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The optimal approximation of functional subsets within standard spaces facilitates data
modeling and management of linear and nonlinear systems. In this paper, the best approximation in a
real standard linear space X is described by the Kolmogorov theorem. In addition, the concepts of
proximal set, smooth space, sun, sun point, and their relationship with the Kolmogorov condition are
discussed. Finally, the effectiveness of using the best approximation in practical situations to achieve
high accuracy in the computation of standard linear spaces is highlighted.

NOMENCLATURE
W a topological space that is compact and Hausdorff
W(T) the space of real continuous functionson T
X Real Normed Spaces
T T is a compact Hausdorff topological space
crit Critical Point

1. INTRODUCTION

In recent decades, there has been an increasing
need to study the importance of best approximation
within the field of functional analysis and in particular
within the field of standard linear spaces, [1-4]. This
study seeks to provide a detailed description of the best
approximation in real normed linear space X through a
specialized theorem that highlights the main aspect of the
theoretical trends. Furthermore, the fundamental
concepts within this trend related to close sets, suns and
sun points, how these concepts are interconnected, and
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their importance for Kolmogorov’s condition are
investigated [5]. This provides comprehensive coverage
of approximation theory, practical effect, and its
extension into real standard spaces. The following will be
the setting for this paper: We refer to W to be as a
topological space that is compact and Hausdorff [6].
W(T) will denote the space of real continuous functions
on T unless explicitly stated, and the complex space
W(T) is also being considered. The uniform standard is
installed in the spaces W(T). Let B be a non-empty subset
of W(T). The uniform norm is defined by
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[l ull= max |u(t)] forallue W(T), 1)
teT

And

d(u,B)zillggllu—hII for uew((@), )

Itisk

nown as the distance between u and B. Therefore,

Psw)={h€B:lu—hl=d,B)}, (3)

As a collection of the best approximations of u from B.
Now given u € W(T'), the main problem is finding an
elementhy € B such that [ u —hg I<u—=h 1, for all
h € B. Such an element, if present, is called the best
approximation element (closest element ) to u from B.
The number || u — hy |l is then the distance from u to B
and d(u, B) =l u — hq Il. The best approximation when
Pg(u) is non-empty? (the members of Pg(u) will be
called best approximation to u from B), that is, which
properties of B and the space ensures that Py (u) # @ for
each u € W(T), in this case, B is said to be proximinal
in W(T). This is obtained by the following theorem:
Theorem 1: [6]. Let B be a finite dimensional subspace
of a normed linear space X. Then u or each u € X , such
that 3 an element in B of best approximation to u.

Another characterization of best approximation in W(7")
is given by the following theorem .

Theorem 2 .[7]. A function hy in B is the best
approximationtou € W(T) & VhEB

maxRe {[u(t) ~ ho(]AD = 0
where T =crit(u — hy).

Lemmal.LetR = {e + A(x — e):A = 0}. Then
YBG Iy —el)= intN{p =" ((—, 0] : ¢
EX ,ple—x)=lgllle—xI}

= (g7 ((-0()): 0
EX", ple—x)=llglllle—xI}.

Proof: Suppose B be a magnification with center s, that
is,

B:X - X
B(t)=e+A(t—e), fort € X,

where A > 0. B is a bijection. On the other hand, the open
ball B(x, | x — e II) and the single point set {e} are two
disjoint convex sets. So there exists (by the separatior
theorem, [8]) ¢ € X such that

ple—x)=llollle—xI
o) < p(e), forall t € B(x,lx—el).

Since B(B(x, Il x —e ) =B(B(x),ll x—e ) then
for each z€ B( B(x),Allx—ell ),z=M(t) =s+
At —e), for some te€B(x,llx—el). It follows
that p(z) = p(e) + dp(t —e)(t —e) < p(e) . So for
each yin R and z€BW,ly—el)ze
97 ((—0,9(e))), for each ¢ € X" for which ¢(e -
x) =l ¢ Il e—x Il. That is

YBO. Iy —ell) < inth{ P~ ((—», 0@ :p €
X", ple=x)=lgpllle=x|}c

N(o ((-,0()): 0 X, ple—x) =l @ Il
e—x1}.

Now suppose that z & U,, € RB(y, |l y — e II). Thus the
open set U,, € RB(y, Il y — e |I) and line scgment [z, e]
are two disjoint convex sets and so by separation thcorem
thero exists @ € X* that is p(e —x) =l @ lllle —x |
which separate two sets [z,e] and U,z By, Il y —e II),

e,z @1 ((—oo,qo(e))) and so

z ¢ n{go‘l ((—oo,q)(e))) rQEXT, ple—x) =
lolile —xIl }

2. KOLMOGROV'S AND SUNS DESCRIPTION

Let B is a subset of X that is not empty and (B
may not be a linear subspace of X). Ifx € X \ Band e €
Pg(x), it is always true that e € Pg(y) for y =e +
Alx—e), for all A€[0,1] (since y=Ax+(1—-A)e
then

Ilx=—yl+ly—ell=A-Dllx—el +Alx —ell

=llx —ell

and for each h € B it follows that
ly=hlzllx—hll-llx=ylI=lx—ell=lx—yI
=ly—el,
thatis, e € Pg(y)). The point e is said to be a Solar point
in B for x,if e € Pg(y) forevery y = e + A(x — e), for
A € (1,0). That is, e is a Solar point in B for x, if e €
Pg(y), for every y in the half-line R ={e + A(x —
e):A = 0}. A set B is said to be a sun in X , if for each
x € X \ B,the set Pz(x) contains a Solar point for x and
the set R denotes a ray of the sun which passes through
x. There are numerous variant concepts:
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Alpha-sun, beta-sun, gamma-sun and delta -sun, meta
suns and strict suns. The concept of “sun’ seems to be the
most important. It was formulated in the 50’s by Efimov
and Stechkin [8]. It is important by the reason of results
such as the following theorem.

Theorem 3: [9,10]. (Vlasov): If dim X < coand Misa
Chebyshev subset of X then B is a sun.

A space X is said to be Smooth if for each x € E(X)
(the sphere E,(0,1) in X) there is a unique hyperplane
of support to E(X) at x. The condition is equivalent to
the condition that the norm |I. | be Gateaux differentiable
at each point of X'\{0}.

Theorem 4. If X isa Smooth space and B isasunin X
then B is convex.

Proof: Suppose that x ¢ B, so there is a Solar point in B
for x,say e € B. Ther B(x,lx —e ) N B =@ and for
each y in the half-line R={e+ A(x —e):1 =0}, it
follows that B(y,lly —e ) n B = @. So (UyERB(y' I
y—e II)) NB = @. Since X is a Smooth space then
Uyer B(y,ly — e ll) = H, is an open half- space ( by
lemma 1) . So its complement is a closed half-space
containing B and not x. Let U, = X'\ H,.. The intersection

over all x ¢ B of these closed half-spaces is convex and
equal to B,thatis, N, € MF, = Bisconvex. m

The following theorem is derived from Theorems 1 and
2 as well as Vlasov's Theorem [10].

Theorem 5: If dim X < oo and X is a Smooth space then
a Chebyshev subset of X is a closed convex set.

The concept of Solar point is what one needs to make
sense of Kolmogorov’s Characterization of best
approximation.

Theorem 6. Suppose that x € X\ B and h, € M. Then
the following facts are equivalent:

1. hy € Pg(x) and hy is a Solar point for x in B

2. [ho,RINB(x, Il x—ho ) = @, for all he B
(that is, hy € Ppy, p1(x), for each h € B).

3. 3-For any h € Bthere exists ¢ €ext E(X*)
suchthat @(hg—x) = hyg—x I,

o(h) = @(ho),
Where E(X*) is the unit sphere in X*.

4. each h € B, there exists ¢ € E(X*) such that
@(hy —x) =l'hy —x I, @(h) = @(hy) .

It is worth noting that the third condition of the above
theory represents the abstract form of Kol- mogorov’s
condition. Let X = W(T), where T is a compact
Hausdorff topological space, B is a subspace of W(T)
and f € W(T) \ B,since W(T)* = M (T), the space of
regular Borel measure on 7', part (3) implies that, for each
g € B, there exists measure u €ext E(B(T)) =ext
E(X™) such that :

p(ho —u) = llhg — ull,

u(h) = p(he).

On the other hand,

ext E(B(T)) ={n€B@): tu{t) =lpul=1
forsomet € T} = {u € B(T):
lpll=1,]supp ul =1}

={u=+e(t): teT},

where e(t) = &, is evaluation functional. This implicitly
means that:

ethg —w)(®) =l hg —ull,
e(h—ho)(®) 20,
where ¢ € {—1,1}. It follows that
lho(t) —u(®| =l ho —u ll,
(ho(®) — u(®))(h(t) — he(®)) = 0.

Thus, by the notation of Kolmogorov’s theorem, t € T
andforh, =h,—h €B

[u(®) — ho(O]r (1) 2 0,
That is, in the real case, rtxgx[u(t) — ho(®)]h () = 0,is

satisfied.

Theorem 7. Let B be a finite dimensional subspace of
W(). If u € W(T)\B and h, € B, then, the
conditions listed in the following points are equivalent:

1. hy €Pz(u),
2. Kolmogorov’ s condition:

maxRe {[u(t) ~ hy®Ih(D} = 0,

for each h € B, where 7;, =crit(f — hy) ,

3.The condition of the complex Characterization
Theorem:
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0€e co{[u(t) - ho(t)] v(t) : t € crit(u — ho)} )

4.There exists a non- empty finite subset A = {t,, ..., t;}
of T and there is a non-zero value a(t) for t € A with
Yieala@®] =1 , such that

Z a(OV(D) = 0,

teA

and

D« OO = ho®] = fu—hol,

teA

5.There exists a non-empty finite subset A = {ty, ..., t,}
of " and there exists a non-zero a(t) fort € Awith )¢ 4
|a(t)| = 1 such that we obtain

f®) —h@)=c@lu—hyll, forteA,
where a(t) =sgn a(t), for t € A.
Proof: The equivalence (1) < (2) and (a)  (c¢) are in
Kolmogorov’s’Characterization implies that (1) < (5).
We show that (4) & (5). Now assume that (4) holds.
The equality in above theorem implies that

I —hy ll= Z a Ou(t) — ho(8)]
teA
< ) 1a®I 1u® — ho(®) |
teA

Thus

D la®lu® = ho® 11 =l w—ho |
teAd
=D a@®u©® - h©],

teA

and so a(t)[u(t) — he(t)] = 0, for t € A. On the other
hand, |a(t)| > 0, %, €Ala(t)| =land

lu(t) —ho(®)| <llu—holl , for t€A.

It follows that [u(t) — ho(t)| =l u — hy Il , forall t € A4,
that is, A c crit(u — hy).

since u not in B then u(t) — hy(t) # 0, for t € A. So

a(t) = 0, fort € A implies that

a(t)[u(t) — hy(t)] = 0, for all € A . Therefore,
a@)[u) —he(t)] >0 , forall teaA,

that is, a(t) = sgn a(t) = sgn [u(t) — hy(t)], for all t
in A . Since A ccrit(u — hy) then u(t) — hy(t) =
o®)llu—hell, for te€AThus (4) - (5). Also,
obviously (5) » (4). m

Remark 1. In Theorem 7. (4), (5), 1< r <n+ 1 In the
actual instance and 1 < r < 2n + 1 in the complex case
and the set A is a basic set for B and u.

Theorem 8: If r is the smallest integer such that part (4)
of Theorem 7 is satisfied then for each j =1, ...,r the

functional v(ty), ..., v(t), .., v(t,) are linearly
independent.

Proof: Let there exists j,1 <j <r such that the
functionals

v(t1), o, v(8), o vt

are linearly dependent. So v(t,) € sp{v(t):1<i <
r,i # j,k} for some k # j v(t;) € sp{v(t;):i #j,1<
i <r}then (), v(ty) € sup{v(t): i#j,k, 1<i<
r}, thatis, dim(sp {v(t;)): 1<i<r}) <r-—2.

Therefore dim(B|,) <r —
2 since (sup{v(t;):1 <i<r} = (B|y) anddimB* =
dim B). Let hy € Pg(w). It follows that 0 € co{(u(t) —
ho(£))v(t):t € A} . Now by implication (1) = (4) in
Theorem 7, applied to B|, € C(A4),ul, and hy|A, there
existsasubset A’ € Awithcard A’ < dimB|, +1<r —
1 and there exist non-zero a'(t) for each t € A" with
Yiea la' ()] = 1, such that

Z a () v = 0.

teA’

But by our hypothesis r is the smallest integer such that
Yeeaa(®v() =0 is satisfied. Which is a
contradiction. This completes the proof. =

Remark 2. In the proof of above Lemma, we claimed
that sp e(7) = B*. If it is not, then sp e(7") & B*.Then
there exists ¢ € B*\{0} such that ¢ (sp v(T)) = {0}. But
@ =h for some heB and v(T)(h) = {0}, that is,
h(T) = {0}, which is a contradiction. Finally, future
research may focus on translating these findings into real-
world scenarios, such as mathematical optimization as in
[10-14].

3. CONCLUSIONS

According to Kolmogorov's theorem, the best
approximation in a real standard linear space X is
described. Furthermore, the concepts of proximal set,
smooth space, sun, sun point, and their relationship with
the Kolmogorov condition are discussed. The
effectiveness of using the best approximation in
situations where high accuracy in calculating standard
linear spaces is required is revealed.
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