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Abstract 

In this study (ARMA) method of time series analysis is applied to monthly flow for Bekhem 
reservoir. This method involves decomposition of the historical series into trend, seasonality and residual 
components. Stochastic ARMA models are then fitted to the residuals. Forecasts of the future value of the 
flow rate for 5th years starting from the last observation in Sep. 1982 to the observation in Oct. 1988 are 
also made by using ARMA.  

  الخلاصة
لقد تم في هذه الدراسة استخدام واحدة من طرق تحليل السلاسل الزمنية لغرض دراسة المعدلات الشهرية للجريان إلى خزان 

وقد استخدمت المركبة .تجاه ومركبة الدورية والمركبة المتبقيةتتضمن هذه الطريقة تحليل السلسلة الزمنية إلى مركبة الا. بخمة

                               .  1987 ولغاية 1983ثم تم إيجاد القيم المستقبلية للتصاريف لمدة خمس سنوات تبدأ من سنة .التنبئيالمتبقية لغرض بناء النموذج 

 
Introduction 
  Hydrologic time series is defined as continuous sequential observations which are 
usually expressed as an average value over equal intervals of time such as mean: daily, 
monthly, or annual flows. The process of averaging is called discretization, and the 
resulting series called discrete time series (Chatfield, 1982).The main objective of the 
present study is applying the well-known mixed autoregressive moving average ARMA 
model to flow rate for Bekhem dam in the north of Iraq. Then using this model to forecast 
5th years of  future time series compared with flow rate standards .Al-Suhaili (1986) used 
singlesite AR(1), autoregressive integrated moving average(ARIMA (1,0,1)) and (matalas 
model) for four Tigris river flow stations. These models were used for daily stream flow 
of Tigris River at four stations from the period (1936-1982).Al-Husseini (2000) used AR 
(1), MA (1) and ARMA (1, 1) as univariate models and first order multivariate model to 
fit stochastic component of eight years (1992-1998) of mean monthly water quality 
parameter at Al-Hilla station .Al-Mousawi (2003) applied two stochastic singlesite 
autoregressive models with first order  AR(1), and multisite model with first order 
AR(1)to model of monthly water quality data of eight hydrochemical parameter with 
discharges of four stations on Hilla river for the period  (1987-2001).Abed (2007) applied 
ARMA and ARIMA models to monthly records of some physical and chemical 
properties of river water in Babylon, Najaf, and Diwaniya governorates. 
The Study Area 

The Bekhme dam is located at about 7km upstream of Bekhme village and 
approximately 2km downstream from the confluence with the tributary Ruwanduz River 
which flows in from the left-bank side as shown in figure(1),(Planning Report on 
Bekhme Dam Project,1986,quoted in Hussien,2006).  
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Fig.(1):The Study Area 
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Application of ARMA Model 
  Before building of ARMA model historical annual series must be tested for jump 
and trend components by statistical tests and these components must be removed by using 
an appropriate method. Then a suitable transformation is selected to convert the data to 
the normal distribution. The periodic component can be detected and removed by non-
parametric method and the resulting series is called stochastic series which is used for 
building of stochastic models (Chatfield, 1982). 
    The procedure used for data analysis can be summarized by the following steps: 

1. Test the homogeneity by some statistical testes, if the non-homogeneity exist, it 
will be removed by suitable method. 

2. Use a suitable transformation like (Box-Cox, Square root, or Log transformation) 
to normalize the homogenous data. 

3. To detect the periodicity plot the correlogram of monthly means and standard 
deviation of normalized data. 

4. Removal of periodicity by applying non-parametric method for the normalized 
series. 

5.  Estimation of model parameter by plotting the corrlograms of the data and by the 
least squares algorithm for conditional model. 

6. The diagnostic check of model by one of some tests and testing the independency 
of the residuals. 

7. Forecasting and verifying the forecasted models. 
Test and Removal of No-homogeneity 

Hydraulic and water quality time series are commonly non-stationary with trends 
and seasonality (Zou and Yu, 1996). This section includes no-homogeneity test of the 
mean and standard deviation, and its removal when the series is found to be no-
homogeneous. Split-Sample method is used to ascertain whether or not the differences 
between the means and standard deviations of two sub-samples are significantly different 
from zero at (97.5%) confidence limit, therefore, the data is divided into two sub-samples 
of years, the first is 25th years long (1933-1957) and the second is five years long also 
(1958-1982). Figures (2&3) show the annual mean and standard deviation, respectively. 
   The test is applied as follows: 
1. t-test: the test for homogeneity in mean of two sub-samples is given as follows:           
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where: =21 , XX  means of first and second sub-samples, respectively. 
         n1,n2= number of years in the first and second sub-samples ,respectively.   
         Xi,Xj=annual value of the first and second sub-samples, respectively. 
2. f-test: the test for homogeneity in variance of two sub-samples is given as follows:  
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with:         V1=n1-1    ,    V2=n2-1 
where:  
            S1, S2= standard deviation of the first and second sub-samples,  respectively.   
            V1, V2= degree of freedom of the first and second sub-samples, respectively.   
   If the calculated values of (t and f) is more than the critical values, then the trend is 
found in mean and variance, respectively. The results are summarized in table (1).  
   The regression coefficients of the second sub-samples are calculated and the results are 
summarized in table (2).  

Table (1): Result of non-homogeneity test where critical 
(t) and (f) value (2.064) and (2.27). 

Parameter Data 
t-calculated 0.425 

Change in mean None 
f-calculated 0.666 

Change in sd none 
 

Table (2): Regression coefficient. 
Parameter Reg. coeff. of mean Reg. coeff. of sd 

Data 0.474 367.248 1.153 325.93 
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Fig. (2): Annual means of observed data before removing  

                   variation in mean from 1933-1982. 
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Fig. (3): Annual standard deviations of observed data  
               before removing variation in mean from 1933-1982.
 
ing data to normal distribution 
 series observation of a given phenomenon required a certain type 
on (Hipel et.al., 1977). Before transformation data to normal distribution , 
ents of skewness (Cs) and the coefficients of kurtosis (Ck) must be 
he values of the four moments of the homogenous data are (Mean=379.34, 
s=.086,Ck=3.87).These values indicate that the data are closer to normal 

because of the small (Cs) and (Ck) near 3. 
often better to transform data to normal distribution to utilize its simple 

ts familiarity to most engineers, and to obtain satisfactory fit to data. The 
 for transforming the data includes stabilizing the variance and improving the 
ssumption of the noise series (Box and Jenkins, 1976). Several 

ons may be used to normalize the data but the most common and useful class 
ations for stabilizing the variance is the Box-Cox transformation as follows: 
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 the varieties of given series; 
e constant of transformation. 
nship between λ and Cs is being some form of second degree polynomial as:  
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The value of (λ) is found by choosing random eight values of (λ) between (-1) and 
(1) and computing the corresponding (Cs) values for the series after transforming it by 
equation (4), (Abed, 2007). Then by fitting equation (5) to these eight points, the value of 
λ is found as equal to (B0) corresponding to Cs=0. Table (3) show the effect of (λ) values 
on the first four moments mean, Sd, Cs, Ck of data. 
 

Table(3):Effect of (λ) value on the first four moments of data. 
(λ) values Mean Sd Cs Ck
λ=0.2 10.621 2.463 0.498 -0.759 
λ=0.4 22.508 8.018 0.727 -0.392 
λ=0.6 53.043 26.662 0.964 0.147 
λ=0.8 136.670 90.508 1.212 0.876 
λ=-0.2 3.361 0.248 0.053 -1.028 
λ=-0.4 2.225 0.081 -0.169 -0.939 
λ=-0.6 1.604 0.027 -0.397 -0.698 
λ=-0.8 1.233 0.009 -0.631 -0.281 

     
    For normally distributed data (Cs=0) and (Ck≈3),the value of  (λ=-0.242) with 
mean=3.06,Sd=0.196 ,Cs=0.007 ,and Ck=0.199.Normally distributed data has skewness 
equal to (0) and kurtosis equal to (3) , however, was found that it is not possible to (λ) 
values which simultaneous satisfy the two conditions (Cs=0 , Ck=3) of normality ,(Chow 
et.al., 1988) does not recommend moments of order higher than (3) for statistical analysis 
of hydrologic data , therefore, the (λ) values for (Cs=0)  are chosen as the required 
normalizing coefficients. 
    The normality was tested by plotting observed cumulative probanility against expected 
cumulative probability using the following formula which is a Weibull formula: 
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Where:  
            P(x) is the observed cumulative probability of the value (x) of                     
               transformed data; 
            m is the rank (x) in ascending order; 
            N is the number of tested data (N=600) 
The resulting plot is shown in figure (4). The figure show good agreement. 
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 Fig. (4): Normal distributed test of Data.  
 
Detection and Removal of Periodic Components 
    If a time series contain a seasonal fluctuation then the correlogram which is a plot of 
autocorrelation coefficient against the lag will also exhibit an oscillation at the same 
frequency (Chtafield, 1982). Then the periodicity can be detected by the 
correlogram.The correlogram of normalized data is shown in figure (5). 
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 Fig.(5): Correlogram of normalized series.  

Removal of periodicity from data is done by the nonparametric method by using 
the following equation:  
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Where: Wi,j is the dependent stochastic components of year i, and month j. 
          µj, σj are the mean and standard deviation for month (j) respectively. 
    The result series is called stochastic series, which contains a dependent part on time 
which may be represented by AR(p), MA(q) or ARMA(p,q) models, and an independent 
part (at) can be described by some probability distribution function. 
Stochastic Model 
This section contains the following steps: 
Identification of the Model 

Autocorrelation function (ACF) and partial autocorrelation function  
(PACF) is an important guide to the properties of time series because they provide insight 
into the probability model which generated the data. Figure(6 ) show the behavior of the 
(ACF)and (PACF) of dependent stochastic series (Wi,j) with 95% confidence limits .The 
suggested model was AR(1) because the (ACF) tail off while its (PACF) has a cut off 
after lag(1) .   
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Fig.(6): ACF &PACF for Data. 

 
 

 383



)…RKR)’u†KX)’„X†)8‡„u„J)’RrT„J)’|cn„J))8)aau„J21)1)8)a„X†„J2171)C)2009  
Estimation of Model Parameters 

The identification process having led to a tentative formulation for the model, it is 
needed to obtain efficient estimation of the model parameters. The method of estimation 
based on the first estimated autocorrelations as follows (Box and Jenkins, 1976): 
AR (1) process:  
              Ф1=r1             (-1< Ф1>1)  …..…………………………..….……………………..(9) 
Where: r1=lag one estimated autocorrelation coefficient. 

In this model the value of the process is express as a finite linear aggregate of 
previous value of the process and a shock (at).By denoting the value of  
a process at equally spaced time t,t-1,t-2,…. by Wt, Wt-1, Wt-2,…. Then: 
               Wt= Ф1 Wt-1+ Ф2Wt-2+…..+ ФpWt-p+ at  …………..……………..………….(10) 
Where: Ф1 , Ф2 ,…….., Фp  are the autoregressive model parameter. 
            p is the model order. 
            Wt is the value of stochastic series at time (t). 
            at is the shock (independent part of stochastic process).
   Therefore the AR (1) model parameter (ф1) equal to (0.698), then the model equation 
is: 
                 …………………………………………….………….(11) ttt aWW += −1698.0
Model Diagnostic Checking 

The diagnostic checking are then applied to test the adequacy of the  
fitted model. Therefore the following statistical tests are used: 
1. Port Manteau Lak of fit Test 
            It is a test of the residual independency and uses the Q-statistic defined as follows:  

                  ………………………….……………….………………..(12) )(
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t

M

k
k arNQ ∑

=

=

Where:   
           rk(at) is the autocorrelation coefficient of the residual (at)at lag k. 
           M is the maximum lag considered (N/5). 

If the at is independency, then the calculated Q, which is approximately chi-
squared distributed with (M-p) degree of freedom, should be less than χ2

(M-p-q) degree of 
freedom(Jayawardena and Lai, 1989) .Therefore the model is succeeded because the 
(Q-calculated =115.19 with, M=N/5) is less than (χ2-table=146.57 with, degree of 
freedom =M-p-q ,and confidence limit=95%). 
2. Residual autocorrelation Function (RACF) Test 

The second test is the independency of the resulting (at) series, the correlogram of 
this series are computed for lag (M=N/5) are shown in figure (7) . The figure shown that 
the most of computed lags lie inside the tolerance interval (±2/√N, at 95% confidence 
limits). Hence, the suggested model can be considered as appropriate model because of 
its capability of removing the dependency from data.  
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 Fig.(7): Autocorrelogram of residual series parameter.  
Forecasting 

Forecasting monthly data are computed for the period from 1983 to 1988 by 
applying forecasting equation: 

tt ZZ 698.0)1(ˆ = ………………………….………………………….………………..(13) 

)1(ˆ698.0)(ˆ −= ll tt ZZ   for  =2,3,…,36  …………………………….……………..(14) l

Where: Forecasted series at origin time t and lead time l . =)(ˆ ltZ
             To illustrate the forecasting procedure, the calculation of parameter is given in 
table (4). In this table Zt (col.2) is calculated from model forecasting equation when the 
origin time is (t=600) and lead time (l=1, 2,…, 60). Ft (col.5)is calculated by reversing 
the standardization presses, then Ft=Zt*σj+µj .Forecasted series(col.6) is calculated by 
reversing Box-Cox transformation with λ=-0.242.Figure(8) show the forecasted values 
obtained by the model and the observed values. 
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Table(4):Calculation of forecasting value of data. 

Time 
(month) Zt  µj  σj Ft

Forecasted 
data(m3/s.)

Observed 
data(m3/s.) 

 600 1.2984      
 601 0.8920 2.824 0.097 2.9095 154 155 
602 0.6128 2.894 0.109 2.9600 183 208 
603 0.4210 2.95 0.104 2.9932 205 177 
604 0.2892 3.011 0.113 3.0433 247 205 
 605 0.1987 3.119 0.103 3.1392 362 289 
 606 0.1365 3.219 0.084 3.2303 539 552 
 607 0.0938 3.325 0.057 3.3302 875 773 
608 0.0644 3.322 0.063 3.3259 856 839 
 609 0.0443 3.222 0.065 3.2248 526 551 
 610 0.0304 3.062 0.084 3.0645 268 212 
 611 0.0209 2.911 0.084 2.9127 155 156 
612 0.0144 2.831 0.078 2.8320 119 145 
613 0.0099 2.824 0.097 2.8249 116 117 
614 0.0068 2.894 0.109 2.8946 146 157 
615 0.0047 2.95 0.104 2.9504 176 206 
616 0.0032 3.011 0.113 3.0113 219 201 
617 0.0022 3.119 0.103 3.1191 333 260 
618 0.0015 3.219 0.084 3.2190 512 491 
619 0.0010 3.325 0.057 3.3250 852 704 
620 0.0007 3.322 0.063 3.3220 839 588 
621 0.0005 3.222 0.065 3.2220 518 513 
622 0.0003 3.062 0.084 3.0620 265 239 
623 0.0002 2.911 0.084 2.9109 154 118 
624 0.0002 2.831 0.078 2.8309 118 95 
625 0.0001 2.824 0.097 2.8239 115 95 
626 7.49E-05 2.894 0.109 2.8939 145 302 
627 5.14E-05 2.95 0.104 2.9499 176 206 
628 3.53E-05 3.011 0.113 3.0109 220 317 
629 2.43E-05 3.119 0.103 3.1189 333 702 
630 1.67E-05 3.219 0.084 3.2189 512 767 
631 1.15E-05 3.325 0.057 3.3249 853 1127 
632 7.87E-06 3.322 0.063 3.3219 839 950 
633 5.41E-06 3.222 0.065 3.2219 518 491 
634 3.71E-06 3.062 0.084 3.0619 265 204 
635 2.55E-06 2.911 0.084 2.9109 154 134 
636 1.75E-06 2.831 0.078 2.8309 118 117 
637 1.2E-06 2.824 0.097 2.8239 116 103 
638 8.28E-07 2.894 0.109 2.8939 145 120 
639 5.68E-07 2.95 0.104 2.9499 176 184 
640 3.91E-07 3.011 0.113 3.0109 219 277 
641 2.68E-07 3.119 0.103 3.1189 333 394 
642 1.84E-07 3.219 0.084 3.2189 511 410 
643 1.27E-07 3.325 0.057 3.3249 852 731 
644 8.7E-08 3.322 0.063 3.3219 839 728 
645 5.98E-08 3.222 0.065 3.2219 519 383 
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646 4.11E-08 3.062 0.084 3.0619 265 207 
647 2.82E-08 2.911 0.084 2.9109 154 92 
648 1.94E-08 2.831 0.078 2.8309 118 102 
649 1.33E-08 2.824 0.097 2.8239 116 117 
650 9.15E-09 2.894 0.109 2.8939 145 260 
651 6.28E-09 2.95 0.104 2.9499 176 229 
652 4.32E-09 3.011 0.113 3.0109 219 329 
653 2.97E-09 3.119 0.103 3.1189 333 422 
654 2.04E-09 3.219 0.084 3.2189 512 681 
655 1.4E-09 3.325 0.057 3.3249 852 805 
656 9.62E-10 3.322 0.063 3.3219 839 980 
657 6.61E-10 3.222 0.065 3.2219 519 603 
658 4.54E-10 3.062 0.084 3.0619 266 321 
659 3.12E-10 2.911 0.084 2.9109 154 179 
660 2.14E-10 2.831 0.078 2.8309 118 130 
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Fig.(8): Comparison between forecasted and observed series. 
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Conclusion 
            Based on this study results, the following conclusions are drawn: 

1. The data was found to be homogenous in mean and standard deviation. 
2. The data show seasonal pattern, the pattern may be due to the influence of the 

annual cyclic pattern of the hydrological inputs to the reservoir. 
3. According to ARMA method, the monthly flow rate give the autoregressive AR 

(1) model, which state that the data are dependent on the data of the last (1) 
month.  
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