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ABSTRACT 

      Using mathematical modeling of wireless devices and systems, where it was to provide 

detailed explanations about calculating parameters shaping filters features and characteristics of 

the operations on the exits, and the study has to solve many computational problems 

conventional related to the following topics: 

1. Calculate the properties of random processes on the output linear filters when exposed to the 

input of the white Gaussian noise. 2. Calculate the parameters of the filters shaping used to 

simulate the random processes with giving her the spectral-correlation properties. 3. Calculation 

parameters of optimal detectors of radio pulses. 4. Optimal estimation of the unknown 

parameters of the distribution. 

Keywords: Random Process, Linear Filters, White Gaussian Noise, Filters Shaping, Optimal 

Detectors. 

 
 

 ةخطيالالمرشحات  حساب معلمات تشكيل المرشحات وخصائص العمليات العشوائية على خرج

ستخدام النمذجة الرياضية أب  
 

 الخلاصة

اجزيت الدراسة بأستخدام النمذجة الزياضيةة لججزيشو لااظمةمية الجسي حةة تةيت ديم دفيديم دمفيةزاح لم ي ة تي      

لةشاح تفاب لع ماح دشحةل المجدز لاخ ائص العم ةاح ع ى لخارجزا، لادميت الدراسية ليج اجيل تيل العدييد ليج 

 الحفابةة التف ةدية المزدبطة بالم اضةع التالةة لاهي : المشاكل 

 جيالاصالمزشيحاح الخطةية عنيدلا دتعيزخ ل خيا  ض ضيا   ع ى لخارجالعم ةاح العش ائةة خ ائص . تفاب 1

المفييتخدلة لمحاكيياو العم ةيياح العشيي ائةة لييع صعطييا  خ ييائص  مزشييحاحلاتفيياب لع ميياح دشييحةل ال. 2 .ا البةضيي

. التفييديز اظلثييل لت سيييع 4 .يييةنبضيياح الزا ي ل  المثالةيية اجزييشو الحشيي لع ميياح . تفيياب 3 .لزييا الطةمييي طاظردبييا

 المع ماح غةز المعزلافة.
 

INTRODUCTION 

or the design of wireless systems where the signal is distorted due to physical 

phenomena, it is necessary to characterize the transmitter, channel and receiver using 

mathematical models. An understanding of random processes is crucial to many 

engineering fields-including communication theory, digital signal processing in electrical, 

computer engineering, vibrational theory and stress analysis in mechanical engineering. The 

filtering, estimation and detection of random processes in noisy environments are critical tasks 

necessary in the analysis and design of new communications systems and useful signal 

processing algorithms. Random processes: filtering, estimation and detection clearly explains 

the basics of probability and random processes and details modern detection and estimation 

theory to accomplish these tasks.  
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   The paper covers four main interrelated topics: Probability and characterizations of random 

processes, linear filters with random excitations, optimal estimation theory and detection theory 

to calculate parameters of optimal detectors of radio pulses. 

The random processes of almost exclusive interest in modeling receiver noise are the Gaussian 

processes. Gaussian processes are random processes for which the random variables 

N(t1),N(t2),..,N(tk) are jointly Gaussian for all t1,..,tk and all k > 0. 

Filtering in general linear models is perhaps the most widely applied branch of filtering, but in 

the context of linearity the term „filtering‟ refers to something that is fundamentally different 

from the probabilistic models and equations that comprise what mathematicians refer to as 

filtering theory. 

 
 

The Model of Discrete White Gaussian Noise 

    As is known, white noise model is a mathematical abstraction in the form of process, 

spectrum is uniform for all frequencies and is equal to some constant       2/0N , and the 

correlation function is a delta function with a weight which is determined by the specified 

constant. Thus, white noise has infinite variance (power). Any real process has the ultimate 

power, and, consequently, its power spectral density can only be integral decreasing function of 

frequency. However, the model of the white noise is used, if the width of the noise spectrum is 

much larger than the width bandwidth some frequency-selective device. We now consider the 

model of a discrete white Gaussian noise. Discrete white noise, unlike the white noise has finite 

capacity. Its correlation function is the identity function with a weight equal to the dispersion 

process. Any two of the reference process are not correlated. This process can be modeled using 

computer equipment. However, in reality almost always counts a random process, obtained by 

sampling a continuous process have finite cross-correlation coefficient, and by using only the 

frequency characteristic of filters and selecting a special kind sampling in accordance with 

parameters of adjacent filter samples process may not be correlated [1,2,3]. We will demonstrate 

this using the example of a discrete process samples in a digital receiver. General functional 

diagram of a receiver is shown in Fig. (1). 

 

 
Figure (1): General functional diagram of a receiver 

 
 

    In Fig.(1) denotes: LNA - a low-noise amplifier, the BPF - a band pass filter,  LPF - low pass 

filter, ADC - analog to digital converter, O - Oscillator, DSP - Digital Signal Processing unit.  

   Suppose that the intrinsic noise of the antenna and the amplifier is much greater than the width 

bandwidth a band pass filter, amplitude-frequency characteristics of the band pass filter and low 

pass filter perfectly rectangular. Fig. (2) Shows the power spectral density processes in points 1, 

2, 3 and 4, as well as the correlation function of the process in point 4 is shown in Fig. (1). 
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Figure (2): The power spectral density processes 

 
 

    From a consideration of the graphs to the following conclusions, first of all, noise after 

filtering has a bandwidth defined by the characteristics of the filter, and so the power of the 

noise is limited. This explains the fundamental difference between the discrete white noise from 

the white noise ـيـ a discrete white noise has a finite variance, as can be obtained by sampling the 

noise with a finite bandwidth. Consider now the correlation properties of the analog to digital 

converter process. From Fig. (2, c, d) can be seen that if the sampling frequency is greater than 

twice the one-sided strip process, its discrete samples will be correlated [4,5,6]. In order to 

process the neighboring samples were uncorrelated, the sampling frequency must be chosen 

from the condition ffs  2 . Only in this case the resulting realization of discrete random 

process will be uncorrelated, as samples of the correlation function of the discrete process will 

fall into the low-frequency zero correlation function of the process, having the form xx /sin .  

    Ideal filters considered in this example, are unrealizable. Therefore, if the amplitude 

frequency characteristic of the filters used in the circuit of Fig. (1) has some arbitrary shape 

(e.g., Gaussian), then the process discrete samples are correlated. However, in practice, can be 

applied certain special filters whose impulse characteristic autocorrelation function (IC) has 

equally spaced zeroes as a function xx /sin . A common example of such filters are filters with 

amplitude - frequency characteristic such as a raised cosine [7,8], which is described by the 

following expression: 
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Where 

 α - parameter that determines the degree of smoothing of the frequency characteristic, T - the 

width of the main lobe IC for the first zeros. If α = 0, the amplitude-frequency characteristic of 

the filter is reduced to a rectangular filter characteristic unrealizable. If α = 1, then the 

amplitude-frequency characteristic represents one period of a raised cosine. For intermediate 

values parameter (α) characteristic of the filter has a flat top, and falling slope to the cosine law.                   

IC filter characteristic of the filter with a cosine smoothing has the form 
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When 

0 , this function reduces to a function xx /sin , and for large values of the parameter (α) has a 

smaller side-lobe level. To using a filter with a cosine smoothing process samples were not 
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mutually correlated, it is necessary to choose the sampling interval equal to TTs  . Cosine 

smoothing filters are widely used in digital communication, as provide a minimum level of 

intersymbol interference. Package MATLAB has built-in means for generating realizations 

discrete white Gaussian noise. Firstly, among the standard functions, included in the 

programming language MATLAB, there is a function randn (M, N). This function returns when 

it is called a two-dimensional array of independent random number size (MxN), distributed 

according to a normal distribution with parameters (0,1).  in the case of absence of one or both 

of the arguments to the function when it is called, it returns a vector of independent random 

numbers or scalar random number. In the library of SIMULINK in the sources section, there are 

two blocks for the formation of the implementation white Gaussian noise: (Random Number) 

and (Band Limited White Noise). Consider the features of the use of and another block. In the 

parameter list (Random Number block) contains the following items:                    the noise 

variance - Variance, mathematical expectation (ME) - Mean,                     initial conditions - 

Initial Seed and sampling interval - Sample time. This noise generator generates a discrete 

implementation (SD), (PSD) which is uniform in the frequency band  2/,2/ ss ff where 
sf  - 

sampling frequency - The quantity, asked inverse sampling interval (Sample time). The level of 

(PSD) 2/0N in this band is given by:  

  
sf

N 2

0

2


                                                                                                 … (3) 

Where 

 σ2 - noise variance (Variance). 

Equation (3) is illustrated in (Figure. 3). 

In Fig. (3) shows the shaded area under the curve (PSD) is equal to the noise variance is 

apparent from the expression (4).  

 

 

Figure (3): The shaded area is equal to the noise variance 

 

    List of block parameters (Band Limited White Noise) is a fundamental difference. In it there 

instead of the variance parameter called noise power. Although the translation of this phrase 

means "noise power" (i.e., in other words, the variance), but the true meaning of this parameter 

is the level of the noise (PSD), i.e. 2/0N . Thus, setting the level of (PSD) N0 / 2 in the band [-fS 

/ 2, fS / 2], the noise variance can be determined by the formula 

 

sf
N

2

02                                                                                                        …(4) 

Using one of the considered noise generators simulating Gaussian (SD) usability determined set 

of parameters or that block [9,10]. 
 

Simulation of Gaussian Random Processes 

   Assignment: build up the correlation function (SD) at the output of the filter with a given 

pulse IC. Find dispersion and (ME) process to output filter in the steady state at predetermined 

(ME) and dispersion inlet. To plot depending on (ME) and dispersion process at the filter 

output, if the zero initial conditions at time (t0) at the inlet becomes effective implementation 

(WGN) with the specified parameters. Find a normalized cross-correlation coefficient values at 
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the output of the filter process, taken after a specified time interval. As an example, consider the 

spectral-correlation properties of the process at the output of the filter with a rectangular IC. As 

noted in [11], the correlation functions of the process at the output of the filter up to a constant 

factor determined by the autocorrelation function IC of the filter. The autocorrelation function 

IC rectangular shape has a triangular shape. View IC considered filter and its autocorrelation 

function is shown in Fig. (4). 

 

 
Figure (4): Impulse characteristic and its autocorrelation function 

 

   As is well known [7,12], the dispersion process at the output of the linear filter upon  exposure 

at the input white noise with power spectral density 2/0N  in steady-state regime is determined 

by the expression 

 

hE
N

2

02

2                                                                                                           …(5) 

Where 

 Eh - their energy IC. Thus, the process of the correlation function at the output of the filter is 

identical in form with the autocorrelation function IC of their filter and has a maximum, 

determined by the value (5).Fig. (5) shows graphs of mathematical expectation (ME) and the 

dispersion process at the filter output from the time, built on the assumption that at time zero to 

input filter with zero initial conditions applied to the realization of white noise (ME) m1 and 

(PSD) 2/0N . In the graphs according to mathematical expectation (ME) and the dispersion 

process at the output of the filter has the transition process, whose duration is determined by the 

duration of the impulse characteristic of the filter. Graph depending on mathematical 

expectation from time is a transient response of the filter with a weight equal to the 

expectation input process. It is therefore obvious that if the process in expectation of 

zero input, then the output process will have zero expectation. [13]. 

 
Figure (5): Mathematical expectation & the dispersion process  

 
 

    We define the law change the dispersion process at the filter output depending on the time. 

For this condition represent the filter with impulse characteristic )(th in form of parallel 

connection K  filters with impulse characteristic )(th , representing partial portions of the 

original impulse characteristic, detainees at the time ti , where i  - the number of the partial 

impulse response, t - its duration. To the parallel connection of partial filters match the 

original filter, the output process of the partial filters are added. Functional diagram of a system 
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equivalent to the original filter, is shown in Fig. (6.a).  Fig. (6.b) shows partial impulse 

characteristic of the equivalent circuit of parallel channels. In this case, the time interval  t,0  

there will be a transition process at the output of the first partial filter and at the outputs of the 

other will zero values. After the end of the transition process to the variance adder output is 

equal to 

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1hE  - Energy impulse characteristic )(1 th . 

At the same time begin the transition process at the output of the second partial filter after which 

the dispersion at the outlet of the second filter is equal to 
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Impulse characteristic of the partial filters are mutually orthogonal functions, since the relative 

the product of any two partial impulse characteristic equal to zero. This means that processes at 

the outputs of the partial filters at the same time shall have the meanings that are responsive to 

these filters staggered in time and therefore independent white noise input samples. 

Given also the fact responses to the cross-sectional values process do not overlap the input 

values of the process output taken at the same time, are not correlated, but in the case of 

Gaussian independent process. 

Consequently, the dispersion process at the output of the adder will equal the amount of 

dispersion processes with partial output filters. Then in time moment tk  dispersion process at 

the output of the adder (and at output initial filter) is equal to 
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. It is obvious that these arguments are valid only for 

the case when at the input filter acts white noise. Under the influence of correlated noise law 

changes the variance of the output process will be more difficult. 

 

Figure (6): (a) Functional diagram of a system equivalent to the original filter. (b) Partial 

impulse characteristic of the equivalent circuit of parallel channels. 

 

    From the last relation can be seen if the impulse response of the filter is rectangular shape, 

and all the partial energy of the impulse response is the same, the variance of the process output 

will increase linearly throughout the duration of the impulse response h (t). In the limit, when Δt 

→ 0, the expression for the dispersion law changes process at the filter output will take the form 
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     Thus, in the case of a filter with a rectangular impulse response in the interval time from zero 

to the duration of the impulse response of the expectation and variance varies linearly. In this 

range the output process is non-stationary. Therefore, in the simulation of a process with given 

spectral-correlation properties that the initial portion of the implementation output process 

typically exclude from consideration. 
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We find also a normalized cross-correlation coefficient between sections output process taken at 

a time interval
0t . Suppose for certainty ht 35.00  . Normalized correlation function of the 

process at the output of the filter is obtained by normalizing the correlation function dispersion 

and a zero time offset is equal to unity. Cross-correlation coefficient of the cross sections of the 

stationary process nt  and kt , taken at a time interval 
0t , equal to the value of the normalized 

correlation function of the process when the argument, equal to this shift: )( 0trrnk  . In our 

example, with the triangular shape of the correlation function of the output of the process 

75.035.01)35.0()( 0  hrtr  . Consider the process at the output of the discrete 

shaping filter c rectangular impulse response, which is valid at the entrance of the discrete white 

Gaussian noise. View of the impulse response of the filter and the correlation function of the 

output of the process is shown in Fig. (7). The maximum value of the correlation function of the 

random process at the output of the digital filter is equal to 



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22

1

2

2max2

N

i

ihR  . In Fig. (8) shows 

plots of the expectation and variance of the output random process from sample number. 

 

Figure (7): The impulse response of the filter and the correlation function 

 

                                                                         
Figure (8): The expectation & variance of the output random process  

 

     For an explanation of the graphs in Fig. (8) consider block diagram of the FIR digital filter in 

Fig. (9). The weighted coefficients of the filter samples of a random process, taken from the line 

delay elements, are added in the adder. Because of the expectation of the product of a random 

variable on constant equal to the product of the expectation of the original random variable on 

the constant, then the expectation of reference process output the n-th multiplier corresponding 

to the impulse response coefficient equal ][1 nhm . Further, given that the expectation sum of 

random variables is equal to the sum of the expectation of these values, we obtain the 

expectation process at the output of the FIR filter in the steady state: 





1

0

12 ][
N

n

nhmm . Note that the 

sum of the filter coefficients determines transfer coefficient at zero frequency, i.e. coefficient 

transfer constant component. In the transition mode, the duration of which is determined by the 

duration of the impulse response, we have a partial sum of (k) weighted samples, so the 

expectation in the   k-th time moment is equal 



k

n

nhmkm
0

12 ][)( . Since in our example all the filter 

coefficients are equal, transition process changes in the expectation has linear character [14,15]. 

For building graphics depending on the variance of the output process of the number of 

reference, consider the following two properties of the dispersion. Firstly, the variance of the 

product of a random variable by a constant equal to the product dispersion of the initial value by 
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the square of this constant. Second, the variance of the sum of independent random variables 

equal to the sum of the variances (in the case of correlated random variables is unfair and it is 

necessary to take into account cross-correlation coefficient). With that said, we obtain the 

variance of the output process in the steady state 





1

0

22
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2

2 ][
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nh .              In transition mode 

does not have the full amount from k  terms: 
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22
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2 ][)(  . Therefore, in this example, law 

changes the variance of the output of the process is also linear.  

 
Figure (9): Block diagram of the FIR digital filter  

 
 

Assignment: Calculating the digital FIR filter for the formation of realization of a Gaussian 

process with a given a correlation function or given power spectral density. Provide power 

rationing process at the output filter to Power process inlet. As an example, consider the design 

of the shaping filter for modeling a random process with power spectral density of the form: 

 

)exp()( 2 aW                                                                                                   …(7) 

Where a  - parameter. 

    As noted in [11,12], the correlation function of the process at the output of the filter up to a 

constant factor equal to the autocorrelation function filter impulse response. Therefore, to solve 

this problem we must design the filter impulse response which represents a signal power 

spectrum is described by expression (7). As is known, the module Fourier transform of a 

Gaussian pulse is described by a Gaussian curve.    In addition, the autocorrelation function and 

Gaussian pulse representing a Gaussian curve. In this example, we should mention another 

important property of the Fourier transform, which is the Fourier transform of an even function, 

is purely real function. Since the function (7) is even, then to calculate the actual impulse 

response filter need only calculate its actual amplitude spectrum as the square root function (7) 

and take the inverse Fourier transform. Using the table of Fourier transforms, we obtain that the 

autocorrelation impulse response function will have the form 

 

)exp()( 2


 b
a

R                                                                                                  …(8) 

Where ab /25.0 , and itself as the impulse response is the inverse Fourier transform, equal to 

the square root of (7), and is given by 

 

)2exp(
2

)( 2bt
a

th 


                                                                                                      …(9) 

     Function (9) will be considered as the impulse response of the analog prototype filter. The 

parameter b in the expression (8) and (9) determines the width of the correlation function of the 

process being modeled and, therefore, the spectral width of the process. It can be shown that the 

value of (1 - b) approximately defines the correlation coefficient of two adjacent sampling 

processes. To obtain digital samples of the impulse response of the shaping filter can use 

different methods.           In [7,12] described a method for calculating the filter coefficients 
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expansion method the spectral power density in a Fourier series. Practically, this method 

reduces the frequency window to a method which in the practical implementation is desired 

sampling samples amplitude characteristics and calculation of the inverse discrete Fourier 

transform (or, in the special case of an even function, discrete cosine transform). It is possible 

the subsequent weighting impulse response weighted window to decrease the emission 

frequency characteristic obtained digital filter caused by the influence of the so-called Gibbs 

effect [12]. Another common way of designing is method window in the time domain. This 

method is even easier and more convenient for designing FIR filters in case, if known analytical 

expression for the impulse response of the analog prototype filter. The method consists in 

weighting the impulse response of the prototype filter weighting window of limited duration and 

sampling a subsequent within this window. In this example, using the above approach, we 

obtain samples of the impulse response of the digital FIR shaping filter in the form (10)  

 

             
)exp())(2exp()( 22 n

a
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a
nh 




                                    …(10)  

Where 22 tba  . The value of the sampling interval Δt is chosen according to the bandwidth 

of the simulated process. The number of filter coefficients is chosen based on the requirements 

of accuracy of approximation required frequency response. Obviously, the window duration 

must be chosen so that the edge of the window of the impulse response values was negligible. 

After receiving the vector of coefficients of the digital filter is necessary to calculate its 

frequency response, as well as the square modulus of the frequency response and assess the 

accuracy of the approximation of a given PSD output process resulting function. Amplitude 

factor 
2

a  in (7) does not principal values. However, the task we have to fulfill the condition of 

rationing power output process to the power of the input process. This means that the power 

(variance) of the process at the filter output should be equal to the power input process. As 

shown above, the dispersion process at the filter output is equal to 
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    It should be noted that the above example is an important from the point of view of the theory 

of struggle with passive interference in radar, where the correlation function of the form (3) 

describes the properties of a Gaussian passive interference at discrete values of time shift 

 nT , where T - the pulse repetition period. In this case the   value 2

2/)( TR  is a 

coefficient through a period of correlation passive interference in a pulsed radar system.. 
 

Assignment: calculate the recursive digital filter for simulated random process with exponential 

correlation function and a given value of the correlation coefficient between adjacent samples of 

the output process. This example shows model another important special case passive 

interference in radar, namely exponential interference. To calculate the coefficients of the 

recursive shaping filter for a given correlation function of the process at the output, you can use 

the method of factorization filter system function [7]. The system function )(zk  recursive 

linear filter with constant parameters can be represented as  



















1

1

1

0

1
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M

K

k

k

N

k

k

k

Zb

Za

zB

zA
zK

                                           ….(12) 

Where 
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 N - the number of taps of the filter is not recursive, M - the number of taps (order) recursive 

part. Procedure for the application of this method is as follows. 

1. Located z  - transform )(zF of the correlation function R(k) of the simulated process: 







k

kZkRzF )()(                                                               (13) 

The resulting function of the complex variable z  at points located at the unit circle, belonging 

to the complex plane, it makes sense to the power spectral density of the simulated process. As 

mentioned above, in order to find the impulse response filter must obtain the function equal to 

the square root from spectrum density power. However, the function )(zF  is a function of the 

complex variable z , which implies the following paragraph. 

2. Implemented factorization function )(zF : 

 

2

1

1

)(
)()(

)()(
)( zK

zBzB

zAzA
zF 





                                                 (14) 

Considering the expression (13), we recall that a complex variable z  by the unit circle is 

expressed as )exp( jZ  . Thus, the function )(zA and )( 1zA , the function )(zB  and )( 1zB are 

a pair of complex conjugate functions, wherein the ratio of )(/)( zBzA determines the function 

of the filter system. 3. The system function K (z) is converted to the form (12) to find the 

coefficients of the recursive filter. In this example, the discrete exponential correlation function 

of the simulated process is given by 

 

   kkR  exp                                                                           (15) 

Where   - parameter that determines the rate of decay of the correlation function. In 

accordance with the described method of calculation, find two-sided                      z - 

transform of the correlation function (15). For this we use following known relation: 

 0)()()( 1 RzFzFzF  
                                                          (16) 

Where 




 
0

][)(
k

kZkRzF     - One - sided z-transform. 

According to The table z-transform we find: 

 

)exp(
)exp()(

0 











z

z
ZkzF

k

k                                                          (17) 

If we substitute this expression in (16), after the transformation can be obtained: 

  2

1

2
2

)(
)1)(1(

1
)( zK

zz
zF 






 

                                                                (18) 

Where )exp(   . Comparing the expressions (14) and (18) it is easy to see that the 

numerator and denominator of the complex system function of the designed filter is defined 

as  12 1)(,1)(  zzBzA . Comparing the expressions obtained for the numerator 

and denominator of the system function with the general view of (11), write down the 

expressions for the coefficients of direct and recursive part of the filter:   1

2

0 ,1 ba . 

As a result of solving the problem, we come to the model recursive filter of first - order, whose 

work is described by the difference equation of the form: 

      )exp(,11 2   nnn                                 (19) 

Where ξ [n] - implementation of the input process, ζ [n] - implementation of the output process. 

Block diagram of the designed filter is shown in Fig . (10). 
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Figure (10): Block diagram of the designed filter 

 

 
Figure (11): Circuit of a white Gaussian noise generator and frequency characteristics 

appropriate filters. 

 

As follows from (19), feedback coefficient )exp(1  b is equal to the correlation 

coefficient of two adjacent sampling processes ][n at the output of the filter. In accordance 

with the assignment, simulation process with a given correlation coefficient between adjacent 

samples of the output process is reduced to the corresponding assignment of the feedback 

coefficient the circuit in Fig. (10). 
 

Assignment: Fig. (11) shows a circuit consisting of a white Gaussian noise generator, and 

Dual-channel filtering schemes, and also frequency characteristics appropriate filters. 
 

Assignment: In Fig. (12) shows the functional circuit consisting from generator discrete white 

Gaussian noise, digital low pass filter with impulse response shown in same figure, delay lines 

at intervals time equal to the duration of the impulse response filter and half of this duration, 

adder, mutually - correlation device, device evaluation standard deviations, and also devices 

multiplication and division.       The sampling frequency in the system is equal to Hzfs 100 , 

level power spectral density of a discrete white Gaussian noise is equal to HzJN /102/ 2

0

 .  

The number of samples of the impulse response of the filter 16N . It is necessary to find 

dispersion process in points 1, 2 and 3 of scheme, and the true value of a parameter estimation, 

which is calculated in point 4 of scheme. 

 
Figure (12): Circuit of generator discrete white Gaussian noise, digital low pass filter with 

impulse response 
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The Optimal Detector Simple Radio Pulses 

Model optimal detector simple radio pulse will be considered, based on the mathematical 

apparatus of the complex envelope. Block diagram of the model optimal detector radio pulse 

signal is shown in Fig. (13). In the model detector consists of a matched filter (MF), the 

amplitude detector (AD), a threshold device (TD) and a unit for calculating the adaptive 

threshold detection. At the input of the detector receives the value of real and imaginary parts of 

the complex envelope of the radio pulse. The output signal of the detector is a binary signal λ = 

{0,1}. In this case, the zero level corresponds to the solution of the absence of the signal at the 

input, the unit - decision on availability signal [16,17,18].   

 

Figure (13): Block diagram of the model optimal detector radio pulse signal 

 

The main parameters consideration of the detector, subject to evaluation includes the following 

values: 

1. The signal-to-noise ratio at the output of a matched filter (MF). 

2. The value of the detection threshold
0U , supplied to the lower input a threshold device (TD). 

3. The probability of correct detection signal (D). 

To calculate these parameters you must set the following set of input data: 

1. The signal parameters - the shape, duration, a priori data about amplitude and initial phase. 

Based on the parameters used in the Signal System, in accordance with the Nyquist theorem is 

given by the sampling frequency
sf . 

2. The parameters of the noise at the input of a matched filter. In general, any random process is 

completely characterized by multidimensional density distribution probabilities. In the case of 

stationary discrete white Gaussian noise is enough to know only two parameters of its one-

dimensional normal distribution law - the mathematical expectation (ME) and a dispersion, 

usually believed the mathematical expectation zero. 

3. The required level of probability of false alarm. 

After a matched filter and amplitude detector included threshold device, whose task is to 

decision - making of a signal in the input process according to the Neyman-Pearson. 

    Decision - making rule, optimal according to the Neyman-Pearson provides maximizing the 

probability of correct detection of a signal at a fixed level of probability of false alarm. Because 

the noise power is unknown a priori, in the model included block estimates mean square 

deviations own noise. As an estimate of the mean square deviations this block calculates the 

sample mean square deviations: 

 

 





n

Nnk

n nU
N 1

21
                                                                         (20) 

Where N - size averaging window. Threshold value 0U formed as follows: 

nkU


 0
                                                                                            (21) 

Where the constant k determined based on the acceptable level of false alarm probability. 

Assuming that own noise receive path in each quadrature channel is independent Gaussian 
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spectral density, noise output amplitude detector in the absence of the desired signal is 

distributed Rayleigh. Then the probability of false alarm F  is given by: 













2

2

0exp
n

U
F


                                                                            (22) 

Where n



  - noise variance at the output a matched filter. Given that k
U

n





0 , from formula 

(22) you can easily find the value of k . Calculate the probability of correct detection of a signal 

at a given false alarm probability F  (i.e. established threshold
0U ). We give a detailed 

derivation of the relations in the case of detection of a video on a background of white Gaussian 

noise, and then present the final design relations for the case detection quadratic deviations 

radio pulse with an unknown initial phase. The decision about the detection of a video signal 

taken by signal value at output matched filter [19,20]. The maximum value at output matched 

filter is observed in expiration time of the input signal and the greatest probability of correct 

detection D this will correspond exactly to the time. At the output of the matched filter at each 

time point will be observed random variable (section spectral density) distributed according to a 

Gaussian law. Since the filter is linear, and the mixture signal and noise at the input additive, 

then the variance of this distribution is always determined only by the input noise variance and 

filter parameters. With regard to mathematical expectation, it depends on the presence or 

absence of the signal, and is the parameter for which to be decided.  

    Mathematical expectation noise is usually equal zero. On the other hand, mathematical 

expectation process reference at the output matched filter at the time of expiration signal the 

inlet is defined by a maximum output value, i.e. its energy. On Fig. (14. a), and shows graphs of 

the probability density function reference in the presence and absence of the desired signal in 

the input implementation. 

 

Figure (14): The probability density function  

 

On Fig. (14) Shows the threshold at 
0U , the maximum value of the signal at the filter output 

SCEU max2
, where C  - the proportionality factor determined by the parameters of the filter, 

SE  

- energy of the signal. Also shown is the false alarm probability F and correct detection D  in 

the form of two shaded areas.            From Fig. (14) is easy to obtain a general expression for 

calculating the probability of correct detection. Represent fluctuation at the input matched filter 

in the form ][][][1 nnnu s  , where 1  in the presence of a signal and 0  in its absence. 

Then 

2202 )1(}1{

0

dUUwUUpD
U

 


                              (23) 

Expression (23) can be regarded as a definition of probability correct detection for arbitrary 

distribution law. In the case of normal distribution upon detection of a video signal condition, 

1  equivalent to the condition
max22}{ UUM  . The probability density )1( 2 Uw , appearing 
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in (23) ــ is the conditional probability density that occurs in the presence of a signal. In this 

case, the detection of a video signal on the background white Gaussian noise, this Gaussian 

probability density, and in the expression (23) it is advisable to go to the integral of 

probabilities. Recall that the probability integral dtez

z t






 2

2

2

1
)(


 by definition equal to the 

probability that the value of the random variable Z , distributed according to a normal 

distribution with zero mean and unit variance, will not exceed a value of Z . So, the first step in 

the transformation (23) containing the probability integral, should be replacing the integration 

limits. Since the probability density function has the property of normalization, i.e. 





1)( dxxw , 

it follows from (23) we obtain  

2max222 )}{(1
0

dUUUMUwD

U

 


                                     (24) 

To bring any normal distribution to the standard normal must perform alignment and 

normalization of the original random variable. Centering means subtraction of expectation, and 

normalization - divide by the standard deviation. In this way, random quantity 

2

max20



UU
Y




 is as 

a standard normal distribution. The event, consisting in excess of this random variable values 

2

max20



UU  , equivalent event consisting of exceeding the threshold 
0U  maximum emission signal 

at the output of the matched filter as a random variable Y  derived from a random variable by 

2U  by monotone linear transformation. Consequently, the probability of both events is equal to 

the probability of correct detection and determined from the expression         








 


2

max201


UU
D                                                            (25) 

    By specifying the desired probability of correct detection (eg,0.9), can be from (25) the table 

of the probability integral find the desired value 
max2U , and then converted it to the input, i.e., 

find the desired amplitude of the input signal, which for a given power input noise will 

determine the threshold signal noise ratio. Conversely, knowing the signal-to-noise ratio at the 

circuit input, it is possible to find the value 
max2U  and calculate the probability of correct 

detection. The easiest way to find the value of 
max2U  is running the model in the absence of 

noise at the input. Then it is possible to output waveform signal determine maximum value. In 

the case of detection quadratic deviations radio pulse with an unknown initial phase required 

two-channel scheme [8,11], where instead of one matched filter uses two. At the output of such 

a scheme operates an integrated random process. As before, in the case of useful signal 

maximum amplitude (modulus) of a complex process 
max2U  determined by the energy of the 

signal, however, to calculate this amplitude needs amplitude detector ــ non-linear device, 

changing law of distribution of noise. It is known that the modulus Gaussian spectral density in 

the presence of a useful signal of constant amplitude is distributed according to the law 

Rayleigh-Rice, and in his absence - in law Rayleigh [21,22]. Graphs corresponding probability 

densities are shown in Fig. (14.b). Substituting into (23) probability density of the 

corresponding distributions Rayleigh-Rice can obtain the following expression for the 

probability of correct detection: 

dxxqI
qx

xD
F

)(
2

exp 20

)/1ln(2

2

2

2











 
                              (26) 

Where 
02 /3 NEq S signal to noise ratio, )(0 ــ  xI  modified Bessel function of the first kind of ــ

order zero, 
SE  - energy of the signal. In the case of signal detection with random amplitude and 
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the initial phase noise distribution at the output amplitude detector in the presence of signal and 

in his absence, and differs only in the greater dispersion. Probability of correct detection in this 

case is found from the expression [8]: 
)1/(12

0

2

0

2

)]}1(/[exp{   FENUD
means                             

(27) 

Where 

0

2

N

E
meanS

 , 
meanSE  .average (expected) signal energy ــ
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