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Abstract

In this research , We prove that the relation of covering By right or left indecomposable chains ,
is still an equivalence relation , and the union of both equivalence relations , is again an equivalence .

After We prove that for any infinte chain, if every chain * <A satisfies *-2 %4 _ then A is
indecomposable .

<AX
A x.2=A

1. Introduction

Following (Laver, 1976) a two elements u,v of the base of a chain A are
equivalent with respect to right indecomposable chains if there exists an interval of A
which is right indecomposable and contains the elements u and v . On the other hand ,
(Dushnik &.Miller,2002) a doublet is a chain which is the union of a left
indecomposable interval and a right indecomposable in decomposable interval and
a right indecomposable interval both having at least on common element. We prove
the following facts: the equivalence relation of covering by doublets of
indecomposable chains has only a finite number of equivalence classes , each class is
an indecomposable interval or a doublet.

2. Definitions :

2.1 Let A be arelation, an element Z isbetween x and y, if y>z>x or x>z
>y (mod A), it called intermediacy (Ginsburg, 1982).

2.2 Let c be a relation. A subset X ofits base which closed with respect to the
intermediate(mod d ) (Ginsburg, 1982).

2.3 A chain, is a partial ordering whose elements are mutually comparable the chain
is said to be indecomposable if every interval is trivial (Dushnik &.Miller,2002) .

2.4 Let, v be two elements in the base of the chain covering u and v are equivalent
with respect to doublets if there exists a doublet of indecomposable chain
covering u and v (Farah, 1990) .

2.5 let R,S be two relations , R is embeddable in S iff there exists a restriction
of S isomorphic with R (Higman, 1977).

2.6 An Z-sequence is a sequence of length Z, where Z is the set of integers
(Laver, 1976).

2.7  An ordinal is a transitive set which is totally ordered by € (Farah, 1990).

2.8 LetR,sbe two relations , R issaid to de equimorphic with S, iff R is
embedded in S and S isembedded in R (Higman, 1977).

2.9 An aleph (the cardinal of well — orderable set ) is said to be regular iff

considered as an ordinal (Ginsburg, 1982).
2.10 Every chain isomorphic with a regular aleph, as well as the converse of such
, 1s h-indecomposable (Ginsburg, 1982).
2.11 A chain is said to be scattered if the chain Q of rationales is not embeddable
in it (Laver, 1976).
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3.om Of Choice (Higman, 1977).

Every set, even infinite , of non-empty mutually disjoint sets admits a
choice set .[which is the set A whose intersection with each element x of A is
a singleton.]

Proposition 3.1 (Higman, 1977). A chain A is indecomposable iff, for every x <

1A [1A is strictly left indecomposable] with respect to emdeddability, * -2<1A.
Proof: Suppose that A is indecomposable , and that . than * = A | conversely,
suppose that A is decomposable ,so 4 =5 +C with 5<4 and € =5 yet A
satisfies the conclusion then B —28A=B6+C o C£FE gsimilarly B£C
Moreover (C +BL2=C+B+C+B=zA4 So C+5=A=E+C and thus

E=C or€ =5 contradiction.

Proposition 3.2 (Dushnik &Miller,2002), let A be a chain which is the union of an
initial interval and a final interval . both having at least one common element and
both of which are right indecomposable then A is right indecomposable (same
statement for left )

Proof: Let B be initial interval, C the finial interval and A their intersection .
Then B is embeddable in A . Either A=C so that A =B is right indecomposable .Or
C has the form D+ E and so A=B+E is embeddable in C=A+E hence A is
again right indecomposable .

Corollary :-

A chain which is the union of a right indecomposable initial interval B and a left
indecomposable final interval C, both infinite and having at least one common
element. Then the intersection BN C , is both left and right indecomposable and
admits an embedding of the chain of rationales .

Proposition 3.3 (Dushnik &Miller,2002)

There exist a strictly smaller ( with respect to embeddebilty), restriction of A.
which has continuam cardinality .
Theorem 3.4 (Aigner, 2004).

Let ® 4 be an infinite regular alpha . Every chain with cardinatly o, , admits an

embedding either of the ordinal w, , or it's converse ®,’ .

Proposition 3.5 (Dushnik &Miller,2002),

Let A be small a non empty chain with an initial interval and a final interval,
both disjoint and in each of which A is embeddable . then the chain of rational Q is
embeddable in A
Proposition 3.6 (Dushnik &Miller,2002),

Two elements x and y are equivalent with respect to doublets iff there exists a
finite sequence of element from x until y , where two consecutive term are equivalent
with respect to right of left indecomposable chains
Theorem 3.7 (Laver, 1976).

Let A be a scattered chain and that the h-indecomposable restrictions of A form

a will-quasi— ordering with respect to embeddability then A is a finity some of

h- indecompesible chains
Theorem 3.8 (Laver, 1976).
Let A be a scattered indecomposable chain. and suppose that the

h—indecomposable restrictions of A form a will quasi—ordering with respect to
imbecility . then A is h- indecomposable .
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Theorem 3.9 (Higman , 1977).
If A is a will partial ordering , then the partial ordering of embeddiblty of words
in A is a well partial ordering .
Theorem 3.10 (Laver, 1976).
A necessary sufficient condition for A to be a well partial ordering is that every
®-a sequence in A be good .
Proposition 3.11 (Laver, 1976).
Every set of h-indecomposable chains form a quasi- ordering under
embeddebility.
Proposition 3.12 (Laver, 1976).
Every scattered chain is a finite some of h-indecomposable chains . We may now
demonstrate he next theorems
Theorem 3.13 :-
Given a scattered chain, the equivalence relation of covering by doublets of

indecomposable chains has only a finite number of equivalence classes. Each
class is an indecomposable interval or a doublet
Proof:-

By using proposition 3.12 we decompose our chain ,into a finite number of right
or left indecomposable intervals. Replace any two contiguous such intervals by their
union, provided this union is indecomposable. When it becomes impossible to effect
these replacements, then the intervals thus obtained, or the unions of two contiguous
intervals, constitute the covering by doublets. The uniqueness of this decomposition
follows from proposition 3.2 and Corollary.

Theorem 3.14

For a non-scattered chain, the relation of covering by right or left indecomposable
chains, is still an equivalence relation. Hence the union of both equivalence relations,
is again an equivalence relation. However there can be infinitely many equivalence
classes for this equivalence relation
Proof :-

We Start with Ay = the chain of the reals by proposing 3.3, we have a strictly
decreasing (with respect to embeddability) w-sequence of chains A; (i integer) |,
where each A; has cardinality of the continuum; moreover we can require that A;
£ A+ 1.wo foreach i. On the other hand, we have Q> A;. foreachi ;
indeed A; has atleast ®; many elements, and neither the. ordinal ®; nor its
converse is embeddable in the reals, hence in  A; :by theorem 3.4 the particular case
where a=1 .Thus A; * Q+ Aj: +Q +..+ Q + Aj;, for any two natural

numbers i and h .Let U=w,"+®, and consider the sumofthe ®-sequence

A+ U+A +U+..+U+ A +U+ .. .Weshall prove that each interval
isomorphic with U is one of the desired equivalence classes; hence that there exist
infinitely many equivalence classes.

Indeed, take two elements x and y in two consecutive components: for
example x belongsto U and y Dbelongsto A; following the considered
component U . We must join x to y Dby finitely many intermediate elements,
such that any two consecutive elements be either right equivalent (i.e. covered by a
same right indecomposable interval) or left equivalent. We can assume that x and
y are themselves consecutive elements; then it suffices to see that they are neither
right nor left equivalent.

First, a non-final interval 1 which contains x and y is obviously
decomposable into a finite sequence of disjoint sub-intervals in which 1 cannot be
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embedded. Secondly, a final interval is obviously not left indecomposable; nor is it
right indecomposable; for otherwise, it would be necessary that A; , for example,
be embeddable in a sum of the form U+ A;;; + U+ ...+ U + A;4, . But an interval
of A; which is a restriction of U is countable, since it is isomorphic with the
union of a well-ordered set of reals and the converse of such a well-ordered set. So it
must be that A; is embeddable in Q + Ajsy + Q+ ... + Q + Ajspy , contradicting the
previous discussion.

Theorem 3.15:-

Let A be an infinite scattered chain. If every chain X< A satisfies X.2> A
,then A isindecomposable
Proof:-

By Using Proposition 3.12, decompose A into a finite sum of either right
indecomposable or left indecomposable intervals. Let 1 be one of these intervals,
which is < or| all others under embeddability. We can assume that [ is infinite, and
right indecomposable, to fix ideas. Let k be the number of intervals equimorphic
with [ , in the considered decomposition. Either 1. k is equimorphic with A ;
then if k=1 we are finished. If k<2 ,setting X =1I(k-I) + 1 , we have X<A
proposition 3.5 yet X.2 £ A, contradicting our hypothesis. Or Ik < A ; then
I(k+1)% A ; Proposition 3.5 setting X = L.k , this contradicts our hypothesis.
Theorem3.16 :-

Let A be an infinite scattered chain. If every proper initial interval X of A
satisfies X.2> A ,then A isright indecomposable For A non-scattered, we
have the counterexample Q + w; . If the hypothesis is weakened by requiring that
X be an initial interval strictly less than A under embeddability, then we have the
counterexample (w” + w)- already mentioned proposion 3.1
Proof:

Wwe decompose A into a finite sum of either right or left indecomposable
intervals. We can assume that there are at least two such intervals in the
decomposition; denote by D the last such interval.

If D is infinite and left indecomposable, then take an element d in D and let X be
the initial interval of A with last element d . Then X is equimorphic with A and so A.2
equimorphic with A , thus A is not scattered proposition 3.5 . If D is infinite and right
indecomposable, then again take an element d in D and let X be the initial interval of
A with last element d . Then X.2 > A and X.2 has a last element. Thus the initial
interval Y generated by X.2 satisfies Y.2. > A, and so X.4 > A . Hence either X.2 >
X and then neither X nor A is scattered. Or X > D yet is not cofinal in D ; so A
equimorphic with X + D yields A > D and thus A itself is right indecomposable.
Finally if D reduces to a singleton, then letting X = A-D : we have X.2 > A and even
X.2+ 1 > A (distinguish the case where X has a maximum); hence X.2 > X so that
X 1s not scattered. We obtain the contradiction in the first and in the third cases: so
that only the second case occurs, and A is right indecomposable.
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