يررا اعتجرر   اصم   ررا حقررا زمرر ا اصموررت     اصم تشيررا  هررز م ررأصا اصق غرر  تم  يهرر  م هررذا اصلترر 

موررت     زمرر ا اص  ضرر ت اصتررز اع و ع ظمررا اصت ررتي  ذ  اصمتترر د اصم قررن داقترر  اصم توررو  ررز اصموررت       ررذصك يهرر م هررذ  اصلترر  اع
ع ا ررر   رررتن مرررن اعم( Matrices Cryptography صمورررت     )ل  ت لرررا اصم رررت  ا ص تلط لاصمررر اصت هيررر  ان . اصم تشيرررا  رررز هرررذ  اع ظمرررا

. ا هر م   ضر ن اصمورت  حمقيرا مرن تهيهرا ّن     رذصك    اصمورت   زم اا من ح و  اصموت  ا  ز م  ماص اصزم من ت ا ين  ااصمختقت
 اصمورررت  ا  Bاصمورررت  ا اصم ل رررا    حطرررمررر  ا  dاص ررر   اصورررتيف  ايجررر   ال  وررر مررر    صمورررت     حقرررا ل  ت لرررا اصم رررت  ااصمرررن ي تمررر  ّ  

 رز  ق غ  يتم اصم تورواصصا   ل  م م ا حتهذ     .mod dA =B qتي   )qF Finite Field(اصم تشز   اصم   ا حقا اصتهو  Aا اصم ل 
 .موت    اص

هر    جر ا  ص رللين. اص رلن ا  و يتجرم قط را ورغ صلا ظمرا اعخر   مر  إحطر   ّمرن م ر     يظشر  ه  ل عض  ا اصا ذصك
 ور  لا اصترواصت هير       ن اخ    من   تياموت  ا لموت  ا   تطلن  ض ن -ينوتيت نل ع من ض ن ح  ي-ّن اص مقي   تطلن 

 )حر   ح  ور  زمر ا اصمورت    (  اصرذ  ي مرز صر  مورت    ا اصزمر  ّن تجرم  اصث  ز ه  لن  اصتجم اصموت  ا ا    يا.   قم  زا ا   ز ت
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|)qM(F|    مرر  موررت  ا اع ررn×n  1يظشرر  حقررا ا غقررن-nq  ّ  حقررا تجررم اصمطلررناصت رر ن   هررذا ي  ررز انح امقرر   اترر bit-q  
 اصموت    . ز  ق غ  يتم اصم توواصصا   صتو م   ض ن موت  حمقيا  nq-1يتت ج اصا 

1. Introduction 
This paper introduces the first proposal cryptosystems that is employed 

Matrices group in cryptography. Unlike previous cryptosystems, matrices work with a 

finite group formed by the matrices elements on an Matrices group defined over a 

finite field. The cryptosystems includes key distribution, encryption/decryption 

schemes, and Digital Signature Algorithm (DSA). The key distribution algorithm is 

used to share a secret key, the encryption/decryption algorithm enables confidential 

communication, and the DSA is used to authenticate the signer and validate the 

integrity of the message. They do not invent new cryptographic algorithm, but they 

are the first to implement existing public-key cryptosystem using Matrices group. The 

proposal is an analogues to the Diffie-Hellman key exchange protocol, analogues to 

ElGamal, Massey-Omura schemes, and DSA. 

2. Matrices Group Laws 
The paper proposes a definition of a new group. The new group is the Matrices 

group defined over finite field M(Fq). In this subsection, we shall study some of 

theoretic properties of the Matrices group M(Fq). 
Theorem 1 (Matrices Group Laws): The Matrices group (M,*) has the following 

group theoretic properties:   
(1). Elements: Let M be defined over a field Fq (M(Fq)), then  

M*(Fq) ={
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, ai,j  Fq} 

is a group of M(Fq), that is generated from square matrix. 

(2). Existing of identity:  A * I = I * A = A for all A  M(Fq). 

(3). Existing of inverse: Let A  M(Fq) , there is a Matrix of M(Fq) denoted A-1 

  M(Fq), so that: 

  A* A-1 = I.  

(4). Associativity: Let A, B, C  M(Fq), then: 

(A* B) * C = A * (B*C). 

Definition 1: Let A  be an element square matrix of the group M(Fq), Then A is said 

to have order  k  if  

Ak = A * A ………* A=I 
          k  product 

 

withAk' ≠ I for all  1≤ k’ ≤ k  (that is, k is the smallest integer such that Ak=I). If such a 

k exists, then, the subgroup of M(Fq) is said to have finite order k, otherwise, it has 

infinite order. 
 

Definition 2: From here on, for the group operations on a  Matrices group M, for k  

Z and A  M(Fq) , then: 

 Ak = A *A*………* A,  (k  times ),   for k > 0,  

 A0 = I,         and  

 Ak = (A-1)-k,     for k < 0.         
 

Definition 3: The order of a Matrices group is defined as the number of matrix 

element of the Matrices group and denoted by  #M. 

 If  A  M(Fq)  is of order  k, then  



  H = { Ai | 0 ≤ i < k-1}, 

is a subgroup of  M(Fq)  of order  k. 
 

Definition 4: Let A  be an element matrix of the group  M(Fq), Then  A  is said to 

generator matrix if   

ord(A) = #M 

Then, 

  M(Fq)  = {  Ak | 0 ≤ k <  #M -1}, 
 

Theorem 2: (Matrices SubGroup Laws): Each sequare matrix that is defined over 

finite field and have the invers (i.e. the determenant is not equal zero), it can be 

generate a subgroup of the Matrices group M(Fq). 

Such that: 

The square matrix A that is defined over finite field Fq, and |A|≠0, it means the invers 

of A (A-1) is found, then 

 The Matrices group (M,*) is closure on the * operation such that: 

for all  A, B  M(Fq), there exists  A * B  M(Fq) . 

 Existing of identity 

for all A  M(Fq), there exists  A * I = I * A = A. 

 Existing of inverse 

Let A  M(Fq) , there is a Matrix of M denoted A-1   M(Fq), so that A* A-1 = I.  

 Associativity:  

Let A, B, C  M(Fq) , then, (A* B) * C = A * (B*C). 

 Commutativity:   

A * B = B * A    for all A, B  M(Fq). 

In other words, the Matrices group law makes M into an Abelian group with identity 

(neutral) element I. 
 

Finally, Then when A has the inverse A-1, it generates a subgroup of matrices in the 

Matrices group (M,*) by exponentiate the Matrix A from 0 to N, that satisfies the 

group conditions. 

3. Matrices Discrete Logarithm Problem (Mdlp) 
 One of the most interesting open problem in cryptography is the realization of 

a trapdoor on the discrete logarithm, in which to solve the DLP is hard only if 

published parameters are used, while it is easy by using a secret key (trapdoor key) 

(Nathanson, 2000) ).  

 The DLP can be defined on various finite groups as well as multiplicative 

group over a finite filed Fq (Mollin, 1989), this idea can be extended to arbitrary 

groups and, in particular, to Matrices groups. A typical example except the 

multiplicative group is the discrete logarithm problem on Matrices group over Fq , and 

many cryptographic schemes are constructed on the MDLP.  

Definition 5 (MDLP): For a Matrices group M, let A, B  M(Fq), recall that in the 

MDLP, to find an integer k  Z, is such that Ak = B.    

 Since a Matrices group M is made into Abelian group by a matrix-by-matrix 

multiplicative operation, “The exponential of a Matrix element on M(Fq)” actually 

refers to the repeated multplications. Therefore, B=Ai  is the ith power of A M(Fq)  is 

the ith multiple of  A. The logarithm of  B  to the base  A  would be i (i.e. the inverse of 

exponentiation). The MDLP is of interest because its apparent intractability forms the 

basis for the security of Matrices group cryptographic schemes.     

 



4. Matrices Cryptosystems (MCS) 
 Unlike previous cryptosystems, matrices work with a finite Abelian group 

formed by the square matrices elements on an Matrices group defined over a finite 

field M(Fq). MCS include key distribution, encryption/decryption schemes, and 

Digital Signature Algorithm (DSA). The key distribution algorithm is used to share a 

secret key, the encryption/decryption algorithm enables confidential communication, 

and the DSA is used to authenticate the signer and validate the integrity of the 

message.  

This section proposes cryptosystems that employs Matrices group. It does not 

invent new cryptographic algorithm, but it is the first to implement existing public-

key cryptosystem using Matrices group. The proposal is an analogues to the Diffie-

Hellman key exchange protocol, analogues to ElGamal, Massey-Omura schemes, and 

DSA. The matrix-by-matrix multiplication operation in MCS is the counterpart of 

modular multiplication in RSA and ElGamal, and exponentiation of matrix in MCS is 

the counterpart of the modular exponentiation. To form cryptographic system using 

Matrices group, we need to find a “hard problem” corresponding to the difficulty of 

factoring the product of two prime or taking the discrete logarithm or elliptic curve 

discrete logarithm.  

Consider the equation B=Ak, where A and B are two matrices in the Matrices 

group and k is an integer. It is relatively easy to calculate B given A and k, but 

determining the integer k from a multiple of a matrix Ak, even with the knowledge of 

A, B and M(Fq) is a very difficult problem, known as the Matrices Discrete Logarithm 

Problem (MDLP). 

4.1 Exponentiation over Matrices 
 The fundamental operation in Matrices cryptographic schemes is that of 

matrix exponentiation of a square matrix element by an integer. If not the most 

confusing term, certainly the idea of multiplying matrix refers to computing B=Ak, 

where A and B are two square matrices in the Matrices group and k is an integer. This 

really means that we multiply A to itself k times. 

 

Definition 6 (Exponentiation of a square matrix on an Matrices group by an 

integer):   Given k  Z, and A is a square matrix element on a Matrices group M(Fq), 

then 

  Ak =  A * A………*A  (k  times)……………(1) 

And it is so called matrix exponentiation [16], and it is the dominant cost operation in 

matrices cryptographic scheme, and it dominates the execution time of matrices 

cryptographic schemes, especially the representation of MDLP.  
 

         The algorithm that can be used to compute the matrix exponentiation in the 

Matrices group is Repeated-Squaring and Multiplication or fast group operation 

Method.  

4.2 Repeated-Squaring and Multiplication Method  
 The most fundamental computation on Matrices group is the group operation   

Ak =  A * A………*A (k times,) where A= 
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 is a matrix element on a 

Matrices group over Fq M(Fq)  and k are very large positive integer, since the 

computation of  Ak  is so fundamental in all matrices related computations and 

applications, it is desirable that such computations are carried out as fast as possible. 



Remarkably enough, the idea of repeated squaring for fast exponentiation can be used 

almost directly for fast group operation on matrices.  

Let en-1 en-2 …… e1 e0  be the binary representation of  k. then for  i starting from  n-1  

down to  0 (en-1 almost  1  and used for initialization), check whether or not  ei =1. If ei 

=1, then perform a squaring and a multiplication group operation; otherwise, just 

perform a squaring operation. For example: compute A43, since 43=101011, we get 

the following table:  

 
Table 1: Compute A43 using repeated doubling and addition 

        

We have the following algorithm which implements this idea of repeated squaring and 

multiplication (fast group operation) for computing Ak, that is, it reduces the 

complexity of the computation of Ak from k to log k. 

Algorithm (Repeated-Squaring and Multiplication ) 

Input: a matrix A   M(Fq) and positive integer k. 

Output:  B= Ak. 

1. Write k in the binary expansion form k= en-1 en-2 …… e1 e0  where each ei  

either 0 or 1(Assume k has n bits) 

2. Set B = I. 

3. Compute Ak: 

3.1 For i from n-1 down to 0 do  

3.2 B = B2. 

3.3 if ei =1, then  B = B*A. 

4. Output  B: (now B = Ak).  

5 Design Of Matrices Public-Key Cryptosystems 
 The section introduces design of public-key cryptography that employs the 

Matrices group. More specifically, it’ll introduce matrices cryptosystems analogues to 

several well known public-key cryptosystems including key exchange, 

encryption/decryption, and DSA schemes. 

5.1 Matrices Public-key Cryptosystems 
          For any cryptographic system based on the DLP, there is an analogy to Matrices 

group. In what follows, it’ll introduce matrices cryptosystems analogues to four 

widely used public-key cryptosystems, namely Diffie-Hellman key exchange system, 

the Massey-Omura, the El-Gamal public-key cryptosystems and DSA. 

1. Analogy of the Diffie-Hellman Key Exchange System 
  This system is merely a method for exchanging keys; no messages are 

involved. Alice and Bob first publicly choose a finite field Fq and a Matrices group 

M(Fq) defined over it. Then they publicly choose a matrix B  M(Fq) to serve as their 

“Base matrix”. It is a generator of the key. To generate a key, Alice chooses random 

integer e between 1 and N, where N is the order number of the of Matrices group 

M(Fq), and keeps it secret. She then computes Be  M(Fq) and makes that public. Bob 

i eI Value Operations Status 

5 

4 

3 

2 

1 

0 

e5 

e4 

e3 

e2 

e1 

e0 

1 

0 

1 

0 

1 

1 

A 

A2= A2 

(A2)2*A= A5 

((A2)2*A)2= A10 

(((A2)2*A)2)2*A= A21 

((((A2)2*A)2)2*A)2*A= A21 

Initialization 

squaring 

Squaring and Multiplication 

squaring 

Squaring and Multiplication 

Squaring and Multiplication 



chooses his own secret random integer d between 1 and N, and makes public Bd 

M(Fq). The secret key is then Bed M(Fq). Both Alice and Bob can compute this key. 

For example, 

Alice knows Bd (public knowledge) and her own secret e. Charlie, on the other hand, 

only knows B, Be and Bd. Without solving the MDLP, (finding d knowing B and Bd), 

there is no way for him to compute  Bed only knowing  Be and Bd. The following 

algorithm illustrates this manner. 

Algorithm (Diffie-Hellman key exchange system with MDLP) 

1. Initialization 

 Alice and Bob publicly choose a finite field Fq and the Matrices group M 

over Fq (M(Fq)).  

 They publicly choose a random “Base matrix” B  M(Fq) such that B 

generates a large subgroup of M(Fq). 

2. Key generation 

 Alice chooses a secret random integer e. She then computes Be M(Fq). 

 Bob chooses a secret random integer d. He then computes Bd M(Fq). 

 Make Be and Bd public and keep e and d secret.  

3. Calculation of the secret key matrix Bed 

 Alice computes the secret key Bed = (Bd)e. 

 Bob computes the secret key Bed = (Be)d.   

 

There is no known fast way to compute Bed if only knows B, Be and Bd, this is 

MDLP. 
 

Example:- Let the square matrix element generator that is defined over F29 is 

G= 








912

711
the group of the generator G is cyclic because 11*9-12*7=15≠0 mod 29, 

and give 840 element group size where 29*29-1=840. 

Therefore the cyclic group M(F29) on G= 








912

711
of order 840 is  

Apply the Diffie-Hellman key exchange system with MDLP 

1. Initialization 

 Alice and Bob publicly choose a finite field F29 and the Matrices group M 

over F29 (M(F29)).  

 They publicly choose a random “Base matrix” B   M(F29) such that 

B= 








912

711
 generates a large subgroup of M(F29). 

2. Key generation 

 Alice chooses a secret random integer e=367. She then computes 

Be=B367=

367

912

711








= 









2717

2225
. 

 Bob chooses a secret random integer d=692. He then computes 

Bd=B692=

692

912

711








= 









224

146
. 

 Make Be and Bd public and keep e and d secret.  



3. Calculation of the secret key matrix Bed 

 Alice computes the secret key Bed = (Bd)e=

367

224

146








= 









271

33
. 

 Bob computes the secret key Bed = (Be)d=

692

2717

2225








= 









271

33
.   

2. Analogy of the Massey-Omura Cryptosystem 

 In this system the finite field Fq and the Matrices group M(Fq)   have been 

made publicly known. Alice and Bob both select a random integer e1 and e2 between 1 

and N, where N is the order number of the of Matrices group M(Fq), respectively with 

gcd(e1, N)=1 and gcd(e2, N)=1. They also compute their inverses d1 =e1
-1 mod N (ie. 

d1e1 = 1 mod N) and d2 =e2
-1 mod N (ie. d2e2 = 1 mod N ), then, keep everything 

secret. If Alice wants to send the message Pm (PlainText matrix) to Bob, she first 

sends him the message Pm
 e1. This means nothing to Bob, since he does not know d1. 

He ever, he can exponentiate it by his e2 and send the message Pm
 e1e2 back to Alice. 

Then Alice can help unravel the message by exponentiating this new message by d1 

which sends Pm
 e1e2d1 = Pm

 e2 back to Bob. Then Bob can exponentiate this message by 

d2 to get the original message (Pm
 e2d2= Pm). During this process Charlie sees Pm

 e1, Pm
 

e2, and Pm
 e1e2. 

Without solving the MDLP –finding e2 and then its inverse knowing Pm
e1 and Pm

 e1e2 - 

there is no way for him to find Pm. The following algorithm illustrates this manner. 

Algorithm (Massey-Omura Cryptosystem with MDLP) 

1. Initialization 

 Alice and Bob publicly choose a finite field Fq and the Matrices group M 

over Fq (M(Fq)).  

 They publicly known the order number of the of Matrices group M(Fq) 

denoted by N. 

2. Key generation 

 Alice chooses a secret random integer e1 between 1 and N, such that 

gcd(e1 , N) =1. She then computes its inverse d1=e1
-1 mod N. 

 Bob chooses a secret random integer e2 between 1 and N, such that 

gcd(e2 , N) =1. He then computes its inverse d2=e2
-1 mod N. 

 Keep e1, d1, e2, and d2   secret.  

3. Transmission procedure 

  Alice sends the message Pm to Bob as follows    

 Alice computes  Pm
 e1, and sends it to Bob. 

 Bob computes   Pm
 e1e2, and sends it to Alice.    

 Alice computes  Pm
 e1e2d1 = Pm

 e2, and sends it to Bob. 

 Bob computes  Pm
 e2d2= Pm). 

 

Example:- Let the square matrix element generator that is defined over F29 is 

G= 








912

711
the group of the generator G is cyclic because 11*9-12*7=15≠0 mod 29, 

and give 840 element group size where 29*29-1=840. 

Therefore the cyclic group M(F29) on G= 








912

711
of order 840 is  

Apply the Massey-Omura Cryptosystem with MDLP 



1.  Initialization  

 Alice and Bob publicly choose a finite field F29 and the Matrices group 

M over F29 (M(F29)).  

 They publicly known the order number of the of Matrices group |M(F29)| 

on B= 








912

711
,  denoted by N=840. 

2. Key generation 

 Alice chooses a secret random integer e1=547. She then computes its 

inverse d1=547-1 mod 840=43. 

 Bob chooses a secret random integer e2=97. He then computes its 

inverse d2=97-1 mod 840=433. 

 Keep e1, d1, e2, and d2   secret.  

3. Transmission procedure 

  Alice sends the message Pm = 








43

21
 to Bob as follows    

 Alice computes  Pm
 e1=

547

43

21








= 









177

2410
, and sends it t o Bob. 

 Bob computes   Pm
 e1e2= 

97

177

2410








= 









1416

127
 , and sends it to 

Alice.    

 Alice computes  Pm
 e1e2d1 =

43

1416

127








= 









511

1723
 = Pm

 e2, and 

sends it to Bob. 

 Bob computes  Pm
 e2d2=

433

511

1723








 = 









43

21
= Pm. 

 

3. Analogy of the ElGamal Cryptosystem 

In this system the finite field Fp, the Matrices group M(Fq), and the “Base matrix” 

B  M(Fq) are public information. Bob randomly chooses an secret integer d (1<d<N, 

where N is the order number of the Matrices group M(Fq) ) and publishes the matrix 

Bd. If Alice ants to send the message Pm (PlainText matrix) to Bob, she will choose a 

secret random integer e (1<e<N) and send (Pm * Bed, Be) to Bob. Bob will then 

exponentiate the second matrix in the pair by d to get Bed, the compute the inverse of 

the key matrix Bed to get (Bed)-1 and multiply by the first matrix in the pair Pm * Bed to 

find Pm. In the meantime, Charlie has only seen Be and Bd. Without solving the MDLP 

(eg. finding d knowing B and Be), there is no way for him to find Pm. The following 

algorithm illustrates this manner. 

Algorithm (ElGamal Cryptosystem with MDLP) 

1. Initialization  

 Alice and Bob publicly choose a finite field Fq and the Matrices group M 

over Fq (M(Fq)).  

 They publicly choose a random “Base matrix” B   M(Fq) such that B 

generates a large subgroup of M(Fq). 

 



2. Key generation 

 Bob chooses a secret random integer d in interval [2, N]. 

 He then computes   Q = Bd. 

 Make Q public and keep d secret.  

3. Encryption  

Alice sends the message Pm to Bob as follows 

 Select random integer e in interval [2, N]. 

 Compute  Be. 

 Compute   K= Q e, (i.e. K=Bde). 

 Compute ciphertext C= Pm * K. 

 Transmit the pair matrices (C, Be). 

4. Decryption  

Bob retrieves the message as follows 

 Compute   K= (Be) d, (i.e. K=Bed). 

 Compute K-1. 

 Multiply  K-1  by the ciphertext matrix C:  

Pm = C * K-1. 
 

Example:- Let the square matrix element generator that is defined over F29 is 

G= 








912

711
the group of the generator G is cyclic because 11*9-12*7=15≠0 mod 29, 

and give 840 element group size where 29*29-1=840. 

Therefore the cyclic group M(F29) on G= 








912

711
of order 840 is  

Apply  the ElGamal Cryptosystem with MDLP 

1. Initialization 

 Alice and Bob publicly choose a finite field F29 and the Matrices group 

M over F29 (M(F29)).  

 They publicly choose a random “Base matrix” B = 








912

711
. 

2. Key generation 

 Bob chooses a secret random integer d =218. 

 He then computes   Q = Bd= B218=

218

912

711








= 









1325

1722
 . 

 Make Q public and keep d secret.  

3. Encryption  

Alice sends the message Pm = 








43

21
  to Bob as follows 

 Select random integer e=793. 

 Compute  Be= B793 =

793

912

711








= 









028

2624
. 

 Compute   K= Q e =

793

1325

1722








= 









427

2323
. 



 Compute ciphertext C= Pm * K= 








43

21
* 









427

2323
= 









273

219
. 

 Transmit the pair matrices (C, Be)=( 








273

219
, 









028

2624
). 

4. Decryption  

Bob retrieves the message as follows 

 Compute   K= (Be) d =

218

028

2624








= 









427

2323
. 

 Compute K-1 mod 29=

1

427

2323










mod 29= 









58

2416
. 

 Multiply  K-1  by the ciphertext matrix C:  

Pm = C * K-1= 








273

219
* 









58

2416
= 









43

21
. 

5.2 Matrices Digital Signature Algorithm(MDSA) 
The MDSA is analog to the DSA in using the Matrices group.  DSS are the 

counterpart to handwritten signatures. A digital signature is the number that depends 

on the secret key and is only known by the signer and depends on the contents of the 

message being signed. Signatures must be verifiable without access to the signer’s 

private key. Signatures should be existentially unforgeable under chosen-message 

attacks. This asserts that an adversary who is able to obtain Alice’s signatures for any 

messages of his choice cannot forge Alice signature on a single other message. 

Suppose Alice wants to send a digitally signed message to Bob. They first 

choose a finite field Fq, and the Matrices group M(Fq), defined over that field and the 

“Base matrix” B with order n. Alice’s key pair is (d, Q), where d is her private integer 

key and Q= Bd is her public matrix key . To sign a message Pm (PlainText matrix) 

Alice does the following: 

1. Choose a random integer number k with k: 1 ≤ k ≤ n -1. 

2. Compute  Bk= 










11a
, and r=a1,1  mod  n. If r =0 then go to 1. 

3. Compute  k-1 mod n. 

4. Compute  e =H(Pm). 

5. Compute  s = k -1 (e + d r) mod n.  If s =0 then go to 1. 

6. Alice signature for the message Pm is (r, s). 
 

To verify Alice’s signature (r, s) on the message Pm, Bob obtains an authentic 

copy of Alice’s parameters and public key. Bob should validate the obtained 

parameters! Bob then does the following: 

Verify that r, s are integers in the interval [1, n -1]. 

1. Compute  e =H(Pm). 

2. Compute  w = s -1  mod  n. 

3. Compute  u1 = e w  mod  n,  and  u2 = r w  mod  n. 

4. Compute  










11a
 = B

u1 * Q
 u2. If 











11a
= I, then reject the signature. 

5. Otherwise,  Compute  v =a1,1  mod  n. 

6. Accept the signature if and only if v =r. 



 

If the signature (r, s) on the message Pm was indeed generated by Alice, the s = k -1 (e 

+ d r) mod  n. With this information we have 

k = s -1 (e + d r) mod  n = s -1 e + s -1 r d = w e + w d r  

   = u1 + u2 d   mod  n. 

Thus  

B
u1 * Q

 u2= B
u1 + u2 d = Bk.  

and so  

v = r  as required. 

The following algorithm describes the above mentioned steps.  

Algorithm (MDSA) 

1. Initialization 

 Alice and Bob publicly choose a finite field Fq and the Matrices group M 

over Fq (M(Fq)).  

 They publicly choose a random base point B  M(Fq) with order n, such 

that B generates a large subgroup of M(Fq). 

2. Key generation 

 Choose a secret random integer d in interval [2, N]. 

 He then computes Q = Bd. 

 Make Q public and keep d secret.  

3. Signature generation  

Alice sends the digitally signed message Pm to Bob as follows 

 Select random integer k in interval [2, N]. 

 Compute  










11a
=Bk. 

 Compute   r= a1,1 mod n. 

 Compute  e= H(Pm). 

 Compute s= k -1 (e + d r) mod n. 

 The signature for Pm is (r, s). 

4. Signature verification  

Bob verifies Alice’s signature (r, s) on message Pm as follows 

 Compute  e= H(Pm). 

 Compute w = s -1  mod  n. 

 Compute u1 = e w  mod  n. 

 Compute u2 = r w  mod  n. 

 Compute 










11a
 = B

 u1 * Q
 u2. If 











11a
= I, then reject the 

signature. 

 Otherwise, Compute  v = a1,1   mod  n 

 Accept the signature if and only if v =r. 
 

Example:- Let the square matrix element generator that is defined over F29 is 

G= 








912

711
the group of the generator G is cyclic because 11*9-12*7=15≠0 mod 29, 

and give 840 element group size where 29*29-1=840. 



Therefore the cyclic group M(F29) on G= 








912

711
of order 840 is  

Apply the MDSA 

1. Initialization 

 Alice and Bob publicly choose a finite field F29 and the Matrices group 

M over F29 (M(F29)).  

 They publicly choose a random base point B = 








912

711
 with order 

N=840. 

2. Key generation 

 Choose a secret random integer d =719. 

 He then computes  Q = Bd = 

719

912

711








= 









422

827
. 

 Make Q public and keep d secret.  

3. Signature generation  

Alice sends the digitally signed message Pm to Bob as follows 

 Select random integer k = 242. 

 Compute  Bk = 

242

912

711








= 









415

1621
. 

 Compute   r= a1,1 mod n=21 mod 840=21. 

 Compute  e= H(Pm): Let   e=20. 

 Compute s= k -1 (e + d r) mod n=481(20+719*21) mod 840=359. 

 The signature for Pm is (r, s)= (21, 359) 

4. Signature verification  

Bob verifies Alice’s signature (r, s) on message Pm as follows 

 Compute  e= H(Pm): Let   e=20. 

 Compute w = s -1  mod n=599. 

 Compute u1 = e w  mod  n=20*599 mod 29=220. 

 Compute u2 = r w  mod  n=21*599 mod 29=819. 

 Compute 










11a
=B

 u1 * Q
 u2 = 

220

912

711








 * 

819

422

827








  

= 








199

276
* 









721

525
= 









415

1621
,  

 Compute  v = a1,1   mod  n=21 mod 840=21 

 Accept the signature where, v =r=21. 

6. The Computational Complexity  
 The Computational Complexity of the DLP computing is compared to 

proposed problem MDLP of encryption and decryption function as follows: 

1. DLP: 

 Let the size of the input message unit be n.  

 The complexity of the computing b = ax mod p is: 

T(b) = T(ax) = O(log n) arithmetic (multiplication) operation, using Fast 

Exponential Algorithm (Yan, 2000.) 

Then, 



T(ax) = O(log3 n) bit operation. 

2. MDLP: 

 Let the size of the input message unit be n.  

 Let the size of the Base Square Matrix be m.  

 The complexity of the computing B = Ax mod p is: 

T(B) = T(Ax) = O(log n) group (matrix-by-matrix multiplication) operation, 

using Repeated-Squaring and Multiplication Algorithm. 

Then, 

T(Ax)  = O(m2 log n) arithmetic (multiplication)  operation. 

= O(m2 log3 n) bit operation. 

7. The Running Time Comparison 
 The proposed system is programmed by Delphi7 programming language on P4 

PC computer with CPU of 3.2 G.B and RAM of 512 M.B. Then the methods is 

applied on different size messages, which takes plaintext of K Bytes then encrypts it 

and computes the running time of its operation, then decrypts its and computes the 

running time of the decryption. Next, 10 K Bytes, 20 K Bytes, 30 K Bytes, 40 K 

Bytes, 50 K Bytes and M Byte and computes the running time of the encryption and 

decryption of each messages. 

Table 2 shows the running time of the El-Gamal method with DLP over F97 and 

the base number is 23, the public key is 58 and the secret key is 43. The order of the 

multiplicative group over Fq is q-1, then, the order of the multiplicative group over 

F97 is 96. The DLP over F97 is solved by 0 msec. 

The running time of the El-Gamal method with MDLP over F97 and the base 2×2 

matrix is 








3943

9317
, the public key 2×2 matrix is 









6673

967
 and the secret key is 

8394.    The order of the Matrices group of base matrix 2×2 over F97 is 9408, 9408 

equal 97*97-1, then, The order of the Matrices group of base matrix 2×2 over Fq is q2-

1. The MDLP over F97 with base matrix 2×2 is solved by 16 msec. 

The running time of the El-Gamal method with MDLP over F97 and the base 3×3 

matrix is 
















918379

615343

392911

, the public key 3×3 matrix is 
















18965

712656

522693

 and the secret 

key is 100000. The order of the Matrices group of base matrix 3×3 over F97 is 

912672, 912672 equal 97*97*97-1, then, The order of the Matrices group of base 

matrix 3×3 over Fq is q3-1.The MDLP over F97 with base matrix 3×3 is solved by 188 

msec. 

The running time of the El-Gamal method with MDLP over F97 and the base 4×4 

matrix is 





















57735717

2373191

83796153

43392911

, the public key 4×4 matrix is 





















040562

73478523

5447022

9388872

 and 

the secret key is 1000000. The order of the Matrices group of base matrix 4×4 over 

F97 is 88529279, 88529279 equal 97*97*97*97-1, then, The order of the Matrices 

group of base matrix 4×4 over Fq is q4-1.The MDLP over F97 with base matrix 4×4 is 

solved by 35375 msec. 



Therefore, we conclude the order of the Matrices group of base matrix n×n over Fq is 

qn-1. 

The following table explain the running time of the both encryption and decryption of 

each method: 
 

Table2: Total Running Time of encryption/decryption methods in msec 

Message Size 
El-Gamal 

with DLP 

El-Gamal 

with MDLP 

2×2 

El-Gamal 

with MDLP 

3×3 

El-Gamal 

with MDLP 

4×4 

K Bytes  32 32 32 32 

10 K Bytes  219 234 250 250 

20 K Bytes 437 468 515 515 

30 K Bytes 656 703 781 781 

40 K Bytes 875 938 1046 1046 

50 K Bytes 1094 1172 1296 1296 

M Byte 2187 2343 2594 2594 

 

Table 3: shows the Running Time of solving and analysis of DLP and MDLP 

over F97 with 2×2, 3×3 and 4×4 base matrices.  

 

 Table 3:  Running Time of solving DLP and MDLP over F97 

Problem Type DLP MDLP 2×2 MDLP 3×3 MDLP 4×4 

Running Time in msec 0 16 188 35375 

 

There is a clear growth of the time execution when use the Matrices group 

and increase as long as the matrix size is increased. This increasing with small 

numbers, what is happen when a large number is applied, such as 100 digit 

number, 200 digit number or more, the complexity is increased rapidly, show 

Figure 1.  
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Figure 1 The complexity of DLP and MDLPs 



8. Security Of Matrices Cryptography(Mc)  
The complication associated with MC comes from the wide variety of possible 

group structures of the matrix element in the Matrices group and from the fact that 

matrix multiplication is somewhat complicated. 

The security of MC depends on how difficult it is to determine the integer d, 

given the square matrix B and the square matrix Ad where B= Ad mod q. This is 

referred to as the MDLP. Also that it appears to offer equal security for a far smallest 

bit size. 

The group structure of the Matrices group has a complex operation such that, 

multiplying a matrix-by-matrix, therefore, the group structure of the matrices 

increases complexity as long as the matrix size is increased. This gives more 

complicated operation than group structure of the ECC. 

  Also it appears to offer equal security for the smallest bit size, for two reasons. 

The first reason is that the operations are applied -instead of multiplication of two 

integer numbers- as matrix-by-matrix multiplications, in the other hand, the 

complexity and intractability are increased as much as the size of base matrix is 

increased. The second reason is that the size (order) of the Matrices group M(Fq) of 

matrix of order n appears at most qn -1 or its factors that means the calculation is 

applied with q-bit size, while to solve the MDLP needs qn -1 matrix multiplications. 

9. Conclusion  
 The project defined the Matrices group that proved as an Abelian group to use it 

in the proposed cryptosystems. Then, discover that the Matrices group has a one way 

function similar to DLP and ECDLP, which MDLP. The construction of cipher 

system is based on the difficulty of solution of the MDLP that is a clear change in the 

cryptography, and opens new windows for treatment with special group and new 

operations. There is a computational advantage in using the matrices cryptography 

with the shortest key length that reduces the overall calculations with secure system. 

The structures of the square matrices consist of many numbers that provide the ability 

to encipher large blocks of plaintext. Each matrix consists of four, nine, sixteen, and 

so on, that makes the cryptogram may encipher efficiently with the shortest key size. 

The MDLP appears more complex than ECDLP, because the matrices operations 

increase the complexity as long as the matrix size is increased.  

The MDLP over Fq is more intractable than the DLP in Fq and ECDLP in 

E(Fq). It is this feature that makes cryptographic system based on the MDLP even 

more secure than that based on the DLP and ECDLP, because the M(Fq) gives a large 

group over small field size. Since the group M(Fq) with n×n base matrix may give 

group of order qn-1, therefore, some of the strongest algorithms for solving DLP or 

ECDLP cannot be adaptive to the MDLP. 
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