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Abstract: 

 
In this paper, we studied the numerical method to solve certain stochastic differential equation 

because   the difficulty of finding solution  analytical of many stochastic differential equations. Heun's 

numerical method in 2-wiener process  was used to perform numerical simulations for a number of 

applied examples by finding the difference between the numerical solution and the controlled solution of 

the stochastic differential equation. 

 :الملخص
 

تم استخذام الطزيمت  .ئيت معينت بسبب صعوبت إيجاد حل تحليلي للعذيذ مه المعادلاث التفاضليت العشوائيتفي هذا البحث ، درسنا الطزيمت العذديت لحل معادلت تفاضليت عشوا

 .تيلإجزاء المحاكاة العذديت لعذد مه الأمثلت التطبيميت مه خلال إيجاد الفزق بين الحل العذدي والحل الذليك للمعادلت التفاضليت العشوائ wiener-2 العذديت لهيون في عمليت 
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I.  Introduction. 

    The numerical analysis of stochastic 

differential equations differs significantly 

from that of ordinary differential 

equations due to peculiarities of 

stochastic calculus. Stochastic 

differential equations (SDEs) driven by 

Brownian motions or Lévy processes are 

important tools in a wide range of 

applications, including biology, 

chemistry, mechanics, economics, 

physics and finance [2, 3  , 4,  5, 

6,11,12]. Those equations are interpreted 

in the framework of Itô calculus [2, 45] 

and examples are like, the geometric 

Brownian motion, 

dX(t) = µX(t)dt + σX(t)dW(t), X(0) = 

X0,   … (a)                                                            

which plays a very important role in the 

Black-Sholes-Merton option pricing 

model, or, the Feller’s branching 

diffusion in biology,  

dX(t)=αX(t)dt+σpX(t)dW(t),X(0)=X0>0,  

…(b)                                                                                         

      where W(t) is the Brownian motion 

in both examples. Another example of 

SDE driven by a Lévy process is the 

following jump-diffusion process 

[8,14.15] 

dS(t)=a(t,S(t))dt+b(t,S(t))dW(t)+c(t,S(t))

dJ(t),0≤t≤T, …(c)                                                              

    where the jump term J(t) is a 

compound Poisson process PN(t) i=1 Yi , 

the jump magnitude Yi has a prescribed 

distribution and N (t) is a Poisson process 

with intensity λ, independent of the 

Brownian motion W(t). This equation is 

used to model the stock price which may 

be discontinuous and is a generalization 

of equation (1 ). Usually, the SDEs we 

encounter do not have analytical 

solutions and developing efficient 

numerical methods to simulate those 

SDEs is an important research topic. The 

goal of this thesis is to introduce the 

recent development of those numerical 

methods. 

         Early attempts are made in the area 

of numerical methods for stochastic 

differential equations in 2-wiener process 

using Heun's method[1,8]. provides an 

early account for constructing a 

numerical method for solving stochastic 

differential equations in 2-wiener process 

. This method is known as the Milstein 

method[1,4,8]. proved an application of 

the central difference and predictor 

methods for finding a solution of 

differential equations with stochastic. 

Numerical methods for SDE's 

constructed by translating a deterministic 

numerical method (like the Heun's 

method or Runge-Kutta method[6,16]. 

and applying it to a stochastic ordinary 

differential equation. However, merely 

translating a deterministic numerical 

method and applying it to an SDE will 

generally not provide accurate methods 

[7,14,15]. Suitably appropriate numerical 

methods for SDE's should take into 
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account a detailed analysis of the order of 

convergence as well as stability of the 

numerical scheme and the behavior of 

the errors. The Heun's method for SDE's 

is the simplest method which is a direct 

translation of the deterministic Heun's 

method, but according to [4,9]this 

method is not very accurate. However, 

this method is useful in that it provides a 

starting point for more advanced 

numerical methods for SDE's. 

Definition .1[6]. Let                be a 

stochastic process such that for any 0   

t1< t2  T 

              

2

1

t

t


a(t) dt + 

2

1

t

t


b(t) dw(t) 

where a 
1L[0, T], b 

2L[0, T]. Then 

we say that dw(t) has stochastic 

differential dx, on [0, T], given by: 

dx(t)  a(t)dt + b(t)dw(t) 

Observe that x(t) is a no anticipative 

function. It is also a continuous process. 

Hence, in particular, it belongs to  L[0, 

T]. 

Theorem1[7]:  Let d(t) adt + bdw(t), 

and let f(x, t) be a continuous function in 

(x, t)   
[0, ) with                                                  

partial derivatives fx, fxx, ft. Then the 

process f((t), t) has a stochastic 

differential, given by: 

df((t), t)  [ft((t), t) + fx((t), t)a(t) + 
 

 
 fxx((t), t)b

2
(t)]dt + fx((t), t)b(t)dw(t)  

…(1) 

This is called the Itô formula. Notice that 

if w(t) were continuously differentiable 

in t, then (by the standard calculus 

formula for total derivatives) the term 
 

 
 fxxb

2
dt will not appear. 

          Our work is solving stochastic 

differential equation in 2-wiener process 

, by using  Heun's (modified Euler's 

method) .Moreover we apply some 

examples to show that the numerical 

solutions of different examples are 

implemented properly. 

II.Main Results: 

     In this section we can state and prove 

the Lemma by using theorem 1[7]. 

Lemma1. :  Suppose that  

                         
            …(2) 

where                                  are 

continuous functions which is defined on 

interval        , 
provided that         are wiener 

process with components 
1
tW
, 

2
tW

, …, 
m
tW

. 

Proof. We integrate the SDE the equation 

(2) , we get  
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             ∫          
  

  
 

∫  (     
)    

 

  
 

 ∫  (     
)    

 

  
 …(3) 

Also let     = ∫          
    

     
 

 ∫        
    

     
 

where trapezoidal rule               
,   

h =             . 

And             
       

      
∏     

         

...(4)                                                                                             

where            ∑      
 
   
   

        ,  

where        =  
     

     
    

And putting n=1 

         ∑      
 
   
   

 
     

     
  

     

     
 

      
     

     
      Hence   

       
     

     
       

     

     
       

 
         

      
∏     

      Thus if       = 

∫        
    

     
=  ∫ (

     

     
       

    

     

     

     
      )   + 

∫
         

      
∏     

        
    

     
  

Where 

         

∫
         

      
∏     

        
    

     
                 

Then 

      ∫        
    

     
 ∫ {

        

        
 

    

     

      
        

        
      }    

=
     

 
              

 

 
       

      ...(5)                                                                                                   

And if  

   ∫  (   
)    

 

  

 ∫  (     
)    

    

     

  ∫          

    

     

 
     

 
              

 ...(6) 

and  

   ∫  (   
)    

 

  
 

∫  (     
)    

    

     
 

 ∫          

    

     
 

  -  

 
       

      …(7) 

Then Euler Scheme method which is  

                 

Or 
                                         

  …(8) 

The Equation (8) in equations (5) , (6 ) 

and (7)  we get 
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      And    
 

 
       

                    ….(9) 

      where x  {xt : t0  t   T} is an Itô  

process with initial value      . 

Subdivide the interval [t0, T] into N-

subintervals according to the following 

discretization:  t00<1< … <n< … <N 

T . 

 

                                                                 
{            }              

 the iterative scheme:  

         
 

 
                 

        + 
 

 
⌈                

     ⌉    
      

 

 
       

                    
  ...(10)                                                                                                                                                       

for n  0, 1, …, N  1; with initial value 

y0 x0.  

           Equation (10) is the Itô -Taylor 

expansion of xt() in equation (3). The It

ô -Taylor expansion is useful in 

approximating a sufficiently smooth 

function in a neighborhood of a given 

point to a desired order of accuracy.     

Thus, considering the first three terms of 

equation (10) provides the Heun's 

scheme in (10) where each term in the 

right hand side of equation (10) 

approximates the corresponding term on 

the right hand side of equation (3).             

For brevity, equation (10) is written as: 

                        
       

  

where 

                      And     

         ∫   
 

  
 ,           

 

     ∫    
 

  
 , a a(n, y(n))  , b b(n, 

y(n)) , and    y(n). 

    Illustration (WithAbsolute Error Test): 

The stochastic differential equations 

Considered by: 

                           

{
                        

      
   The 

unique solution has the form 

x(t)  ∫    
 

 
 

 

 
   

    
     ∫              

 

 ,   

for 0   t   1. 

Where    f(t) ∫      ∫        
 

 

 

 
    ; 

       ∫      ∫        
 

 

 

 
    ;       

     ;X0 1 and  Y0 0 ;   

The absolute error at the final time 

interval for different sample space 

numbers, where t t; R  1; the step 

time  

for discretization of Brownian motion 

equals to the step time of Euler scheme, 

are shown in the following (table (A) and 

Figure (1.1)). As one can see, increasing 

the number of sample (N) leads to 

improving the absolute error at the 

different time steps, where  t  . 
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Table (A) Error generated by the Heun's scheme. 

R N Error at final time 

1 

   1.2957 

   0.6259 

   1.0524 

2 

   1.3076 

   0.6949 

   1.0555 

 

On using R  1, N  2
8
, the following numerical solution is obtained and presented in the 

following figure (1.1)  

 
Figure (1) Exact solution and the numerical solution by Heun's scheme with N  2

8
; R  1 



Journal of Basic Education college, Vol. (16) , No. (1), 2019 
 

-7399- 

 
                                   Figure (1.1) Absolute error between the Heun's scheme and exact 

 

   Illustration  (With Absolute Error Test): 

The stochastic differential equations Considered by: 

                          {
                      

       
    

The unique solution has the form 

x(t)  ∫    
 

 
 

 

 
   

    
     ∫              

 

 ,  for 0   t   1. 

Where  f(t) ∫     ∫       
 

 

 

 
    ; g(t)  ∫     ∫       

 

 

 

 
    ;           ;X0 0 and  

Y0 1 ;   

As discussed previously in illustration (  ), the following table (B) is needed for error 

analysis and as follows 

 

Table (B) Error generated by the Heun's scheme. 

R N Error at final time 

1 

2
5
 0.7114 

2
6
 1.0874 

2
8
 0.7075 

2
9
 0.9826 

2
10

 0.9775 

2
11

 0.8826 
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On using R  1, N  2
8
, the following numerical solution is obtained and presented in the 

following figure (2.1)  

 
Figure (2) Exact solution and the numerical solution by Heun's scheme with N  2

8
; R  1 

 

 
Figure (2.1) Absolute error between the Heun's scheme and exact 

  Illustration  (With Absolute Error Test): 

Consider the SDE is: 

                     
        

Where  f(t) ∫     ∫       
 

 

 

 
    ; g(t)  ∫     ∫       

 

 

 

 
   ;           ; X0 0;  Y0 

1. 

The error at final time interval for R  1 and different number of sample N is discussed in 

the following table (C)  
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Table (C) Error generated by the Heun's scheme 

 

R N Error at final time 

1 

2
5
 0.4138 

2
8
 0.1032 

2
11

 0.1297 

 

One can select R 1, N  2
8
 for accuracy, the following numerical solution is then 

obtained and presented in the following figure (3). 

 
Figure (3) Absolute error between the Heun's scheme and exact. 
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Summary. 

      Numerical methods for the solution 

of stochastic  differential equations in2-

wiener process are essential for the 

analysis of random phenomena. Strong 

solvers are necessary when exploring 

characteristics of systems that depend on 

trajectory-level properties. Several 

approaches exist for strong solvers, in 

particular Heun's type methods , although 

both increase greatly in complication for 

orders greater than one. In many _ 

financial applications, major emphasis is 

placed on the probability distribution of 

solutions, and in particular mean and 

variance of the distribution. In such 

cases, weak solvers may sauce. 

Independent of the choice of stochastic 

differential equation in 2-wiener process   

solver, methods of variance reduction 

exist that may increase computational 

efficiency. The replacement of 

pseudorandom numbers with quasi 

random analogues from low-discrepancy 

sequences is applicable as long as 

statistical independence along trajectories 

is maintained. In addition, control 

variates offer an alternate means of 

variance reduction and increases 

inefficiency simulation of stochastic 

differential equations trajectories. 
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