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Abstract 
In this research we give a study on the bounds of relations and we demonstrate several 

important theorems. 

 الخلاصة
 منا دراسة حول حد العلاقة مع بعض النظريات المهمة والامثلة. في هذا البحث قد

1. Introduction  
 Following (Gillam ,1976).  had introduced the concept of bounds of relations, the bound 

of a relation R is a finite relations non embeddable in R but whose proper restrictions are 

embeddable in R . the aim of this paper is to give a study on the bounds of relations and we 

prove that a birelation RS can have finitely many bounds, in this paper concludes some 

examples in the bounds.  

2. Definitions 
2.1 Let R , S be two relations of the same arity R is embeddable in S; if and only if there 

exists a restriction of S isomorphic with R and write R ≤ S , (Ginsburg, 1990; Aigner, 

2004)  

2.2 A bound of a relation R is any finite relation A with same arity such that A is not 

embeddable in R, but every proper restriction of A is embeddable R. (Gillam, 1976).  

2.3 A chain is a partial ordering whose elements are mutually comparable (Berge, 1958; 

Aigner, 2004). 

2.4 Acycle is the relation with the following conditions , if there exists a minimum u and 

maximum V of A , then V dominates U. (Berge, 1958; Aigner, 2004). 

2.5 Given two relations R , S we say that R is younger than s , if every finite restriction of R 

is embeddable is S (Berge, 1958)  

2.6 A multirelation  with base E is a finite sequence R of relations R1 , R2 , …. , Rh with base 

E , in the case where h = 2 , we will say a birelation R1R2 (Malitz, 1976)  

2.7 Let R , S be two multirelations with the same base, S is called freely interpretable in R , 

if every local automorphism of R  is a local automorphism of S (Malitz, 1976)  

2.8 Given two finite sequences of natural numbers m , n a free operator P associates to each 

m-ary multirelation P(R) having the same base (Hemminger ,1986 ; Aigner, 2004) .  

2.9 An n-ary relation with base E is a functional R which associates the value R (x1 , x2 , … , 

xn ) = + or – the integer n will be called the arity of R for n = 1 say a unary , for n = 0 

there exists two o – ary relations based on E denoted by        ( E , + ) , ( E , - ) (Berge, 

1958; Aigner, 2004). 

3. We will prove several important theorems and examples  

Proposition  3.1:- Let   R, S   be two relations of the same arity. Then the following three 

conditions are equivalent. 

(1) Every finite restriction of   R   is embeddable in   S ; in other words, R  is  younger than   

S . 

(2) No bound of   S   is embeddable in   R . 

(3) Every bound of   S    admits an embedding of a bound of   R . 

Proof     

Assume the first condition and let  A be a bound of   S. If   A ≤ R , then also A≤ S, hence 

A   is not a bound of   S. Conversely, if there exists a finite restriction   A  of   R  which is 

non-embeddable in   S , then there exists a restriction of   A , hence of   R, which is a bound 
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of  S. Thus (1) and (2) are equivalents assume condition (2), and let   A   be a bound of  S ; 

hence  A  is non-embeddable in   R . Thus there exists a restriction of   A   which is a bound 

of   R . Conversely if there exists a bound   A of  S   which is embeddable in    R , then   A  

admits no embedding of any bound of   R . Thus (2) and (3) are equivalent. 

In particular, if   R   and   S   are finite, then the embeddability   R ≤ S   is equivalent to 

the condition that no bound of  S   is embeddable in   R or again equivalent to the condition 

that every bound of  S   admits an embedding of a bound of   R . 

Another consequence: 
Let   R, S   be two relations of the same arity. Then   R   and   S   have the same age iff   

R   and   S   have the same bounds; 

iff no bound of   R   is embeddable in   S , nor is any bound of   S   embeddable In R , In 

particular, if   R   and   S   are finite, then   R   and S are isomorphic iff  they have same 

bounds; iff no bound of   R   is embeddable in S nor is any bound of S embeddable in   R .                 

Proposition 3.2:- Given two relations   R, S   of the same arity, if every finite restriction of R   

is embeddable in   S , then every bound of   R   is a bound of   S or is embeddable in   S .

  

Proof:-  
Let   A   be a bound of   R . Assume that   A   is non-embeddable In S. Yet every proper 

restriction of   A   is embeddable  In   R , hence in   S ,  Thus A is a bound of S .  

The converse is false. Let R to be an infinite chain, and S to be the chain of cardinality 3 . 

Then every bound of R is one of the four relations with cardinalities 1, 2, 3. Hence every bound 

of R is a bound of S . Yet the chain of cardinality 4 is a bound of S and not a bound of R . 

Another example with R and S finite. Let R to be the binary reflexive cycle of cardinality 

3 . There exist four bounds of R, up to isomorphism. These are: the binary relation of 

cardinality 1 and value (-); the binary relation always (+) of cardinality 2; the identity relation 

of cardinality 2; and finally the chain of cardinality 3 . Let  S to be the common extension of 

these four bounds, taken with disjoint bases, S taking the value (+) for every ordered pair 

whose terms belong to the bases of two distinct bounds. Then each bound of R is embeddable 

in S , yet R is non-embeddable in S . 

The preceding example can be modified so as to make S infinite: add to our four bounds, 

a binary infinite relation always (+). Even we can make both R and S infinite: replace R by its 

extension to an infinite base, with the value  (+) for all new ordered pairs: then there remain 

finitely many bounds of R and the preceding argument holds. 

We have already said that for a relation with finite cardinality p , the bounds have at most 

cardinality p+1. For example a chain of cardinality p admits as a bound the chain of 

cardinality p+1, 

Let us give examples where the maximum cardinality of bounds is at most p . Take the 

unary relation of cardinality p+q , which takes the value (+) on p elements and (-) on q 

elements. The bounds are the unary relation always (+) of cardinality p+1 , and the unary 

relation always (-) of cardinality q+1. Lett the binary cycle of cardinality p . the maximum 

possible cardinality of bounds is p. This number is taken on by the consecutively relation 

associated with a chain of cardinality p : this is a bound of the given binary cycle. Take the 

partial ordering formed of p component chains, each of cardinality q (p, q positive integers). 

Then as bounds, we have the chain of cardinality q+I , the identity of cardinality p+l , the 

relation of cardinality 1 and value (-), the relation of cardinality 2 always (+). Finally, 

assuming that p , q ≥ 2 , we have the reflexive cycle of cardinality 3 ; and the three relations of 

cardinality 3 , each having as proper restrictions, an identity and two chains of cardinality 2 , in 

a position of convergence, divergence, or succession. For p = q , the cardinality of the base is 

p2  but the maximum cardinality of bounds is p+1. 

Theorem 3.3  
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A birelation RS can have finitely many bounds, even though the first component R has 

Infinitely many bounds, and the second component S has finitely many bounds. 

Proof :  

Let  S to be the chain of the natural numbers,   and take   R to be the consecutivity 

relation associated with S: hence R(x,y) = + iff  y=x + 1. Then R has as bounds all finite 

binary cycles. However, a bound of RS has cardinality at most 3; so that RS has finitely many 

bounds. Indeed let A, B be two finite relations such that every restriction of AB. with 

cardinality 3 is embeddable in RS. Then A is a finite chain; and B takes the value (+) only for 

ordered pairs of consecutive elements (mod A) . Thus AB is embeddable in RS; hence AB 

cannot be a bound, 

Even more curious is the fact that there exist two denumerable binary relation R, S each 

having infinitely many bounds; and yet their concatenation RS has only finitely many bounds 

Proof: 
For each finite set F , consider all birelations AB based on F , such that for all x, y 

distinct, if A(x,y) ≠ A(y,x) then B(x,x) ≠ B(y,y) ; and similarly if B(x,y) ≠ B(y,x) then A(x,x) 

≠ A(y,y) . Let C be the class of those  birelations. For any two finite disjoint sets F, G , two 

birelations belonging to C, one with base F and the other with base G , always admit a 

common extension with base F  G , again belonging to C.  

To see this, for each element x in F and each y in G , take the same  value A(x,y)= A(y,x)  

, and similarly   B(x,y) = B(y,x) , which is compatible with the values A(x,x), A(y,y), B(x,x), 

B(y,y) already imposed by the preceding Consequently, there exists a birelation   RS   with 

denumerable base, In with every birelation   AB   of the class C  is embeddable. Moreover, 

every bound of RS   has cardinality at most 2.  Indeed, given a birelation   AB   of the finite 

cardinality greater than or equal to 3,  If all its restrictions of cardinality2 belong to C, then  

AB    Itself belong to C and hence is embeddable in RS . 

However, because of the sign change in   S(x,x)  when we pass from an elemet x  to an 

element   y   with   R(x,y) ≠ R(y,x)  , any finite cycle which is a restriction of R has  even 

cardinality. Thus R has infinitely many bounds, which are all binary cycles of odd 

cardinality, with arbitrary values for R(x,x) , for each element x in such a cycle. Similarly for 

S . 

Theorem 3.4:-   
Let   R, S   be two relations, each of which is freely interpretable in  the other. Then to 

each bound   A   of   R , of cardinality strictly larger than  the maximum of the arities of R 

and S , we can objectively associate a bound of S having the same base as A. 

Proof :- 
 Let P    be a free operator taking   R   into   S, and z   be a free operator  taking   S    into   

R: Let   B = P (A) , Then every proper restriction of   B    is embeddable in P (R) = S . 

Moreover z (B) = A , since both have the same proper restrictions, hence the same restrictions 

of cardinalities   less than or equal to the arity of   A . Hence  B   is not embeddable in   S ; for 

otherwise    z (B) = A   would be embeddable in   z (S)= R. 

Results 
 (1) A finite 0-ary relation   A   can be a bound iff   A   is non-empty. However, if         p = 

Card A , then A is a bound of R iff   Card  R  = p-1 . 

(2) For arity 1 , a finite unary relation A can be a bound iff A is non empty and is always (+) 

or always (-)Indeed if p = Card A and if A is always ( + )  for instance, then any unary 

relation (finite or infinite) which takes p-l times the value (+) admits A as a bound. 

 (3) For arity   n≥ 2 , a finite   n-ary relation   A   can be a bound iff   A is non-empty. 

Moreover there exists an infinite relation   R   such that   A   is  a bound of   R . 

 Note first that the notion of bound is immediately extendible to multirelation 
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Theorem 3.5:- Let   R   be a finite multirelation and   U   a bound of   R .Then there exists an 

extension of   R   to its base augmented by one element, for which   U   is again a bound. 

Proof:-  
Suppose first that   R    is a unary relation of cardinality   p+q , taking the  value (+) on   

p   elements and (-) on   q elements. Then  U   is, for example , the relation  always (+) of 

cardinality   p+l  . We replace   R  by its extension which takes the value ( + ) on p element 

and ( - ) on q+1 elements .  

Suppose now that R has at least one component with arity ≥ 2 . We shall argue 

in the case that R is itself a binary relation, the proof in the general case being an 

immediate extension of our argument. 

Let U be a bound of R . Add to the base of R a new element a , and let Ra, 

be the extension of R defined by Ra (a , x) = Ra (x,a) = Ra (a , a) = + for every 

x in the base |R| .Similarly add b and define Rb, by the analogous conditions with (-) 

instead of (+). Then U is either a bound of Ra  or a bound of Rb . Indeed every proper 

restriction of U is embeddable in R , hence in Ra and in Rb . On the other hand, U is not 

embeddable in both: 

Theorem 3.6 :-   
Consider a finite set of finite relations   A1,,...,Ah.    all of the same arity, and suppose 

that there exist relations of the same arity, with arbitrarily large 

finite cardinality, each having the bounds   A1,,...,Ah and possibly other bounds  Then there 

exists a denumerable relation having, among other ones, the bounds A1,,...,Ah 

Proof :-  

Let Ri. (i integer) be an . ω-sequence of finite relations, whose cardinalities 

are strictly increasing, such that each Ri. has at least the bounds A1,,...,Ah, Let pi denote 

the cardinality of Ri; we can assume that Ri has base {1 , 2 , ….....,pi} . moreover, since for 

each i , the relation Ri. admits an embedding of all proper restrictions of Ai for instance, then 

letting k1, denote the sum of the cardinalities of these proper restrictions, we can suppose that 

they are all embeddable in the restriction of   Ri   to  {1,2,.. ., k1 }. Similarly for   A2 . Let k2 

denote the sum of the cardinalities of all proper restrictions of A2 : they are all embeddable in 

the restriction of Ri to {1,2,.. ., k1+k2 }. and so forth,  There exists an infinite sequence, 

extracted from the sequence of the Ri , which is formed of relations having the same 

restriction S1 to the singleton of I ,  From this first extracted sequence, we extract a second 

sequence, formed of relations all having the same restriction S2 to the pair {1,2} . Iterating 

this we obtain, for each integer r , a relation Sr based on {1,2,...,r} , Where each Sr (r≥2) is an 

extension of Sr – 1  .  

Let S denote the common extension of the Sr , based on all positive integers Then A1, for 

instance, is a bound of S . Indeed A1, is not embeddable in S , since otherwise it would be 

embeddable in some S3 , hence in some Ri , moreover ; each proper restriction of A1, is 

embeddable in S since it is embeddable in the restriction of each Ri to {1,2,.. ., k1 }. hence in 

S(k1). , . Same argument for A2, ...,Ah which are thus also bounds of S . 

Theorem 3.7 :-  
Consider again the finite relations Ai , ….. , Ah ; suppose that for each integer p , there 

exists a relation with cardinality greater than or equal to p , whose bounds are exactly Ai , ….. 

, Ah plus possibly some bounds of cardinalities ≥ p , Then there exists a denumerable relation 

whose bounds are exactly Ai , ….. , Ah 

Proof:-  
Let Ri (i positive integer) be our finite relations; which are listed by increasing values of 

p . We shall modify our construction in the preceding theorem , as follows. Let a sequence of 

all the finite relations Uj (j positive integer) with the same arity as the Rj , and let kj br the 

finite cardinality of Uj.  
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Replace, each Ri by an isomorphic copy, we can suppose the following. For each i , if U1, 

is embeddable in Ri , then U1, is embeddable In the restriction of Ri to {1,2,.. ., k1}. Again for 

each i , if U2 is embeddable in Ri , then U2 is embeddable in the restriction of Ri to the set: 

{l,2,...,k1+ k2} ; and so forth. 

Now, construct relations Sr (r integer) as in the preceding theorem , and then we take 

their common extension S . Then A1...,Ah are all bounds of S . It remains to prove that S has 

no other bound. 

Suppose that B is a bound of S different from A1,,...,Ah, . Then firstly, each proper 

restriction of B is embeddable in S , hence in the Sr  for all r greater than some r(0) ; hence in 

all the Ri which extend Sr(0) . Secondly B cannot be a bound of Ri , for i sufficiently large, so 

that the integer p associated by hypothesis with Ri. is larger than the cardinality of B . Hence 

B is embeddable in all the Ri. which extend Sr(0) and whoso index i is sufficiently large. 

Finally there exists r(1) ≥ r(0) such that, B is embeddable in all those Ri which extend Sr(1). 

From the first, there exists an integer k for which, if B is embeddable in Ri , then B is still 

embeddable in the restriction Ri/{ 1 , 2 , ….. .,k} . Hence B is embeddable in Sm, where m is 

the maximum of k and r(l) , Thus B is embeddable in S : contradiction. 
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