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Abstract 
In this research , We prove that the relation of covering  By right or left indecomposable chains , 

is still an equivalence relation , and   the union of both equivalence relations , is again an equivalence . 
After We prove that for any infinte chain, if every chain  <A satisfies .  then A is 
indecomposable . 

  الخلاصة
 هـذه  اتحـاد  وأن كما . تكافؤ علاقة تبقى متصلة بسلسلة اليسار الى اليمين من المغطاة العلاقة بأنه برهنا البحث هذا في 

 A> انـه  بحيـث   مثل اخرى وسلسلة اللانهائية السلسلة علاقة لأية بأنه برهنا ثم. ايضاً متكافئة علاقة تبقى المتكافئة العلاقات

   متراصة تكون A فأن    وتحقق

1. Introduction  
Following (Laver, 1976) a two elements u,v of the base of a chain A are 

equivalent with respect to right indecomposable chains if there exists an interval of A 
which is right indecomposable and contains the elements u and v . On the other hand , 
(Dushnik &.Miller,2002) a doublet is a chain which is the union of a left 
indecomposable interval  and  a right indecomposable  in  decomposable interval and 
a right indecomposable interval both having at least on common element. We prove 
the following facts: the equivalence relation of covering by doublets of 
indecomposable chains has only a finite number of equivalence classes , each class is 
an indecomposable interval or a doublet. 
2. Definitions :  
2.1   Let A be a relation, an element   Z   is between    x   and  y,  if  y ≥ z ≥ x  or  x≥ z 

≥ y  (mod  A) , it called intermediacy  (Ginsburg, 1982).  
2.2   Let   c   be   a  relation . A  subset   X  of its base which closed with respect to the 

intermediate(mod d ) (Ginsburg, 1982). 
2.3   A chain, is a partial ordering whose elements are mutually comparable the chain 

is said to be indecomposable if every interval is trivial (Dushnik &.Miller,2002) . 
2.4   Let, v  be two elements in the base of the chain covering  u  and  v are equivalent 

with respect to doublets if there exists a doublet of indecomposable chain 
covering u and v (Farah, 1990)  . 

2.5   let   R,S  be two relations  , R  is embeddable  in  S iff  there exists  a restriction 
of S isomorphic with R (Higman, 1977).  

2.6     An  Z-sequence is a sequence of length Z, where Z  is the set of integers  
(Laver, 1976).  

2.7     An ordinal is a transitive set which is totally ordered by   €    (Farah, 1990) . 
2.8    Let R , s be  two  relations  ,  R   is said to de  equimorphic  with   S, iff   R  is 

embedded  in    S   and   S   is embedded  in   R    (Higman, 1977). 
2.9 An  aleph  (the cardinal  of well – orderable  set ) is said to be regular  iff 

considered as  an ordinal  (Ginsburg, 1982).  
2.10 Every chain isomorphic with a regular aleph, as   well  as the  converse  of  such  

,  is h-indecomposable (Ginsburg, 1982).  
2.11 A  chain  is  said to be scattered if the chain  Q of  rationales is not embeddable 

in it (Laver, 1976). 
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3. om Of  Choice  (Higman, 1977). 

Every set,  even  infinite  ,  of  non-empty mutually  disjoint  sets  admits  a  
choice  set .[which  is  the  set  A  whose  intersection  with each element  x  of  A  is  
a  singleton.] 
Proposition  3.1 (Higman, 1977).   A chain A is  indecomposable  iff ,  for  every  x < 
1A   [1A  is strictly left indecomposable] with respect to emdeddability,    -2<1A. 
Proof:  Suppose that  A  is indecomposable , and that  . than  , conversely, 
suppose that   A  is decomposable , so   with   and  . yet    A    
satisfies the conclusion  then    so  , similarly  B     
Moreover    So       and  thus  

 or    contradiction. 
Proposition 3.2 (Dushnik  &Miller,2002),  let A be  a chain which is the union of an 
initial  interval and a final  interval . both having at least one common element and 
both of which are right indecomposable then  A  is right indecomposable  (same 
statement for left )  
Proof:     Let    B   be initial interval, C  the finial interval and ∆ their intersection . 
Then   B   is embeddable in ∆ . Either ∆=C so that  A =B is right indecomposable .Or  
C  has the form   D + E   and so   A=B+E is embeddable in   C=∆+E  hence   A  is 
again right indecomposable .  
Corollary :-   
     A chain which is the union of a right indecomposable  initial interval B and a left 
indecomposable final interval C, both infinite and having at least one common 
element. Then the intersection B C , is both left and right indecomposable and 
admits an embedding of the chain of rationales . 
Proposition 3.3 (Dushnik  &Miller,2002)     

There exist  a  strictly  smaller ( with respect to embeddebilty), restriction of  A. 
which has continuam cardinality . 
Theorem 3.4 (Aigner, 2004).   

Let  ω α be an infinite regular alpha . Every chain with cardinatly ωα , admits an 
embedding either of the ordinal ωα , or it's converse ωα’ . 
Proposition 3.5 (Dushnik  &Miller,2002),    

Let A be small a non empty chain with an initial interval and a final interval, 
both disjoint and in each of which A is embeddable . then the chain of rational Q is 
embeddable in A 
Proposition 3.6 (Dushnik  &Miller,2002),    

Two elements x and y are equivalent with respect to doublets iff there exists a 
finite sequence of element from x until y , where two consecutive term are equivalent 
with respect to right of left indecomposable chains    
Theorem 3.7 (Laver, 1976).   

Let  A be a scattered chain and that the h–indecomposable restrictions of A form  

a will–quasi– ordering with respect to embeddability then A is a finity some of           
h- indecompesible chains  
Theorem 3.8 (Laver, 1976).   

Let  A be a scattered indecomposable chain. and suppose that the 
h–indecomposable restrictions of A form a will quasi–ordering with respect to 
imbecility . then A is   h- indecomposable . 
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Theorem 3.9 (Higman , 1977). 

If A is a will partial ordering , then the partial ordering of embeddiblty of words 
in A is a well partial ordering .  
Theorem 3.10 (Laver, 1976).   

A necessary sufficient condition for A to be a well partial ordering is that every        
ω-a sequence in A be good .  
Proposition 3.11 (Laver, 1976).   

Every set of h-indecomposable chains form a quasi- ordering under 
embeddebility.  
Proposition  3.12 (Laver, 1976).   

Every scattered chain is a finite some of h-indecomposable chains . We may now 
demonstrate he next theorems  
Theorem 3.13 :-   

Given a scattered chain, the equivalence relation of covering by doublets of 
indecomposable chains has only a finite number of equivalence classes.  Each 
class is an indecomposable interval or a doublet 
Proof:-  

By using proposition 3.12 we decompose our chain ,into a finite number of right 
or left indecomposable intervals. Replace any two contiguous such intervals by their 
union, provided this union is indecomposable. When it becomes impossible to effect 
these replacements, then the intervals thus obtained, or the unions of two contiguous 
intervals, constitute the covering by doublets. The uniqueness of this decomposition 
follows from proposition 3.2 and Corollary.  
Theorem 3.14  

For a non-scattered chain, the relation of covering by right or left indecomposable 
chains, is still an equivalence relation. Hence the union of both equivalence relations, 
is again an equivalence relation. However there can be infinitely many equivalence 
classes for this equivalence relation 
Proof :-  

We Start with   A0 = the chain of the reals by proposing 3.3, we have a strictly 
decreasing (with respect to embeddability)   ω-sequence of chains    Ai  (i  integer)   , 
where each    Ai    has cardinality of the continuum; moreover we can require that   Ai 

   Ai+ 1 . ω   for each    i. On the other hand, we have    Q ≥ Ai .    for each i   ; 
indeed   Ai    has at least   ω1   many elements, and neither the. ordinal   ω1 nor its 
converse is embeddable in the reals, hence in    Ai   :by theorem 3.4 the particular case 
where   α = 1  . Thus    Ai     Q + Ai + 1+Q +...+ Q + Ai+h for any two natural 
numbers  i   and    h  . Let    U = ω1’ + ω1    and consider the sum of the      ω-sequence    
A0 + U + A1 + U +... + U + Ai + U + . ..   .We shall  prove that each interval  
isomorphic with    U is one of the desired equivalence classes; hence that there exist 
infinitely many equivalence classes. 

Indeed, take two elements    x   and   y    in two consecutive components: for 
example x    belongs to   U    and   y    belongs to   Ai    following the considered 
component   U . We must join   x   to   y   by finitely many intermediate elements, 
such that any two consecutive elements be either right equivalent (i.e.  covered by a 
same right indecomposable interval) or left equivalent. We can assume that    x    and   
y    are themselves consecutive elements; then it suffices to see that they are neither 
right nor left equivalent. 

First,    a non-final interval    I    which contains    x    and   y    is obviously 
decomposable into a finite sequence of disjoint sub-intervals in which    I    cannot be 
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embedded.    Secondly, a final  interval is obviously not left indecomposable; nor is it 
right indecomposable; for otherwise, it would be necessary that    Ai   , for example, 
be embeddable in a sum of the form   U + Ai+1 + U +  ... + U + Ai+h  . But an interval 
of   Ai    which is a restriction of   U    is countable, since it is isomorphic with the 
union of a well-ordered set of reals and the converse of such a well-ordered set. So it 
must be that   Ai    is embeddable in   Q + Ai+1 + Q + ... + Q + Ai+h   , contradicting the 
previous discussion.  
Theorem 3.15:-  

 Let    A   be an infinite scattered chain.  If every chain    X< A    satisfies X.2 ≥ A 
, then    A    is indecomposable 
Proof:-   

By Using Proposition 3.12,  decompose   A    into a finite sum of either right 
indecomposable or left indecomposable intervals. Let    I    be one of these intervals, 
which is ≤   or |  all others under embeddability. We can assume that   I is infinite, and 
right indecomposable, to fix ideas.  Let    k    be the number of intervals equimorphic   
with    I   , in the considered decomposition. Either    I. k is equimorphic with   A ; 
then if    k = l we are finished.  If    k ≤ 2  , setting X = I(k-l) + 1  , we have    X< A  
proposition 3.5  yet    X.2    A , contradicting our hypothesis. Or    I.k < A ; then    
I(k+l)   A ; Proposition 3.5 setting X = I.k , this contradicts our hypothesis.                                
Theorem3.16 :- 

 Let   A   be an infinite scattered chain.  If every proper initial  interval X   of   A    
satisfies    X.2 ≥  A , then    A    is right indecomposable For   A   non-scattered, we 
have the counterexample    Q + ω1  .  If the hypothesis is weakened by requiring that    
X    be an initial interval strictly less than    A under embeddability, then we have the 
counterexample (ω2 + ω)- already mentioned  proposion 3.1 
Proof: 

Wwe decompose A into a finite sum of either right or left indecomposable 
intervals. We can assume that there are at least two such intervals in the 
decomposition; denote by D the last such interval. 

If D is infinite and left indecomposable, then take an element d in D and let X be 
the initial interval of A with last element d . Then X is equimorphic with A and so A.2 
equimorphic with A , thus A is not scattered proposition 3.5 . If D is infinite and right 
indecomposable, then again take an element d in D and let X be the initial interval of 
A with last element d . Then X.2 ≥  A and X.2 has a last element. Thus the initial 
interval Y generated by X.2 satisfies Y.2. ≥  A , and so X.4 ≥ A . Hence either X.2 ≥ 
X and then neither X nor A is scattered. Or X ≥ D yet is not cofinal in D ; so A 
equimorphic with X + D yields A ≥  D and thus A itself is right indecomposable. 
Finally if D reduces to a singleton, then letting X = A-D : we have X.2  ≥  A and even 
X.2 +  1  ≥  A (distinguish the case where X has a maximum); hence X.2  ≥  X so that 
X is not scattered. We obtain the contradiction in the first and in the third cases: so 
that only the second case occurs, and A is right indecomposable. 
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