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1.Introduction 
Suppose that A   represent the family of functions 

f (z) which has the following formula 
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By using binomial expansion for the equation (2) 
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where   DzMm  ,0,0,   

We introduce the subfamily involving family of 

Bazilevic functions by using the above operator. 

I. Definition 

Suppose that ),,,( 

mH   is considered as the 

subfamily of A containing of functions f (z) which 

has been holds true to the following condition 
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where  

 , 0 , 0  (   is real), Zm , 10   .  

We now obtain some properties of operators by 

using the above definition 

II. Remark 
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Where 

 0 , Mm . This operator have been given 

by Olatunji and Ajai [1]. 

(ii) for 1  in (3), we obtain 
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where 0 , Mm . Oladipo and Olatunji have 

been studied the above operator [2].  
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Where 
mD  is derivative operator of Al-Oboudi, 
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),( mH  is called new subfamily of Bazilevic 

function, such that ),( mHf   
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It is describe as the family of functions considered by 

references [3] and [4], and the derivative operator 
mD  
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Yamaguchi in [5] has been studied the above 

family of function )0(Hf   

We need auxiliary lemma to prove our main results 

for the functions ),,,( 
mHf 

 
in terms of 

an analytic function in the unit disk D . 

III. [6] Lemma 
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2. Coefficient inequality for the family 
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In this section, we give some results that will be 

used in proving our main result. 
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This proves Lemma 2.1. 

Setting 0,1   ,  in the above Lemma, the 

following results can be obtained 
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Setting 0,0    in Theorem 3.1, the 

following results can be observed: 

II.Corollary 

If an analytic function f (z) satisfies with the 
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satisfying with the family of functions considered 

by references [3] and [4] 

Setting 0,0,1    in the previous 

theorem, we obtain  
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which satisfying the family of functions was 

considered by reference [7]. 

Putting 1  in Corollary 3.3, we obtain. 

VI.Corollary 

If an investigative function )(zf  satisfies the 

inequality 
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On putting 1  in Corollary 3.4, we get 

IV.Corollary 

If an analytic function )(zf  was satisfied with 

the inequality 
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Now we will conclude derive The following 

Lemma to be used in next result. 

V. Lemma 

Let )(zf
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Proof: It is easily to seen that the proof required as 

the similar method in the proofing of Lemma 2.1.  

VII.Theorem 
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Proof: The proof follows immediately from the 

similar way in the proof of Theorem 3.1, we get  
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The coefficient nL  is as given in Lemma 3.6. It is 

easy seen that the result follows directly  
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,This  proves Theorem 3.7.  

VIII. Remark 

Setting θ = 0 in Theorem 3.7 we get Theorem 3.1  

The following result is due to 1 , 0  in 

Theorem 2.13 : 

VIIII. Corollary 
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