dyblyolldeololl-d il d s -dralollg dygy il Sluwlyatl dloo
p 2023 Jolyi- elyjuddl pgle - LUl alaadl - ggpuirallg 5Ll saall
] doi.org/10.52866/esj.2023.02.22.14 ]

PULSED LASER ABLATION METHOD
FOR PRODUCTION OF Zn-Ag ALLOY NANOPARTICLES

M. A. AHMED* , W.Y. Khudhair?,
“ [raqi Ministry of Education, Diyala, Iraq.
*m2amaiss@gmail.com
Abstract :

In the past ten years, researchers have become interested in a contemporary and effective tech-
nique called pulsed laser ablation of a metallic target in liquid (PLAL). Bimetallic liquid colloi-
dal (Zn/Ag) alloy nanoparticles were produced using the pulsed laser ablation in liquids (PLAL)
technique, excised in liquid sodium dodecyl sulfate (SDS) (5SmM and 10mM SDS), and then put
through morphological (TEM), optical (UV-VIS), and structure (FTIR) studies. The (TEM) test
findings showed that the (NPs) are spherical and semi-spherical in shape, and they also showed
that the absorption spectra showed the peak value of surface plasmon resonance (SPR), which was
(410 and 408) nm for the (Cu/ Ag) alloy formed in solution (SDS) correspondingly. Following
FTIR analysis, it was discovered that the following effective groups were present in the product
samples: (O-H, C-H, C-O, Ag-O and Zn-O).
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1. Introduction

Bimetallic nanoparticles, which are
composed of two distinct metals, have
received more scientific and techno-
logical attention than monometallic
nanoparticles. The constituent metals
and the nanometric size of bimetallic
nanoparticles define their properties.
These are produced by combining var-
ious architectural shapes of nanopar-
ticles of metallic material. They have
the capacity to enhance the energy of
the metallic mixes’ absorption band,
producing a flexible biosensing device.
Size-dependent  optical, electrical,
thermal, and catalytic effects are some
examples of these characteristics that
can differ from those of pure elemental
particles [1]. Bimetallic nanoparticles
can have their composition, atomic ar-
rangement, shape, and size altered to
alter their characteristics. Due to their
superior optical and optoelectronic
properties compared to individual/pure
metals, bimetallic/alloy nanoparticles
(NPs) have gained interest in a num-
ber of fields over the past ten years,
including Photonics, which catalytic
processes, solar cell information stor-

age, and surface-enhanced Raman

scattering/spectroscopy (SERS) [2-7].
A quick, easy, non-catalyzed approach
for creating pure colloidal metal NPs
is (PLAL). It involves ablating a metal
item submerged in liquid using strong
laser radiation. Laser characteristics,
including the wavelength of the laser,
pulsing duration, and rate of repetition
has an impact on the productivity and
the particle size of the created NPs.
During the synthesis process, a number
of experimental parameters can affect
the size, shape, crystallinity, and com-
position of NPs [8]. In general, laser
ablation processes that involve one or
more steps can be used to create alloy
nanoparticles, such as 1) laser ablation
of a bulk alloy target that is submerged
in a liquid, 11) laser irradiation of a met-
al target while it is immersed in precur-
sor solutions (HAuCl,/AgNO,), or iii)
laser irradiation of individually pre-
pared colloidal mixtures.

2. EXPERIMENTAL DETAILS
2.1 Alloy Nanoparticles synthesize
by pulsed Laser Ablation.

The materials used as targets
for the ablation process were highly
pure Zn and Ag plates. The target was
cleaned using acetone as solvent and
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washed with ethanol and distilled wa-
ter in an ultrasonic bath for 15 minutes
to remove organic pollutants. In all the
experiments, the level of the solution
was 2 mm above the target surface.
The nanostructures (Zn/ Ag) alloy was
prepared at (A=1064nm , f= 2Hz,
E=300J) where by the sodium dodecyl

sulfate (SDS) solution (5mM and

Ag Targes

£n Target

10mM) was added to a glass bottom
holding a silver target, and the glass
bottom was then subjected to 500 la-
ser pulses. Next, after putting the zinc
target within the colloidal Ag solution,
we shot a laser at it (500 pulses). A
(Zn/Ag) alloy nanostructure will also
be obtained. Figure 1 shows the sche-
matic diagram of the PLAL system.
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Fig. 1 Schematic diagram of PLA system.

2.2 Characterization Techniques

The surface plasmon resonance
(SPR) and absorption spectra of the
colloids were recorded using (UV-Vis)
spectroscopy type (Double Beam 1800
UV Spectrometer), which were used to
study the structural characteristics of
Au nanoparticles (Shimadzu, Japan).
The spectrum was measured in a quartz
cell with a (1 cm) optical path at room
temperature.

3. RESULTS AND
DISCUSSIONS

TEM Analysis

As expected, nanoparticles of Ag
and Zn in SDS solution were success-
fully synthesized spherically sequen-
tially due to the mechanism of ablation
in PLAL technique. And it was exam-
ined using TEM, which distributes the
surface morphology and size, as well
as the particle distribution and shape,
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which were made clearer by TEM in-
vestigation. By comprehending the
mechanism of nanoparticle generation
during laser ablation in the liquid using
a nanosecond laser, it is possible to ex-
plain why surfactants reduced the size
of NPs, as shown by our studies. Its
adiabatic expansion causes the plume
to condense and cool, which causes
the plasma plume species to form by
collisional sticking and aggregation
and then disperse in the liquid medi-

um to serve as nucleation sites for the
new nanoparticle species via diffusion.
Therefore, if there are surfactants in
the solution, they can adsorb and cover
the current nanoparticles, blocking the
creation of new nanoparticles. [9,10].
This indicates that when the cavita-
tion bubbles burst, more nanoparticle
growth is possible. The TEM pictures
of samples of colloidal metal nanopar-
ticles are shown in Figure 2.

Ve

c-(Zn NPs/ SmM SDS)

e-(Zn-Ag Alloy / 5mM SDS)

Fig. 2. TEM images of colloidal metal nanoparticles samples.

b- NPs/10mM SDS),
(e NPe/ 2omM SO

f-(Zn-Ag Alloy/ 10mM SDS)
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UV-VIS Analysis and Energy
Gap Calculation
Figure (3) shows the optical spec-
trum of absorption of alloyed Ag, Zn,
and Zn/Ag NPs created by a picosec-
ond laser in SDS solution. Ag and Zn,
two distinct substances, helped to cre-
ate the Ag-Zn spectrum. The spectrum
of Ag nanoparticles has two peaks.
Surface plasmon resonance creates the
second peak, a strong transition peak at
410 nm, whereas inter-band transition
creates the first peak, a modest absorp-
tion peak in the 280-290 nm region.
Although the Zn absorption spectrum,
which can be separated into two re-
gions—the UV area and the visible re-
gion—Ahas a larger absorption rate than
the other spectrum in the illustration.
Upon reaching the visible zone, the
UV region’s absorption rate dramati-
cally declines. Figure (4) depicts the
absorption spectra of Ag-Zn, which ex-
hibit a significant peak in the UV range
that is practically exact to the Zn band.
Because pure Ag has a high peak at
this wavelength of about 400 nm, the
second peak that appears in the visible
range is produced by the surface plas-
mon resonance of the Ag nanoparticles
and 1s due to the presence of zinc. The

ratio of ablated Ag and Zn nanoparti-
cles in the solution determines the gen-
eral form of Ag-Zn nanoparticle optical
absorption spectra. For instance, the
surface plasmon resonance (SPR) peak
will arise when the number of ablated
Ag nanoparticles is increased, indicat-
ing a rise in the concentration of Ag in
the solution. Yet when the Zn nanopar-
ticle concentration rises, a sharp peak
at 200-250 nm emerges. Long-term
irradiation increased the number of
ablated nanoparticles in the solution,
whereas the (SPR) peak vanished as a
result of nanoparticle aggregation and
accumulation, which increased their
weight and caused them to sink to the
bottom of the solution, [12] and a shift
in the absorption spectrum suggests
particles in coated Zn may be smaller
than the excitons’ Bohrradius [13]. Fig-
ure (5) demonstrates that the shrinkage
of the nanoparticle size as a result of
quantitative confinement is what caus-
es the produced nanoparticles’ optical
energy gap to drop in solution (SDS).
Hence, obtaining tiny size particles is
ideal for the bigger energy gap value
[14,15].
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Table 1. Absorption, surface Plasmon resonance and energy
gap values of Ag, Zn and Zn/Ag alloy nanoparticles.

MNanoparticles Solvent Surface Plasmon
Types Resonance E:(eV)
SPR(nm)
5mM SDS 290, 410 2.71
Ag NPs
10mM SDS 290,408 2.65
5mM SDS 289 2.38
Zn NPs
10mM SDS 289 2.5
In/ Ag alloy 5mM SDS 291,402 3.03
10mM SDS 290 2.92
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Fig. 3. UV-Visible absorption spectra of colloidal nanoparticles.
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Fig. 5. Direct band gap estimations of colloidal nanoparticle samples.
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FTIR Analysis

Figures (6,7) illustrates the presence
of four distinct bands in the FTIR spec-
trum of samples prepared for (Ag, Zn
and Zn/Ag) nanoparticles in different
concentration of SDS , as it was dis-
covered that there is a strong absorption
peak at (3448.4) cm™ caused by vibra-
tions of the hydroxyl group (O-H) [16],
and peak at (2860.4, 2926) cm™ refers
to the bond CH, while the expansion at
the wave number (2092.7, 2098.5 cm™!
) refers to the alkene in the bond (C-H)
, while it refers to the aliphatic amines
(C-0) the vibrations are stretched at the

wave number (1635 cm™, 1629.8 cm™),
indicating an expansion pattern of the
total carbon CO, bound to the metal
surface and bound to the compounds.
While we also see the emergence of
a peak at (1276.8cm™) for samples
made (SDS) solution, demonstrating
the bond of symmetry and CH- asym-
metry, where it suggests vibrations of
the CH3-N+ portion, moiety indicat-
ing that (SDS) is capped onto NPs via
their head group [17,18]. Also, in both
figures the band which below (582 cm-
) is in charge of the Ag and Zn NPs
forming and its oxides [19].
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Fig. 6. FTIR spectrums of nanoparticles prepared in SDS.
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Fig. 7. FTIR spectrums of nanoparticles prepared in SDS.




dudlyell deoladl-dyuil d s - duolellg dygu il Sluwlyadl ddoo
159 J{ 02023 ng__gi-cl,;j__q_éJngJ.c-E,JLUIJ.L'_z.oJl-QgpL_eJlg ALl el

4. Conclusions
In conclusion, Ag/Zn nanocompos-
ite was successfully synthesized using

a simple and efficient method based on

the laser ablation (Nd: YAG, 1064nm,

300 mJ and 2Hz) of Ag and Zn plates

immersed in the solution from SDS.

The results of the present comprehen-

sive investigation are as follows:

1. Zn-Ag alloy NPs were made utiliz-
ing the first subsequent laser abla-
tion process. The  development
of alloy NPs is indicated by the
solitary SPR peak from the Zn/Ag
alloy NPs’ UV-visible absorption
spectra that can be seen between
pure NPs. The locations of these
absorption peaks indicate the parti-
cle size, shape, and composition of
the prepared samples.

2. UV-Vis absorption spectra and TEM
pictures clearly showed the forma-
tion of homogenous alloyed parti-
cles. Where The increase in the en-
ergy gap of colloidal Zn/Ag alloy
NPs could be due to the decreased
size of the ablated particles as a re-
sult of the quantum size effect.

3. FTIR analysis was performed, and
it was discovered that the produced
samples include the effective groups

(O-H, C-H, C-0O, Zn-0, and Ag O),
as well as bending and stretching
vibrations brought on by the pres-
ence of SDS.
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