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Abstract

Positron annihilation techniques provide several ways to probe atomic-scale defects in
materials. This is because positrons are trapped by open volume and also by negative charged defects.
We study the importance of the non-local electron-positron pair interaction for positron annihilation
characteristics in a certain number of atoms. This is accomplished by using Hartree-Fock
approximation, giving rise to non-local electron-positron correlation function. We apply this
formalism to study the momentum-dependent electron-positron momentum densities (or the angular

correlation). Our results of P(&) in the present approach is compared to those obtained within a

various approximations, where we get a good agreement for (Kr,Xe)-atoms and reasonable for other
atoms.
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1. Introduction

When a positron and an electron annihilate each other resulting in two
gamma rays, the y —rays travel in opposite directions in the center of mass frame of

reference. This is simply a result of momentum conservation. However, from the
frame of reference of the laboratory, the two gamma rays do not usually travel in
exactly opposite directions. The difference between the angle of emission of the two
photons allows the total momentum of the two photons system to be calculated.
From conservation of momentum, the momentum of the annihilating electron can be
deduced by measuring the angular correlation of the annihilating y —rays, the

electron momentum distribution (as seen by the positron) may be obtained [Fraser,
1995].

The positron annihilation in atoms so far provides a better mean for the
investigations of the dynamic behaviors of annihilating pairs, since the angular
correlation of two-photons annihilation radiation is related to the linear momentum
distribution of them. If positrons are assumed to be thermalized before annihilation,
and the annihilation probability is again assumed to be the same for electrons of all
different momentum, then the angular correlation of two gamma rays will give the
momentum distribution of electrons in atoms. The positron lifetime in the material
depends on the local electron density at the site of the positron annihilation [Hakala
etal., 1998].

While testing with annihilation radiation a circuit selecting the coincident
pulses from two annihilation counters, it was relized that the angular correlation
between the two annihilation photons could may be measured with far greater
accuracy. As a result, it was considered that precise measurement of the angular
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correlation, which would throw some light on the momentum distribution of the
centers of mass of the annihilating pairs, and hence, on their mean momentum, was
worth attempting. The measurement of the momentum distribution of annihilating
electron-positron pairs is, together with the positron lifetime measurements, the basic
method of positron annihilation spectroscopy [Barbiellini et al., 1997].

Various theoretical calculations have been reported for the angular
correlation of electron-positron pair annihilation [McEachran et al., 1980; Bousahla
et al., 2004], using a different approximation methods. While the experimental
measurements in that field was very limited and old done by [Brisco et al., 1968], so
far as we know.

2. Theory

The Hartree-Fock method [Landau, 1990] is the method we’ll depend it in
our treatment of the effective potential and the density parameters. This method is an
extension to the distribution of low-energy interacting of electrons (positrons) from
atoms by Morse & Allis[Temkin, 1959]. One limitation of their wave function,
however, is its inability to take account of the reaction of the scattered electron back
on the atom; i.e., the method does not seem to include the polarization effects
[Temkin, 1959].

We write the wave function for the total system atom plus positron as:
W (N ey T 1) = P (1, Ty T U (1) 2mmmmmmmmmmmmee e 1)

Where (¢) and (m) are the eigenvalues of the total orbital angular momentum
and its z-component, and (¢,) is the wavefunction for a certain atom in its ground
state. (U,,,(r)) represent the free positron wavefunction.

Writing
Uy, (1)
r

U kem (r) =

Vi () -mmemmmmemmmemmoemm oo )

Where Y, (Q2) is the spherical harmonic, and U, (r) is normalized to correspond
asymptotically to a density of one positron per unit volume, i.e.

Jar(20+1
—”(k ’ )sin(kr—%[+5[)

Uy, (I’) r:w

One of the interested quantities in the electron-positron interaction is the
angular correlation of the two gamma rays produced when the pair annihilates. The
angular correlation as a function of (q,), the z-component of he linear momentum
of the electron-positron pair, is given by [Drachman, 1969]:

P@,) = | [S(a)da,da, el
Where o
S(9) =iﬂje‘q'”%o(n,rz,---,rN) Azt oo (5)

1478



Where (dz;") indicates all variables except those included in (dz,). We are

interested in the angular correlation for zero-energy positrons and hence only the
(¢ =0) term in equ.(5) contributes.
Substituting equ.(1) in equ.(5) subject to the above remarks yields

S(q) = 2[ | jo(qr)Pls(r)uks(r)dr} +[ | jo(qr)PZS(r)uks(r)dr}
xﬁjo(qr)PZS(Ouks(r)dr} -------- (6)

Where (P,) and (P,) are the radial parts of the Hartree-Fock orbitals of (¢,), and

(J,o(ar)) is the usual spherical Bessel function. Changing to cylindrical polar
coordinates, then equ.(4) will becomes:

P(d,) =27 [S(q)qdg  -ormmreemmeeoseeeeeeeees ()
qZ
In this work we will plot the angular correlation (P) as a function of (@)
(the angle between the two gamma rays) where (siné ~ i) or (0~ hq, ~ e ) in
mc mc 137

atomic units. (P(#)) is normalized to unity at (¢ =0) so that the normalization of
(u,,) is unimportant.

3. Results & Discussion

Since electrons in atoms possess kinetic energy, if an entering positron with certain
energy annihilates with an electron in atom, the center of mass of the pair would not in
general be at rest at the time of annihilation. The component (P,) of the center of mass
momentum of the annihilation pair perpendicular to the direction of emission of gamma rays
deflect the photon propagation direction from their mutually opposite direction by angle
©).

In figure(1) we present our results of the angular correlation for (V, Cr &
Cu)-atoms compared with theoretical calculations of [Rubaszek et al.,2001;
Rubaszek et al.,2002]. In figure(2) our results of (P(@)) for (Kr & Xe)-atoms
compared with the theoretical data of [McEachran et al.,1980]. The agreement
between our results and those we compared with, was good for (Kr & Xe)-atoms,
and reasonable for (V, Cr & Cu)-atoms. Furthermore, the figures shows that the
agreement between our calculations and the experiment and theory is very good at
small values of (8) but there are systematic deviation at large values of ().

The shape of our curves in figures (1) & (2) have a similar behavior for all
atoms, i.e. quite smooth and rising very steeply as zero angle is approached.
Furthermore, we noticed that (P(8)) depends much more critically on the actual

form of the total wave function and hence is likely to be more affected by the
approximation made. In this work we concentrate on a various groups of atoms
represented by two of the noble atoms and metals like (V, Cr & Cu)-atoms. Where

1479



the value of (P(8)) for (V, Cr & Cu) need for a fitting process to made a some

approximation with the compared data.

The Hartree-Fock approximation proved their success in getting a good
results of the angular correlation from calculating the density functions for the
systems under study. As we noticed the agreement was fine for the comparison with
the other approximations theories, such as the polarized orbital method of
[McEachran et al. 1980] and the local density approximation of [Rubaszek et al.,
2001 ; Rubaszek et al., 2002].
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Figure(1): The Angular Correlation for (V, Cr, & Cu)-Atoms the
solid curve represent the present work, the dashed curve represent
the [Rubaszek et.al.,2001; Rubaszek et.al.,2002]data.
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Figure(2): The Angular Correlation for (Kr,Xe)-Atoms the solid curve
represent the present work, the dashed curve represent the [McEachran
et.al.,1980]data.
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FORTRAN77

FI=I-1
I
FI1=FJ*0.7
I
P1=3.141592654

I
AKF=(3.*PI*ROH)**0.333333333333
I
AKF1=AKF**2
I
P1=1.-(FJ1*137./AKF)**2

|
P2=1.-(FI1*RS*6.3)**2

P1)1.

“Write
FJ1, P2

N
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