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Abstract  
         The investigate of the free vibration of fiber reinforced (FR) plate has been studied. The natural 
frequency of an FR plate depends on a variety of variables, including aspect ratio, size of hole, fiber 
orientation of the laminae that make up the laminate, and the boundary conditions. These variables 
using related to the natural frequancy of laminated plates by analyzing a number of laminated plates 
using the commercially available (ANSYS 9.0) finite element software. From the results, it was found 
that the natural freqauncy  of  the FR plate of fixed–free boundary condition increase but simply 
support-free boundary condition decrease with incraseing the hole size for all values of aspect ratio, 
where as the hole size increase the composite plates lose more materail   and consequently lose more 
stiffness. 
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    الخلاصة

متغيرات و المتـضمنة    مجموعة من ال   الصفائح يعتمد على     التردد الطبيعي لتلك   إن   .بالألياف للصفائح المقواة     الحر دراسة الاهتزاز 

 هـذه   تـم ربـط   . لية و تأثير الظروف الحدوديـة      ألياف الصفائح الرقيقة و المكونة للصفيحة الك       اتجاه،  الثقب حجم، الواجهةنسبة  

من خلال  .(Ansys 9.0) المحددة برنامج العناصرمن الصفائح باستخدام  ذلك بتحليل عدد و للصفيحةالطبيعيالتردد مع المتغيرات 

 –ذات إسناد بسيط     حر يزداد ولصفيحة مقواة بالألياف       –البحث وجد بان التردد الطبيعي لصفيحة مقواة بالألياف ذات إسناد مثبت            

  .حر يقل بزيادة حجم الثقب لكل قيم نسبة الواجهة حيث بزيادة حجم الثقب تفقد الصحيفة من مادتها وبالتالي تفقد أكثر من جساءتها

Introduction 
     The increasing use of fiber reinforced laminates plates with holes are extensively 
used in space vehicles, aircrafts, automobiles, ships, chemical vessels, mechanical and 
civil structures in order to obtain the convenient connection of structural members and 
have necessitated the rational analysis of structures for their mechanical response. In 
addition, the anisotropy, nonhomogeneity and larger ratio of longitudinal to transverse 
modulii of these new materials demand improvement in the existing analytical tools. 
As a result, the analysis of laminated composite structures has attracted many research 
workers, and has been considerably improved to achieve realistic results. In the design 
of modern high-speed aircraft and missile structures, swept wing and tail surfaces are 
extensively employed. Moreover some of the structural elements are provided with 
cutouts of different shapes to meet the functional requirements like (i) for the passage 
of various cables, (ii) for undertaking maintenance work and (iii) for fitting auxiliary 
equipment. Depending upon nature of application, these structural elements are acted 
upon by mechanical and thermal loads of varied nature. Usually, the anisotropy in 
laminated composite structures causes complicated responses under different loading 
conditions by creating complex couplings between extensions, bending, and shears 
deformation modes. Huang 
     Srinivas and Rao presented a set of complete analytical analyses on bending, 
buckling and free vibration of plates with both isotropic and orthotropic materials. 
And the dynamic characteristics have been studied for many years most previous 
investigations have been confined to isotropic plates with holes. The study of 
composite plates with holes is rather limited. Reddy studied the large amplitude free 
vibration of layered composite plates with rectangular cutouts by finite element 
method. Frequencies corresponding to linear and nonlinear situations were presented 
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for thin and thick orthotropic and laminated composite plates. Prasad and Shuart 
presented a closed form solution for the moment distributions around holes in 
symmetric laminates subjected to bending moments. Avalos, Larrondo and Laura 
obtained the frequency parameters form anisotropic rectangular plates with free-edge 
holes by using the Rayleigh-Ritz method. The effects of aspect ratio, hole side to plate 
side ratio and the position of the hole on the frequencies were investigated. However, 
in these studies the effect of the variation of the thickness on frequencies was not 
considered. Ukadgaonker et. al. gave a general solution for bending of symmetric 
laminates with holes. Karami et.al. has applied Differential Quadrature Method 
(DQM) for static, free vibration and stability analysis of skewed. 
Setoodeh and Karami employed a three-dimensional elasticity based layer-wise 
finite element method (FEM) to study the static, free vibration and buckling responses 
of general laminated thick composite plates.  
    Huang studied the free vibration of orthotropic square plates with a hole. By 
considering the hole as an extremely thin part of a plate, the free vibration problem of 
a plate with a hole can be transformed into the free vibration problem of its equivalent 
square plates with non-uniform thickness.  
Niraangin studied the theory elastic behavior of composite skew plates with elliptical 
cutouts subject to non-linearly varying temperature loading. 
     This work describes the free vibration analysis of laminated composite plates 
with circular holes. A finite elements method by using Ansys 9.0 was used t study 
the effect of plates, aspect ratio, hole size, plate boundary conditions and fiber 
orientation angles. 
Description of Problem  
   ANSYS was used to analyze the free vibration of various laminated plates in order 
to see how changes in the laminated plate would affect the natural frequency. The 
changes to the laminated plate were based on four variables: hole size, boundary 
condition, aspect ratio and orientation of the stitched mat layers used in FR laminates. 
The laminated plates were analyzed under two different boundary conditions: simple-
simple-free-free, fixed-fixed-free-free. The plate thicknesses, t, was used (1 mm). 
three different aspect ratios (B/A) were considered: 0.25,0.5 and1. The width "A" was 
held constant at 0.1 m and the length "B" was varied between 0.4, 0.2 and .1 m. and 
"D" the diameter of circular hole.  
The mat orientation of the (0,90,90,0), (45,-45,-45,45) and (0,45,45,0). Combinations 
of each of these variables were analyzed for a laminated reinforced plate consist of 4 
layers using ANSYS 
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  Fig (1): Basic Model (A plate with circular hole) 
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Free Vibration of Laminate Plate  
      This section dealt with the analytical determination of the natural frequency of 
various types of plate, by using finite element program Ansys 9.0. In using Ansys to 
determine the natural frequency for laminate plates, the effect of hole size, aspect 
ratio, boundary condition and fiber orientation of laminate plate is taken into 
consideration. 
A general plate is shown in fig (1). The aspect ratio is defined as length "B" divided 
by width "A" and the hole size defined as diameter "D". The boundary condition 
notation used (e.g. fixed-fixed-free-free) and (simply-simply-free-free) refers to the 
boundary condition along edge (x=0)-(x=A)-(y=0)-(y=B) 
Macromechanics of a Lamina 

The goal of macromechanics of a lamina is to determine the stress-strain behavior 
of an individual lamina. Since a laminate is made up of laminae with various fiber 
orientations, the stress-strain relationships for a lamina is first expressed in terms of 
the lamina coordinate system and then transformed to the global coordinate system of 
the laminate. This is necessary in order to determine the stiffness of a laminate in 
terms of the global coordinate system. 
Stress-Strain Relationship in a Lamina 
Using contracted notation, the generalized Hooke’s law relating stresses to strains is 
 
                       }]{[}{ jiji C εσ =                                                                                     (1)                              
where, iσ are the stress components, Cij is the 6 * 6 constitutive matrix, and jε  are the 
strain components. The stiffness matrix has 36 constants, but by using energy 
methods it can be shown that the stiffness matrix is symmetric (Cij=Cji) and therefore 
only 21 of the constants are independent (Jones, 1999). The relationship in Eq.(1) 
characterizes an anisotropic material, which has no planes of symmetry for the 
material properties. For a lamina, which is considered to be orthotropic, the stiffness 
matrix has only nine independent constants. 
Lamina Coordinate System. 
 Assuming a state of plane stress in the 1-2 material plane gives: 
 
  0312333 === σσσ                                                                           (2)                               
 
which reduces Hooke’s law to: 
 

                                                                                 (3)                                
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where [Q] is the reduced stiffness matrix. The components of the reduced stiffness 
matrix are defined in terms of the in-plane mechanical properties of the lamina and 
are 
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Global Coordinate System. 
The response of a laminate to loading in the global coordinate system is found 

using the stress-strain relationships, determined in terms of the global coordinate 
system, of each lamina. Generally, Eq. 3 must be transformed to reflect rotated fiber 
orientation angles. The following relationship reflects this transformation [Brian,1998 
]: 
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where [Q ] is the transformed reduced stiffness matrix, which is found using the 
relation 
                          [ ] [ ] [ ][ ] TTQTQ −−= 1                                                                            (6)                               
 
where the superscript T denotes the matrix transpose and [T] is the transformation 
matrix, which is  
 

                                 [ ]                                                                        (7)                                      
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where m = cos θ, n = sin θ and θ is the angle between the lamina’s coordinate system 
and the global coordinate system as shown in Fig. 1. 
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Figure 2: Lamina On- and Off-axis Configurations 
(Staab, 1999) 

  
Using Eq. (6) and Eq. (7), the components of the transformed reduced stiffness matrix 
are 
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      Note that the transformed reduced stiffness matrix, [Q ], has terms in all positions 
in the matrix as opposed to the presence of zeros in the reduced stiffness matrix, [Q]. 
Therefore, in terms of the global coordinate system, a generally orthotropic lamina 
appears to be anisotropic, since shear-extension coupling exists (Jones, 1999). 
 
Variation of Strain and Stress in a Laminate 
The strain of any point in a laminate that has undergone deformation can be 
determined by considering the geometry of the undeformed and deformed cross 
section shown in Fig. 3. Point B in this figure is located at the mid-plane and in going 
from the undeformed to the deformed shape Point B undergoes a displacement in the 
x-direction of uo. (Note that the symbol ‘nought’ (o) designates mid-plane values of a 
variable) Since, due to Kirchhoff’s hypothesis, line ABCD remains straight under 
deformation of the laminate, the displacement of arbitrary point C is 
 
                                 βcoc zuu −=                                                                              (9)                               
 
 
 
 
 
 
 

 
 
 

Figure 3: Geometry of Deformation (Jones, 1999) 
 

Based on Kirchhoff’s hypothesis, under deformation, line ABCD remains 
perpendicular to the mid-plane; therefore, β is the slope of the laminate mid-plane in 
the x-direction, that is, 
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The displacement, u, at any point z through the thickness of the laminate is 
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Similarly, the displacement, v, in the y-direction is 
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According to Kirchhoff’s hypothesis 0=== yzxzz γγε , therefore the remaining non-
zero laminate strains are xε , yε , and xyγ . Combining these relationships with Eq. 5 
gives the following expression for the kth layer: 
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    Even though the strain variation is linear through the thickness of a laminate, the 
stress variation is not necessarily linear through the thickness of a laminate because 
the transformed reduced stiffness matrix, [Q ], can be different for each lamina in a 
laminate. 
    By integrating through the thickness of the laminate, the net force resultants and 
moment resultants can be calculated. 
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    where zk and zk-1 are defined in the geometry of an N- layered laminate, which is 
depicted in Fig. 4. 
 
  
 
 
 
 
 
 
 
 

Figure 4: Geometry of an N-Layered Laminate (Jones, 1999) 
Combining these relationships with Eq. 13 gives: 
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       The extensional stiffness matrix is [A], the bending-extension coupling stiffness 
matrix is [B], and the bending stiffness matrix is [D]. The presence of matrix [B] 
implies that there is a coupling between bending and extension, therefore if a laminate 
has Bij terms, pulling on the laminate will cause bending and/or twisting of the 
laminate. The terms A16 and A26 represent shear-extension coupling, which means 
coupling exist between shear stress and normal strains and between normal stresses 
and shear strain, in a laminate. The terms D16 and D26 represent bending-twisting 
coupling in a laminate. The [A], [B], and [D] matrices are very useful in 
understanding the behavior of a laminate under given loading conditions and are used 
frequently in the analysis of composites. 
 The potintial energy is represented as  
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where the moment of inertia is defined as ( ) = , and [M] is the 

mass matrix. 
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The equation of motion can be obtained as  
0}]{[}]{[ =+•• qKqM                                                                                               (21) 

 
 
The eiganvalue problem for the vibration analysis be obtained as 

}0{}]{[][ 2 =Θ− Mk ω                                                                                                (22) 
where ( Θ,ω ) the natural frequancy and mode shape. 
 
Finite Element Analysis 
    The element used for the laminated plates was Shell99, which is an 8- node linear 
layered structural shell element (See Fig. 5). The element has six degrees of freedom 
at each node: translations in the x, y, and z directions and rotations about the nodal x, 
y, and z-axes. The Shell 99 element is perfectly suited for composites materials 
because it allows entry of up to 250 layers. Each layer has its own thickness, material 
property, and orientation. For laminated FR composites, the direction of the fibers 
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determines the layer orientation. For each layer, the layer material properties (E1, E2, 
ν12, G12, G13, and G12 listed in table 1), the orientation (angle between the layer and 
global coordinate system, θ, as shown in the off-axis configuration of Fig. 2) 
 

Figure(5): Shell 99 Element  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table1:Micromechanical Prope
Carbon/ epo

 
E1  

GPa 

E2 
GPa 

E3 
GPa  

207 5 5 

Results and Discussion 
   Table (2) shown the fundamental n
composite plates compared with the re
composite plate (for which results are
fundamental frequency obtained are giv
agree fairly will with those available in
The effect of various parameters like h
fiber orientation on the fundamental 
considering fiber reinforced compos
boundary conditions fixed and simply
edges. 
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 (ANSYS Element Reference)
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xy [Barbero, 1999] 
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vious work to check the validity of the results, 
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en in this table. It can be seen that the results 

 literature. 
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natural frequency of vibration is studied by 
ite plates with central circular hole under 
 supported for two edges and free from other 

imply supported laminated plates with aspect 
o (A/B=1)

port                               Simply support 
/A=0)                          two edge (D/A=0.5) 

atheswary            Present study          Huang 
   31.018                      232.82              225.92
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Effect of hole size 
   To better illustrate the effect of the hole size on the natural frequency of fixed-free 
and simply supported-free, the variation of the natural frequency with (D/A) ratio is 
shown in figures (3) to (8) it can be seen that the frequencies decrease with the 
increase of the (D/A) ratio for both boundary conditions.  
   Table (3) shown the results of the natural frequency of composite plates with 
varying hole size, boundary conditions, aspect ratio and fiber orientation. It can be  
noted that the natural frequency decrease a little first and then increase with fixed-free 
boundary orientation with hole size increase , while it decrease with simply support 
boundary condition with hole size increase. To explain the phenomenon, two effects 
in traduced by a hole are considered. The first one is a reduction in the strain energy 
of the plate which will decrease the frequency of the plates. The second one is a 
reduction in the mass which will increase the frequency, for the composite plates with  
a larger hole the first effect might be still the dominant effect due to its high ratio 
E1/E2 and the frequency would continues to decrease with D/A < 0.5 for simply 
supported-free boundary condition.  
Effect of boundary conditions 

The variation of the natural frequency with hole size for fixed and simply 
supported edges conditions as shown in figures (6)-(11). In the case of simply 
supported-free laminate there is a asudden decrease in the natural frequency when the 
hole size increase becuase loss in area of material this cause decrease in strain energy 
of strecture but for lamenite fixed-free edge the value of the natural freqauancy 
increase when hole size incearse becuase the fixed edge increase the strain energy.  
 Effect of aspect ratio  

The effect of the aspect ratio on the natural frequency of vibration is studied by 
analyzing four-layer laminates (0,90)s,(45,-45)s and (0,45)s by varying A/B ratio, 
keeping the value of "A" constant in all cases, the natural frequency is found to 
increase gradually with increase aspect ratio and the variation is show in figures 
(12)to (17). The increase is due to the incrase in stiffness of the plates with increasing 
aspect ratio. Where the aspect ratio increase  cause to incrase in area and small in hole 
size with respect to total area for that the strain energy increase and natural freqauncy 
increasing with varying of fiber orientation of composite plate. 
Effect of fiber orientation  

Four-layer symmetric (0,90)s,(45,-45)s and (0,45) with hole size (D/A) from 0 to 
0.5. A change in fiber orientation angles from 0 to 900 leads to an increase in the 
natural frequency of vibration in the case of fixed-free and simply supported-free for 
all value of aspect ratio and hole size, also figures (12-17) it can be seen that the 
natural frequency of vibration of arrangement (0,90)s  is higher than from (0,45)s and 
(45,-45)s, becuase thr fiber orientation effect on the  displacement of  lamenite plate 
thi cause to increase in (0,90) and decrease in (45,45) and(45,-45) becuase resolve the 
displacement in two components this cause decrease strain energy of stracture. 
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Table (3): Variation the natural frequencies with hole size, aspect ratio, 

boundary condition and fiber orientation.  
 

Simply support – Free 
boundary condition 

Fixed –Free 
boundary condition 

Hole 
size 

(D/A) 
ratio 

Aspect 
ratio(B/A) 

(0,45)s (45,-45)s (0,90)s (0,45)s (45,-45)s (0,90)s  
 

  

57.787 
21.46 
32.558 
29.306 
30.532 
31.709 

22.865 
34.566 
34.131 
31.03 
31.64 
30.98 

51.261 
29.843 
35.684 
33.613 
35.821 
34.32 

64.707 
29.724 
36.344 
33.199 
38.793 
40.282 

27.746  
36.685  
37.723  
35.08  
35.143  
36.615 

63.841 
36.376 
39.299 
36.855 
41.03 
42.3  

0 
0.1 
0.2 
0.3 
0.4 
0.5 

114.88 
115.55 
111.32 
106.8 
104.12 
92.759 

91.773 
130.91 
120.36 
117.56 
110.4 
103.02 

104.5 
135.45 
131.44 
126.28 
121.13 
108.84 

259.01 
169.74 
162.00 
165.1 
166.35 
168.21 

120.26 
136.89 
135.71 
136.36 
183.81 
136.31 

255.06 
183.05 
176.78 
181.2 
181.9 
182.28 

0 
0.1 
0.2 
0.3 
0.4 
0.5 

190.89 
259.76 
239.48 
219.26 
210.42 
197.79 

314.99 
321.85 
301.5 
290.64 
271.4 
237.22 

208.24 
302.58 
286.17 
264.59 
242.17 
232.82 

1033.9 
500.15 
477.6 
519.91 
503.89 
496.01 

520.75 
593.86 
555.00 
538.37 
549.42 
610.7 

1016.8 
597.44 
586.85 
622.24 
626.85 
603.2 
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0.4 
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  Fig (6): Variation of Natural Frequency with hole size for  
Fixed-free boundary condition with aspect ratio (0.25)   

Fig (7): Variation of Natural Frequency with hole size for  
Simply-Free boundary condition with aspect ratio (0.25) 
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Fig (8): Variation of Natural Frequency with hole size fo 
 Fixed-free boundary condition with aspect ratio (0.5)   ig (9): Variation of Natural Frequency with hole size for 

Simply-free boundary condition with aspect ratio (0.5)

0.0 0.1 0.2 0.3 0.4 0.5
Ratio(D/A)

400

500

600

700

800

900

1000

N
at

ur
al

 F
re

qu
an

cy
(H

z)

[0,90]s

[45,-45]s

[0,45]s

Fig (10): Variation of Natural Frequency with hole size  
 fixed-free boundary condition with aspect ratio (1) 
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Fig (11): Variation of Natural Frequency with hole size for 
 Simply-free boundary condition with aspect ratio (1) 
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Fig (13): Variation of Natural Frequency with hole size for 
 Simply-free boundary condition with (45,-45,-45,45) 

Fig (12): Variation of Natural Frequency with hole size for 
 Fixed-free boundary condition with (45,-45,-45,45) 
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Fig (15): Variation of Natural Frequency with hole size for  
Simply-free boundary condition with (0,90,90,0)) 

Fig (14): Variation of Natural Frequency with hole size for  
Fixed-free boundary condition with (0,90,90,0) 
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Fig (17): Variation of Natural Frequency with hole size for 
 Simply-free boundary condition with (0,45,45,0) 

 

Fig (16): Variation of Natural Frequency with hole size for 
 Fixed-free boundary condition with (0,45,45,0) 

Conclusion  
       On the basic of present study, which has deal with the free vibration of 
rectangular composite plates containing central circular holes. The effect of plates 
aspect ratio, hole size, plate boundary condition  and fiber orientation have been 
studied and the following conclusion can be made: 
1-The natural frequency of composite plates containing a circular cutouts   increase by 

the increment of cutout diameter for fixed-free boundary condition but decrease for 
simply support-free boundary condition. 

2- Increasing hole size dose not necessarily reduces the natural frequency of 
composite plates. For certain plate aspect ratio and boundary condition, the natural 
frequency strength could increase at large hole size. 

3- The natural frequency of composite plates with (0,90,90,0 ) lamination could be 
higher or lower than these with (45,-45,-45,45) lamination, depending on the plate 
aspect ratio, plate boundary condition and hole size. 
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