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Abstract 
An investigation of the nonlinear analysis of partially prestress partially steel fibrous reinforced 

concrete space frames having prismatic and / or non-prismatic (tapered) members and subjected to 

cyclically varying loading is presented in this study. Plastic zone model is utilized in this study with an 

incremental and iterative technique to study the inelastic behavior of reinforced concrete frames. An 

approach namely (regions approach) that was previously proposed by  is used to take into account the 

variation of material properties through the depth and width of the section. Equivalent nodal loads 

(fixed – end forces) are presented for tapered element under uniformly distributed load considering the 

possibility of existence of plastic zone any where in the member. The effects of shear and torsion 

forces are taken into account. Kupfer, Hilsdrof and Rusch yield criteria is used as a limitation for the 

concrete behavior. The hardening / softening rule, flow rule, and tension stiffening rule for concrete are 

taken into account. Failure can be predicted by the concrete crushing at a certain region. The analytical 

model adopted in this study for the fibrous concrete represented obviously the behavior of steel fiber 

prestressed concrete frames under cyclic loading. This could be noted through comparing with the 

theoretical results of previous studies. 

 الخلاصة
ً يلال   الب  ً يلا لأايليلال الذيةًِلاِ ل  التحليلِ اللاخطّيِ للهياكلل الرسالاةيا البقل اا ال هلئ ا البحتييلا لللع لصا لس وييلي يا      قللحِا ا

اً ئًللاِ أَ  غيللس وييللي يا ْو قْللتَئّْ اخ   الراىلللا ملللع التحبيللل البرتلللِ  َ   يّلل ا البصاةاللا اللئةللا و قْللتَلْبل  لللي ةللبت الئ االلاِ ةتاصيللاِ   ال . ةبلليِ
خللا    كسا ياِ لئِ ااَا القليكِ الغيلس ولسِ  للهياكلل الرسالاةيا.  لخ االترئاة ةسيالا البصلاة  لَ خْلب للي الحقل ا  مخلتلالِ الرليا  البا ًلاِ 

خ لللصصلسِ الب قْلتَئِِّّْ  حلل الحبللِ الب ليَبشكِ لأنلئل وصلتلأخ ول. ايخلب fixed end forcesلبِ   لسضِ البِاطل.. ايمبلا  اللائًلا البئال)لا ْ
االترئاة  ةصلأس ايلت ا   موئاةياَ  ايِ  البصطاِّ اللئةا لي أي وئا  لي اللضي. مّ   أثيساتَ  يى الإلتياءَ  الاصش ًَأْخلباِ  للي الحقل ا .  لخ

كبحئ  لتصسل الرسااةا. كبلك  لخ ايخلب ةصلألس اةلت لا   اللئلا الصللالأا  Kupfer  ،Hilsdrof   Ruschآليا الرضيك التي ا تسمها 
للرساللاةا. آليللا  Tension stiffening   اييللا النللئ  Flow Rule،  الللئلا ال سيللا  Hardening / Softening Ruleالصليوللا 

ا التحليلللي الللبي  للخ ليصللاخ  للرساللاةا خلللا  وصطاللا وCrushing Failureاةةهيللا  لللي ةللبا ال حللل  للتخ لأالقللح  البيىللليْ . الصبلليِ
ااترئاوه لي ةبت الئ ااا وثل لأنئل  اىح الليك الرسالاةا وقل اا ال هلئ   البقللحا لأايليلال الذيةًِلا اليا للا  حلل ايمبلا  الئ  يلا. 

 .ةبا ًبئن ولاملأته ون خلا  الباا ةا و. الصتا ج الصلأسيا للئ ااات القالأاا
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Notation: 
 a  Flow vector. 

)ij(sA  Area of steel region (ij). 

 AB  Axial strain – displacement matrix. 

bc(ij) Width of concrete region (ij). 

bsf(ij) Width of steel fibrous concrete region (ij). 

[Dcon] Concrete stress – strain relationship matrix. 

[Dcon]ep Elasto – plastic concrete stress – strain relationship matrix. 

[Ds] Steel stress – strain relationship matrix. 

[Dsfrc] Steel fiber reinforced concrete stress – strain relationship matrix. 

[Dsfrc]ep 
Elasto – plastic Steel fiber reinforced concrete stress – strain 

relationship matrix. 
fc΄ Cylinder compressive strength of concrete. 

ft΄ Ultimate concrete tensile strength. 
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G Shear modulus of elasticity of concrete. 

G  Shear modulus of elasticity of cracked concrete. 
΄H Hardening / softening parameter. 

K Shear correction factor. 

L Total length of element. 

Lf Fiber length. 

N1c , N2c Number of concrete regions in depth and width direction respectively. 

N1ps , N2ps Number of prestress steel regions in depth and width direction respectively. 

N1s , N2s Number of steel regions in depth and width direction respectively. 

N1sf , N2sf 
Number of steel fibrous concrete regions in depth and width direction 

respectively. 

pi Incremental internal forces. 

Pe(ij) Effective prestress force in prestress steel region (i,j). 

tc(ij) depth of concrete region (ij). 

tsf(ij) depth of steel fibrous concrete region (ij). 

Vf Volume fraction of fiber. 

crcr  ,  Material parameters used in yield criterion. 

cyzcxzcxy  ,,

 
Concrete shear strain in xy, xz  and yz – plane.  

sfyzsfxzsfxy  ,,

 
Steel fibrous concrete shear strain in xy, xz  and yz – plane.  

cx  Concrete strain in local direction x. 

sfx  Steel fiber reinforced concrete strain in local direction x. 

sx  Steel strain in local direction x. 

cu  Ordinary concrete or steel fibrous concrete ultimate total strain. 

  Poisson΄s ratio.  

0  Equivalent effective stress. 

cx  Concrete stress in local direction x. 

cyzcxzcxy ,, 

 
Concrete shear stress in xy, xz  and yz – plane.  

sfyzsfxzsfxy  ,,

 
Steel fibrous concret shear stress in xy, xz  and yz – plane.  

Introduction 
         The behavior of partially prestress partially steel fibrous reinforced concrete 

(SFRC) members subjected to cyclic loading is extremely complex. It is necessary to 

make use of numerical solutions in solving non linear governing equations established 

by the materials nonlinearities. The finite element method has been used by several 

researchers [Nilson, 1968; Darwin and Pecknold, 1977] to analyze reinforced and 

prestressed concrete members considering material nonlinearity. While stiffness 

method with tangent and secant stiffness was used by others [Gunnin, 1970; 

Sirisreetreerux and Tanbe, 1977; Vecchio, 1987] to analyze the reinforced concrete 

frames under monotonic loading. In the present work, a computer program in 

FORTRAN computer language was written to investigates the suitability of the finite 

element method with tangential stiffness to  
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Fig.(2): Adopted normalized stress-strain relation for concrete under cyclic loading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

analyze partially prestress partially steel fibrous reinforced concrete space frames 

under cyclic loading. Material and geometrical nonlinearity are taken into account by 

using regions approach and suitable loading model (stress–strain relationship) for 

concrete and steel. Joint coordinates are updated at the beginning of each load stage. 

Stress – strain behavior of fibrous concrete under cyclic loading: 
          An empirical model suggested by Soroushian and Lee is adopted in this study, 

Fig.(1) shows the envelop and the cyclic curves. Also this figure shows the cyclic 

behavior of steel fibrous concrete in tension which is suggested by Al-Sulayfani and 

Al-Taee (2005). 
Stress – strain behavior of concrete under cyclic loading: 
         In the present study, because of the accuracy and simplicity, The model adopted 

by [Mahmood] (Al-Sulayfani model, 2005) is used in the present study to represent 

the nonlinear behavior of concrete under cyclic loading. Fig. (2) shows the envelope 

curve and the cyclic behavior curves. A linear path will be adopted for the stress – 

strain behavior of concrete under tension with the modulus of elasticity equal to the 

nominal modulus of elasticity in compression. This will be valid up to cracking 

strength tf  , which has the following expression: 

ct f625.0f                                                                                                                  (1) 

Fig.(1): Stress-strain curve in compression and tension for SFRC under cyclic loading. 
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Fig. (3): Cyclic behavior model of steel 

(a) Hysteretic behavior model of steel by Menegotto and Pinto. 

(b) Normalized behavior model of steel by Menegotto and Pinto. 
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Where cf   is in N / mm2. Beyond tf   the concrete is considered to be incapable of 

transmitting tensile stresses. 

Stress-strain behavior of reinforcing and prestressing steel under 

cyclic loading: 
         Menegotto and Pinto (1973) model is used to represent the nonlinear 

behavior of reinforcing and prestressing steel under cyclic loading. This model is 

shown in Fig. (3). The stress-strain curves of all cycles lie within the two parallel lines 

A-B and A΄B΄ which are defined by the monotonic curve and passing through the 

yield points (εso, σso) and (-εso, -σso) respectively. All the curves, which represent the 

hysteretic behavior of steel, have the same initial slope equal to the slope Eso of the 

monotonic curve. 

Effect of effective prestressing force: 
           The element is divided into five sections and the section is divided into 

imaginary concrete region, SFRC region, reinforcing steel region and prestressing 

steel region [Kadhim, 2007]. The internal forces of the element (pi) will be calculated 

as follows: 
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      (2) 

This internal forces will be compared with the external applied forces and the residual 

will be applied as external forces. Actually, as a first step this process will be attempt 

before applying the external load to take into account the effect of effective 

prestressing force. 

The steel fibrous reinforcing concrete and reinforced concrete yield 

criterion: 
         The yield criterion determines the stress level at which plastic deformation 

begins [Owen and Hinton, 1980]. In the present study the yield criterion takes the 

following form: 

     ocyzcxzcxycxcrcxcrf   212222 333                                              (3) 

Where αcr and βcr are material parameters and σo is the equivalent effective stress 

taken from uni – axial test. This yield criterion takes into account the transverse shear 

effect.  

For steel fibrous concrete are [Ibrahim, 2002]: 











2

21
,

2

1
22

2









 crcr                                                                               (4) 

Where: 
xe                                                                                                                          (5) 

f

ff

D

LV
x

9772.0339.3

1



                                                                                              (6) 

If the results obtained by Kupfer for a failure envelope is employed for the initial 

yield, the value of the constant αcr and βcr for ordinary concrete are: 

αcr = 0.355 σo and βcr =1.355                                                                                      (7) 

In the present study we will assume that the initial yield surface is attained when the 

effective stress reaches 30 % of the ultimate stress cf  .  

The hardening/softening rule for concrete 
After initial yielding, the stress level at which further plastic deformation 

occurs is dependent on the current degree of plastic straining. Such a phenomenon is 

termed strain hardening. In the present study, an isotropic hardening / softening rule is 

adopted. At first, when a material is stressed beyond its initial yielding surface, the 

yielding surface will expand until the effective stress reaches the ultimate stress cf  , 

after that, the yielding surface will contract due to softening effect until the failure 

occur. The hardening / softening parameter takes the following form [Hinton and 

Owen, 1984]: 

  coctct EEEH  1                                                                                                (8) 

If H΄ equal to zero, then the material is stressed to be perfectly plastic. When H΄ equal 

to infinity, then the material is still with in elastic range.  

The flow  rule for concrete: 
The flow rule is considered to construct the stress – strain relationship in the 

plastic range. The complete elasto – plastic incremental stress – strain relationship can 

be expressed as [Hinton and Owen, 1984]: 
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For steel fibrous concrete 

   
     

    aDaH

DaaD
DD

sfrc

T

sfrc

T

sfrc

sfrcepsfrc


                                                                    (9) 

For ordinary concrete 

         
    aDaH

DaaD
DD

con

T

con

T

con
conepcon


                                                                    (10) 

Where the second term in the bracket represents the stiffness degradation due to 

plastic deformations. 

The crushing conditions for concrete 
         The crushing type of concrete fracture is a strain-controlled phenomenon. The 

failure surface is represented by the following equation: 

       222222 75.021
9

4
21 cucyzcxzcxycxcrcxcucr                          (11) 

When εcu reaches the ultimate value, which is equal to 1.5 εco, the concrete is assumed 

to lose all its characteristics of strength and rigidity. 

Fibrous concrete in tension 
For cracked fibrous concrete in tension zone, the stress – strain relationship 

takes the following form: 
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Where:[Naji] 
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o  varies from 0.33 to 0.5. 

b  varies from 0.5 to 1. 
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Shear modulus of cracked fibrous concrete: 

The value of G  is linearly decreasing with the strain normal to the crack plane 

and calculated according to the following formula [Ibrahim, 2002]: 







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







 1

005.0
1

KnGG


                                                                                            (15) 

Where: 

n  The fictitious strain normal to the crack plane. 

K1 parameter in range (0.3 – 1). 
When the crack is closed, the uncracked shear modulus is again assumed in the 

corresponding direction. 

Tension stiffening rule for fibrous concrete: 
Due to the bond effects , cracked concrete carries between cracks a certain amount of 

tensile force normal to the cracked plane. The concrete adheres to the reinforcing bars 

and contributes to the over all stiffness of the structure. The assumed shape of the 

stress – strain hystersis loops for cyclic loading in tension range is shown in Fig. (4). 
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Ordinary concrete in tension: 
For cracked concrete in tension zone, the stress – strain relationship takes the 

following form: 
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Shear modulus of cracked concrete: 

The value of G  is linearly decreasing with the strain normal to the crack plane 

and calculated according to the following formula [Hinton and Owen,1984]: 
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Fig. (5) : Loading and Unloading Behavior of Cracked Concrete 

Illustrating Tension Stiffening Behavior. [Hinton and Owen]. 
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When the crack is closed, the uncracked shear modulus is again assumed in the 

corresponding direction. 

Tension stiffening rule for concrete: 
Due to the bond effects , cracked concrete carries between cracks a certain 

amount of tensile force normal to the cracked plane. The concrete adheres to the 

reinforcing bars and contributes to the over all stiffness of the structure. The assumed 

shape of the stress – strain hystersis loops for cyclic loading in tension range is shown 

in Fig. (5). [Hinton and Owen,1984] 

 

Algorithm for The Proposed Procedure of Analysis: 
         The adopted approach of the analysis , which is called the incremental 

approach , treats the problem of nonlinear behavior as a sequence of linear problems. 

During every loading step of the sequence , the structure supports a new increment of 

external loads. Each step is based on material and geometry properties appropriate to 

that step , i.e. , the stiffness of the structure is updated at the beginning of each step. 

The procedure of analysis can be illustrated through the figure (6). 

Applications: 
Example No.1: 
A plane one storey one bay steel fibrous reinforced concrete frame was tested 

experimentally by Sabnis and White, in 1969 and analysis theoretically by Al-

Sulayfani and al-Taee. Figure (7) shows the data used in the present study to analysis 

this frame. The loading conditions for frame (F1) are shown in figure (8). According 

to the new proposed procedure of analysis, frame (F1) is subdivided into 18 elements  

(i.e. six elements for each member). Each beam or column section in the frame is 

subdivided into ten concrete regions in width direction by ten concrete regions in 

depth direction and eight steel regions. The horizontal displacements obtained by 

Sabnis and White (1969) experimentally and by Al-Sulayfani and Al-Taee (2005) 

theoretically and the results obtained from the proposed analytical procedure are 

presented in figure (9). From figure (9) the analysis using (18 elements) gives good 

agreement with the experimental results. 

Example No.2: 
In 2005, a prestressing fibrous reinforced concrete plane frame was analyzed by Al–

Sulayfani and Al-Taee. This frame is reanalyzed using the proposed approach. The 

details of this frame are shown  in   figure (10). The test loading conditions for frame 

(F2) are shown in figure (11). This frame is subdivided into 18 elements(i.e. six 

elements for each member). Each section in this frame is subdivided into 

(100)concrete regions, ie. (10) regions in depth direction by (10) regions in width 

direction; and eight reinforcing steel regions, and one prestress steel region. 

Theoretical load – deflection curves from Al–Sulayfani and Al-Taee (2005) and the 

theoretical load –deflection curve from the present study are shown in figure (12). The 

analysis using (18 elements) give good agreement with the results obtained by Al–

Sulayfani and Al-Taee (2005). 

Example No.3: 
            In this example the effect of partial depth of steel fibrous concrete on the 

behavior of partial prestress concrete space frame under cyclic loading will be studied 

through drawing the load–deflection curves for frame with various partial depth of 

steel fibrous concrete varies from zero to the total depth of the member. This frame is 

analyzed up to crushing failure. On the other hand this parametric study shows the 

ability of the present analysis procedure and program to solve the problem of partial  
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Fig.(6): Flow Chart of analysis procedure. 

INC = the total number 

of the load increments. 

NCYC = the total number 

of the load cycles. 
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Fig. (8) : Test Loading Conditions for Frame (F1) 
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Fig. (9):Load – Displacement Curve for Frame (F1) Obtained by the 

previous researchers and The Present Analysis Using (18 Elements). 
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Fig. (11) : Test Loading Conditions for Frame (F2) 
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Fig. (10) : Details of Frame (F2) 
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Fig. (12):Load – Displacement Curve for Frame (F2) Obtained by the 

previous researchers and The Present Analysis Using (18 Elements). 
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Fig. (13) : Details of Frame (F3) 
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Fig. (14): Loading Conditions for Frame (F3). 
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steel fibrous partial prestressing reinforced concrete space frames under cyclic 

loading. The details of this frame are shown  in   figure (13). The test loading 

conditions for the frame are shown in figure (14). This frame is subdivided into 48 

elements(i.e. six elements for each member). Each section in this frame is subdivided 

into (100) concrete regions, ie. (10) regions in depth direction by (10) regions in width 

direction; and eight reinforcing steel regions, and one prestress steel region. Figures 

(15 and 16) shows the load – deflection curves obtained from analyzing frame 

(F3)with various depth of steel fibrous concrete. Figure (17) show the relation 

between number of load cycle at which the crushing failure occurs and steel fibrous 

concrete depth factor   . This figure shown that the optimum depth factor is about 

(0.7) approximately  but the following equation which was proposed by 

Padmarajaiah and Ramaswamy (2002) given that the optimum depth factor is 0.3. 

Fig. (16):Load – Deflection Curves for Frame (F3) With Various 

Depth of Steel Fibrous concrete. 
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Fig. (17):Cycle Number at Crushing State – SFRC Partial Depth Factor 

Curves for Frame (F3). 
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 
 







t

t 1
                                                                                                                (19) 

Where: 

  2123  t   ,        1725.1  RIt     ,   fff DLVRI   

This difference between the optimum SF depth factor obtained from figure (17) and 

that obtained from equation (19) come from that this equation was derived for 

members under monotonic loads. From this parametric study, for the member under 

cyclic loading, the SF should be add to the top and bottom of the member not to one 

side. 

Conclusions 
1. The analytical model adopted in this study for the fibrous concrete represented 

obviously the behavior of steel fiber prestressed concrete frames under cyclic 

loading. This could be noted through comparing with the theoretical results of 

previous studies. 

2. The region approach is so efficient in nonlinear analysis of concrete members, 

since the stress distribution along the sections seems to be rather close to the real 

state. 

3. The optimum steel fibrous concrete depth factor for member under cyclic loading 

(approximately 0.7 when the addition in one side of the member)is different from 

that obtained by the equation that was proposed by Padmarajaiah and 

Ramaswamy (2002) (0.3). So the addition of steel fibrous concrete in top and 

bottom of the member or in the form as a ring around the circumference of the 

member can be studied. 
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