Synthesis and Study of Antibacterial Activity of some New Bis-pyrazolines Derivatives

Saad Salim Jasim,

Fuel & Energy Eng. Dept., Technical College, Kirkuk, Iraq. saad9228@yahoo.com Ghazwan Hasan Al-Somaidaie

Chemistry Dept., College of Education, University of Tikrit, Tikrit, Iraq. ghazwandr893@yahoo.com

Siham Shakor Obid,

Hiro Mohammed Obaid

Medical Lab. Techniques Dept., Technical College, Kirkuk, Iraq. suham2011@yahoo.uk.com drHiroobaid12@yahoo.com

Abstract

A series of novel bis-pyrazolines (13-24) were prepared by the reaction of two moles of substituted chalcones, diarylidene acetone and dienylidene acetone (1-12) in a Claisen 1, 2-addition with succinohydrazide. Some of the new compounds were characterized using ¹H, ¹³C-NMR and all new compounds were characterized using FT- IR. The antibacterial activity of these compounds was studied.

Keywords: Claisen 1,2-addition, Bis-pyrazolines, Succinohydrazide, antibacterial activity.

الخلاصة

تم تحضير سلسلة من مركبات ثنائية حلقة االبيرازولين (24–13) من خلال تفاعل مولين من الجالكونات وأريليدينات الأسيتون الثنائية وأينيالينات الأسيتون الثنائية (12–1) بواسطة ميكانيكية أضافة كليزن 1–2 مع السكسنيك هيدرازايد وشخصت بعض المركبات الجديدة باستخدام طيف (1⁴، NMR¹) وشخصت جميع المركبات الجديدة باستخدام الأشعة تحت الحمراء كما و تم تقييم النشاط المضاد للبكتيريا لهذه المركبات.

الكلمات المفتاحية: أضافة كليزن 1-2 , البايرازولينات الثنائية, السكسنيك هيدرازايد, الفعالية المضاده للبكتريا.

Introduction

Five-membered heterocyclic compounds Pyrazolines are well known. Many researchers worked hard to develop different methods of synthesis to this compound. [Wiley, 1967., Elguero, 1996., Lévai, 1997.,Lévai,2002]. Many pyrazoline derivatives were found to possess considerable biological activities. Which have stimulated research activity in this field [Ramalingham, 1977., Brown, 1972., Lombardino, 1981., United States Patent, 2005., United States Patent, 1993., Conti, 2007., Basagoiti, 2006]. The reason caused by the two nitrogen atoms in the molecule. There are several methods to prepare Pyrazolines, the standard method includs the cyclocondensation of alkyl hydrazine or aryl hydrazine with α , β - unsaturated carbonyl compounds [Eichorand, 2005]

Experimental

All chemicals were purchased from Fluke and BDH Chemical Ltd. General: uncorrected melting points were determined using Electrothermal melting point apparatus (Electrothermal Engineering LTD S-N 10853). Infrared spectra were recorded on (Shimadzu FT-IR 8400 S, Fourier Transform-Infrared Spectrophotometer). Proton Nuclear Magnetic Resonance (¹H-NMR) and Carbon Nuclear Magnetic Resonance (¹³C-NMR) spectra were recorded with Brucker (300 MHz) using tetramethylsilane (TMS) as an internal standard, and DMSO as a solvent.

Synthesis of diethyl Succinate.

Succinic acid (1.6 g) in absolute dry ethanol (60 ml), containing 2-3 drops of concentrated H_2SO_4 was relaxes until it dissolved. The reaction mixture was poured in ice-cold water. The last reaction mixture, sodium bicarbonate was added till the effervescence stopped .The obtained ester was extracted with diethyl ether. [Avaji, 2009]

Synthesis of dihydrazide of Succinic acid.

A mixture of diethyl ester of succinic acid (2.22 g) and hydrazine hydrate (80%) in ethanol was refluxed for 4-5 hs. The reaction mixture was allowed to cool at room temperature, then the cooled solution was poured into ice cold water. The dihydrazide of scenic acid, thus obtained was filtered and recrystallized from ethanol. [Robert, 2005]

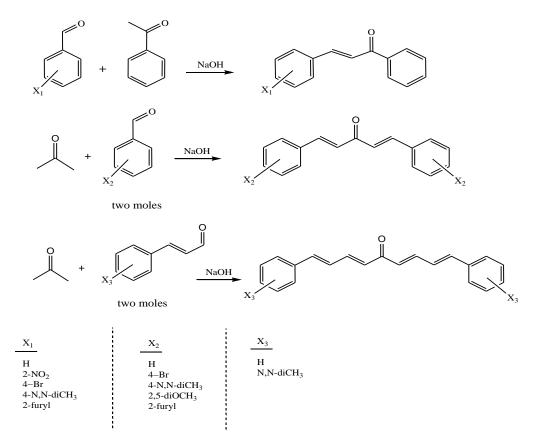
Synthesis of Chalcones (1-5)

Chalcones were prepared by a base catalyzed condensation of a mixture of acetophenones and substituted benzaldehydes in alcohol, 60% solution of potassium hydroxide (KOH) was added dropwise with stirring. The reaction mixture was kept at room temperature for 14-16 hs, then diluted with water and acidified with 10% hydrochloric acid. The chalcones that obtained was filtered and recrystallized from ethanol. [Fabio, 1998] Melting point, yield and color of these compounds are shown in Table (1).

Synthesis of Diaryledene and dienylidene acetone [Vogel, 1981]

Typical procedure for the synthesis of compounds (6-12):

A solution of acetone (1.4 g, 25 mmol) and benzaldehyde [(50 mmol) or substituted benzaldehyde and cinnamaldehyde or substituted cinnamaldehyde] was added dropwise with stirring at room temperature to a stirred solution of sodium hydroxide (5 g, mmol), in [water (50 mL) and ethanol (40 mL)]. The stirring was continued for 30 min at room temperature. The resulting precipitate was filtereds, with cold water washes (3x30 mL) and dried. Recrystallization from ethanol (95%) afforded the required product. Melting point and color of these compounds are shown in Table (1).


Synthesis of substituted bis-pyrazolines (13-24)

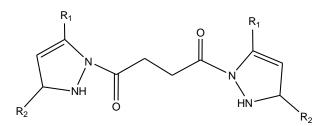
A mixture of chalcone, (diaryledene and dienylidene) acetone (1-12, 10.0 mmoles), succinohydrazide (50.0 mmoles), and acetic acid (60 ml) heated at reflux for 3hs, then poured onto crushed ice. The precipitate was separated by filtration, with water washes and crystallized from methanol to obtain the 2-pyrazolines [Albert Lévai (2005)]. Melting point, yield and color of these compounds are shown in Table (2).

Results And Discussion

2.1- Condensation of aldehydes with ketones

Benzaldehydes, substituted benzaldehydes, cinnamaldehyde and substituted cinnamaldehyde were condensed with ketones containing α - hydrogen by Claisen-Shmdit condensation in the presence of NaOH to afford Chalcones, Diaryledene acetone and dienylidene acetone respectively. Through the reaction access to the desired products (1-12) (Scheme 1). These compounds were fully characterized using FT-IR (Table 4), ¹H-NMR, and ¹³C-NMR.

Scheme 1: Synthesis of substituted α , β - unsaturated ketones

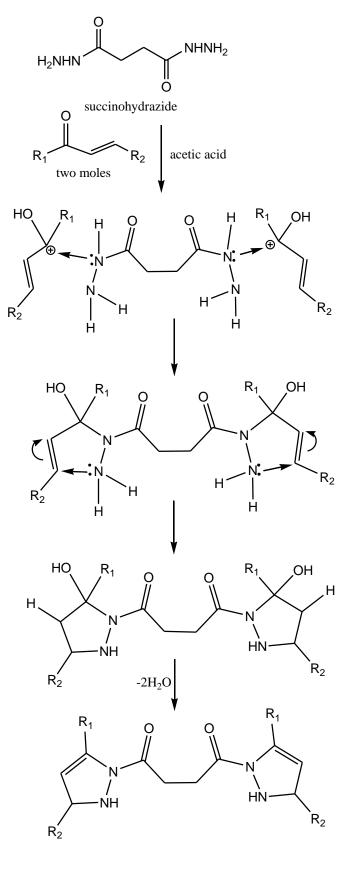

FT-IR spectra of the compounds (1-12) showed a sturdy uptake band in the (1648-1681 cm -1), denote to extend bumping of the carbonyl group (vC = O). Conjugation of carbonyl group with (C=C) led to in a lack of concentration for a carbonyl group, which led to the uptake of the transition to a lower hesitancy. [Silverstein, 1996]. packs at (1610-1579 cm-1) denote to (C=C) bumping extend (vC=C) and the packs at (1590-1477 cm-1) denote to aromatic ring extend bumping (vC=C).

The (¹H-NMR) spectrum of compound (7) showed a peak at δ (7.03) ppm (2H) denote to the olefinic protons at C_2 and C_4 , the multiple peak at δ (7.28-7.63) ppm (8H) denote to the aromatic protons, while the peak at δ (7.70) ppm (2H) denote to the olefinic protons at C_1 and C_5 . The (¹H-NMR) spectrum of compound (9) showed a peak at δ (3.85) ppm (12H) Denote to the methoxy protons, the peak at δ (6.29) ppm (2H) denote to the aromatic protons at C₄ while the peak at δ (7.16) ppm (4H) Denote to the aromatic protons at C_3 and C_5 another peek at δ (7.98) ppm (2H) denote to the olefinic protons at C_2 and C_4 , finally the peak at δ (8.03) ppm (4H) denote to the olefinic protons at C_1 and C_5 . The ¹³C-NMR spectrum of compound (9) showed a peak at δ (55.82) ppm denote to the methoxy carbon at the ortho position in the two rings; another peak at δ (56.10) ppm denote to the methoxy carbon at the metaposition in the two rings. There are four peaks at δ (112.43) ppm, δ (113.17) ppm, δ (117.19) ppm, and δ (124.46) ppm, denote to the *o*, *p*, *m* carbon atoms attached to the two olefinic carbon at C_2 and C_4 . There is a peak at (138.07) ppm denote to the ortho carbon attached to the methoxy group of the two rings. The peak at $\delta(153.12)$ ppm denote to the olefinic carbon at C_1 and C_5 , while the peak at $\delta(153.50)$ ppm denote to the meta carbon attached to the methoxy group of the two rings; finally the peak at

 $\delta(189.58)$ ppm denote to the carbonyl carbon.¹³C-NMR data of compound (6) is summarized in (Table 5).

2.2- Condensation of Chalcones, Diaryledene acetone and dienylidene acetone with dihydrazide of Succinicacid:

The condensation of Chalcones, Diaryledene acetone and dienylidene acetone with dihydrazide of scenic acid afforded substituted -2-pyrazolines (13-24).



The structures of the products were confirmed on the principle of spectroscopic evidences (table 4). The (FT-IR) spectra was shown strong or medium bands at (1710-1692) cm⁻¹ corresponding to the (ν C=O), which mean removal of the conjugation of carbonyl group with (C=C) [Silverstein, 1996]. The bands at (1519 -1486) were corresponding to the extend bumping of (ν C=C) bond, while the bands at (3430-3389) cm⁻¹ corresponding to the extend bumping of (ν N-H) bond and the bands at (1542-1485) denote to the aromatic ring extend bumping of (ν C=C).

While the (¹H-NMR) spectrum of compound (15) (figure 3) show a peak at $\delta(2.52)$ ppm (1H) denote to the proton of N-H group[Rahaman, 2010]. Another peak at $\delta(3.37)$ ppm (4H) denote to the methylene groups at C₂ and C₄ from the dihydrazide of Succinic acid part. The triplet peak at $\delta(4.80, 4.85, 4.89)$ ppm (1H) denote to the methine groups at C₃ of two pyrazoline rings . Finally the multiplet peak at $\delta(6.90-7.85)$ ppm (20H) denote to the olefinic protons at C₄ of pyrazoline rings and aromatic protons.

The ¹³C-NMR spectrum of compound (15) shown a peak at δ (35.72) ppm denote to the C₂ and C₄ of methylene carbon from the dihydrazide of succinic acid part. Another peak at δ (65.19) ppm denote to the C₃ of two pyrazoline rings. The peak at δ (103.64) ppm denote to the C₄ of two pyrazoline rings. There are eight peaks at δ (123.56) ppm, δ (128.78) ppm, δ (131.25) ppm, δ (132.57) ppm, δ (133.58) ppm, δ (134.25) ppm, (136.79) ppm and δ (145.65) ppm denote to the carbon atoms of benzene rings. There is a peak at (139.32) ppm denote to C₄ of two pyrazoline rings. Finally the peak at δ (175.36) ppm denote to the carbonyl carbon.

The suggested mechanism for the reaction of Chalcones, Diaryledene acetone and dienylidene acetone with succinohydrazide may follow by attacking the nitrogen atom of succinohydrazide of the α , β -unsaturated system (scheme 2).

<u>R</u>2 **R**₁ Ph Ph $2-NO_2C_6H_4$ Ph Ph $4-BrC_6H_4$ 4-N,N-CH₃C₆H₄ Ph 2-furyl Ph C₆H₅CH=CH Ph $4-BrC_6H_4$ 4-BrC₆H₅CH=CH 4-N,N-CH₃C₆H₅CH=CH 4-N,N-CH₃C₆H₄ 2,5-diOCH₃C₆H₃ $2,5\text{-}diOCH_3C_6H_4CH=CH$ 2-furyl 2-vinyl-2-furyl C₆H₅CH=CH C₆H₅CH=CH-CH=CH 4-N,N-diCH₃C₆H₅CH=CH-CH=CH 4-N,N-diCH₃C₆H₅CH=CH

Scheme (2): Reaction of substituted α , β - unsaturated ketones with succinohydrazide 1840

Preliminary biological study

In the present study biological effect of the chemical products were performed against four gram-negative bacteria: *Escherichia coli*, *Pseudomonas aeruginosa*, *Citrobacter freundii*, *Morganella morganii* and two gram-positive bacteria: *Staphylococcus aureus*, *Staphylococcus saprophyticus* and one species of yeast *Rhodotorula harrison* (Table 6).

All these micro-organisms were isolated and identified in Medical Laboratory Techniques Department/ Technical College in Kirkuk. Bacterial suspension was prepared by transferring a single colony to a fresh test tube contained 5ml nutrient broth the incubated at 37°C for 24 hours. Bacterial suspension compare with the tube NO. (0.5) of McFarland standard was used which gives a cell density 1.5×10^8 cell/ml. (Baron *et al.*, 1994).

A sterile cotton swab is dipped into bacterial suspension and then swabbed evenly across the surface of a Mueller-Hinton agar plate; the plates were incubated at $(37^{\circ}C)$ for 30 minutes. Saturated disks (made from Whatman NO. 1 impregnated for 24 hours with the chemical products 0.1mg / 1ml) are applied on Mueller-Hinton agar using Kirby–Bauer disc diffusion method [Bauer, 1966] with a forceps pressed firmly to ensure contact with agar and then the plates inverted and incubated at $(37^{\circ}C)$ for (14-18) hours, reading the results by measuring inhibition zone around the discs and compare the result with two antibiotics used as control [Ericsson, 1960]. The results were interpreted to rely on the World Health Organization report (W.H.O).

[Vandepitte, 1991].

I-The impedance (I) result represented the diameter of inhibition (≤ 15 and ≤ 14) mm for Ciprofloxacin and Cefotaxime respectively.

II- Moderate sensitivity (MS) inhibition within the area between (16-20 and 15-22) mm.

III- The sensitive (S) result was (≥ 21 and ≥ 23) mm.

 Table (1): Physical properties of the synthesized compounds (1-12)

Cpd. No.	R ₁			Yield %	Color	Product Name
1	Ph	Ph	52-54	67	yellow	1,3-Diphenyl-2-propen-1-one
2	$2-NO_2C_6H_{4-}$	Ph	149-151	63	dark blue	3-(2-nitrophenyl)-1-phenylprop-2-en-1-
						one
3	$4-Br C_6H_4-$	Ph	83-85	80	white	3-(4-bromophenyl)-1-phenylprop-2-en-1-
						one
4	4-N,N-CH ₃ C ₆ H ₄₋	Ph	89-91	75	yellow	3-(4-(dimethylamino)phenyl)-1-
						phenylprop-2-en-1-one
5	2-furyl	Ph	37-39	82	brown	3-(furan-2-yl)-1-phenylprop-2-en-1-one
6	Ph	C ₆ H ₅ CH=CH-	107-109	80	yellow	1,5-diphenylpenta-1,4-dien-3-one
7	$4-Br C_6H_4-$	4-BrC ₆ H ₅ CH=CH-	165-166	90	white	1,5-bis(4-bromophenyl)penta-1,4-dien-3-
						one
	4-N,N-CH ₃ C ₆ H ₄₋	4-N,N-CH ₃	114-116	85	orange	1,5-bis(4-(dimethylamino)phenyl)penta-
8		C ₆ H ₅ CH=CH-			-	1,4-dien-3-one
9	2,5-DiOCH ₃ C ₆ H ₃₋	2,5-DiOCH ₃	98	82	yellow	1,5-bis(2,5-dimethoxyphenyl)penta-1,4-
		C ₆ H ₄ CH=CH-				dien-3-one
10	2-furyl	2-vinyl-2-furyl	150-152	42	brown	1,5-di(furan-2-yl)penta-1,4-dien-3-one
11	C ₆ H ₅ CH=CH-	C ₆ H ₅ CH=CH-	130-132	80	yellow	1,9-diphenylnona-1,3,6,8-tetraen-5-one
		CH=CH-				
12	4-N,N-CH ₃	4-N,N-CH ₃	123-125	79	brown	1,9-bis(4-(dimethylamino)phenyl)nona-
	C ₆ H ₅ CH=CH-	C ₆ H ₅ CH=CH-				1,3,6,8-tetraen-5-one
		CH=CH-				

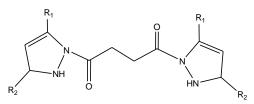


 Table (2): Physical properties of the synthesized compounds (13-24)

Cpd. No.	R ₁	R ₂	M.P°C	Yield %	Color	Product Name
13	Ph	Ph	110-113	80	green	1,4-bis(3,5-diphenylpyrazolin-1-yl)butane- 1,4-dione
14	2-NO ₂ C ₆ H ₄₋	Ph	178-180	85	Pale green	1,4-bis(3-(2-nitrophenyl)-5-phenylpyrazolin- 1-y)butane-1,4-dione
15	$4-Br C_6H_4-$	Ph	124-125	72	Pale yellow	1,4-bis(3-(4-bromophenyl)-5- phenylpyrazolin-1-y)butane-1,4-dione
16	$\begin{array}{c} \text{4-N,N-diCH}_3\\ \text{C}_6\text{H}_{4-} \end{array}$	Ph	283-286	65	brown	1,4-bis(3-(4-N,N-dimethylphenyl)-5- phenylpyrazolin-1-y)butane-1,4-dione
17	2-furyl	Ph	162-164	82	Dark brown	1,4-bis(3-(furan-2-yl)-5-phenylpyrazolin-1- y)butane-1,4-dione
18	Ph	C ₆ H ₅ CH=CH-	119-122	90	Dark yellow	1,4-bis(phenyl-5-styrylpyrazolin-1-y)butane- 1,4-dione
19	4-Br C ₆ H ₄ -	4- BrC ₆ H₅CH=CH-	117-118	69	Pale yellow	1,4-bis(3-(4-bromophenyl)-5-(4- bromostyryl)pyrazolin-1-y)butane-1,4-dione
20	4-N,N-diCH ₃ C ₆ H ₄₋	4-N,N-CH ₃ C ₆ H ₅ CH=CH-	66-69	38	Dark red	1,4-bis(3-(4-N,N-dimethyaminolphenyl)-5-(4- N,N-dimethylaminostyryl)pyrazolin-1- y)butane-1,4-dione
21	2,5-diOCH ₃ C ₆ H ₃₋	2,5-diOCH ₃ C ₆ H ₄ CH=CH-	135-137	45	Yellowsh green	1,4-bis(3-(2,5-dimethoxy phenyl)-5-(2,5- dimethoxystyryl)pyrazolin-1-y)butane-1,4- dione
22	2-furyl	2-vinyl-2-furyl	126-128	80	Pale brown	1,4-bis[3-(furan-2-yl)5-(2-(furan-2- yl)vinyl)pyrazolin-1-yl]buta1,4-dione
23	C ₆ H ₅ CH=CH-	C ₆ H₅CH=CH- CH=CH-	102-104	90	Faint green	1,4-bis(5-(-4-phenylbuta-1,3-dienyl)-3- styrylpyrazolin-1-y)butane-1,4-dione
24	4-N,N-CH ₃ C ₆ H ₅ CH=CH-	4-N,N-CH ₃ C ₆ H ₅ CH=CH- CH=CH-	96-99	77	mauve	1,4-bis(3-(4-(dimethylamino)styryl)-5-(4-(4- (dimethylamino)phenyl)buta-1,3- dienyl)pyrazolin-1-y)butane-1,4-dione

Cpd.	I.R (KBr), υ(cm ⁻¹)								
No.	C=O	C=C	Ar.C=C	Others					
1	1675	1593	1500						
2	1655	1590	1487	N=== O/sym.,asy.=1339,1518					
3	1663	1587	1481						
4	1655	1589	1477						
5	1651	1579	1485						
6	1681	1602	1492						
7	1650	1610	1488						
8	1660	1610	1580						
9	1650	1589	1492	C-O-C = 1218					
10	1648	1598	1518						
11	1655	1600	1525						
12	1659	1605	1590						

Table (3): FT- IR data of compounds (1-12).

Table (4): FT- IR data of compounds (13-24).

Com. NO.	I.R (KBr), υ(cm ⁻¹)								
NO.	C=O	C=C	N-H	Ar.C=C	Others				
13	1699	1517	3415	1509					
14	1704	1514	3430	1492	N===O/sym.,asy.=1390,1520				
15	1697	1519	3390	1500					
16	1700	1510	3408	1542					
17	1709	1518	3395	1495					
18	1692	1507	3402	1499					
19	1695	1515	3409	1508					
20	1710	1499	3389	1540					
21	1697	1509	3412	1492	C-O-C = 1228				
22	1703	1512	3416	1490					
23	1705	1510	3420	1505					
24	1697	1486	3428	1485					

Table (5): ¹³C-NMR data of compounds (6, 9, 15).

Cpd. No.	Structures	¹³ C-NMR (CDCl ₃ & DMS			O), δ ppm			
6		125.67 C ₂ & C ₄	128.28 four ortho- positions	128.25 two para- positions	130.49 four meta position s	134.26 two carbons attached with α,β- sys.	142.74 C ₁ & C ₅	188.50 C ₃
	H ₃ CO 5 1 OCH ₃	55.82 ortho- OCH ₃	56.10 meta OCH ₃	112.43 un substituted ortho- positions	113.17 two para- position s	117.19 un substituted meta- positions	124.46 two carbons attached with α,β- sys.	126.30 C ₂ & C ₄
9	H ₃ CO OCH ₃	138.07 substituted ortho- positions	153.12 C ₁ & C ₅	153.50 substituted meta- positions	189.58 C ₃			
15		$\begin{array}{c} 35.72\\ C_2 \& C_4\\ of CH_2 of\\ hydrazide \end{array}$	65.19 C ₃ of pyrazoline rings	103.64 C ₄ of pyrazoline rings	123.56 128.78 131.25 132.57 133.58 134.25 136.79 145.65 C of benzene rings	139.32 C4of pyrazoline rings	175.36 C of carbonyl	

Table (6): Inhibition effect of products on the growth of some bacteria and yeast.

	Test bacteria								
	Gra	m +ve		yeast					
Cpd. No.	Staphylococcus aureus	Staphylococcus saprophyticus	E. coli	Pseudomonas aeruginosa	Citrobacter freundii	Morganella morganii	Rhodotorula harrison		
13	MS	MS	Ι	Ι	Ι	Ι	Ι		
14	MS	Ι	Ι	Ι	Ι	Ι	Ι		
15	Ι	Ι	Ι	Ι	Ι	Ι	Ι		
16	Ι	Ι	Ι	Ι	Ι	Ι	Ι		
17	Ι	Ι	Ι	Ι	S	Ι	S		
18	S	S	Ι	Ι	S	Ι	S		
19	MS	MS	Ι	Ι	Ι	Ι	S		
20	MS	MS	Ι	Ι	Ι	Ι	S I		
21	Ι	Ι	Ι	Ι	Ι	Ι	Ι		
22	Ι	Ι	Ι	Ι	Ι	S	Ι		
23	Ι	Ι	Ι	Ι	Ι	S	Ι		
24	S	S	Ι	Ι	Ι	S	Ι		
Ciprofloxacin (5ug)	MS	MS	S	S	S	S			
Cefotaxime (30ug)	Ι	Ι	Ι	Ι	Ι	Ι			

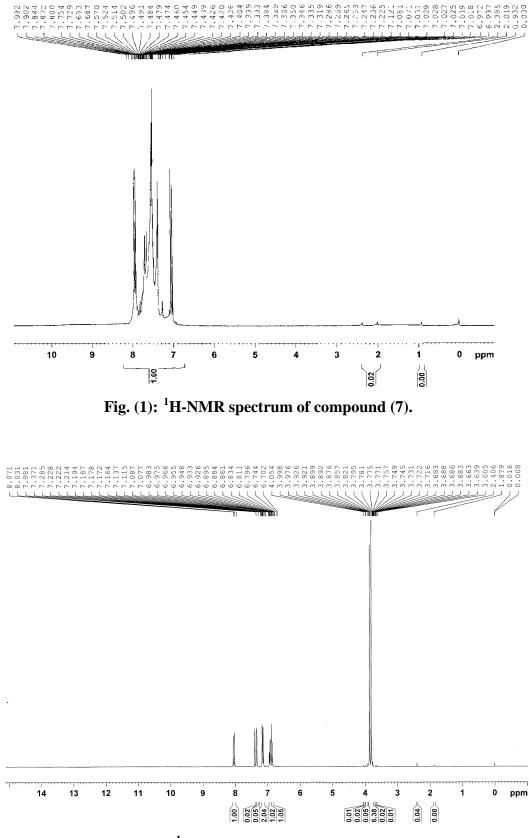


Fig. (2): ¹H-NMR spectrum of compound (9).

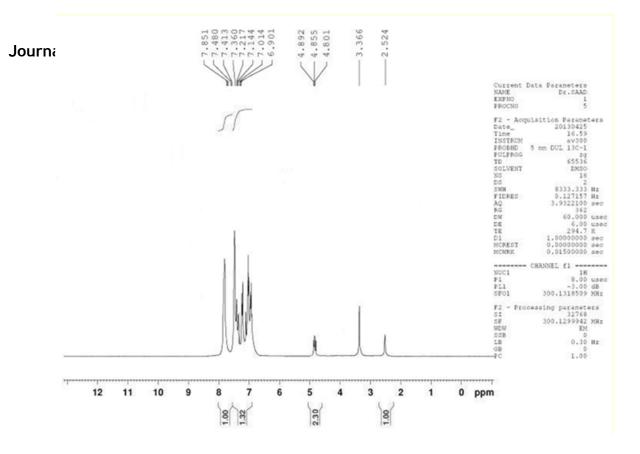


Fig. (3): ¹H-NMR spectrum of compound (15).

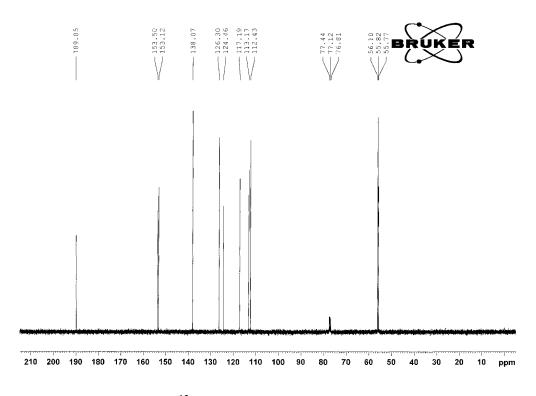


Fig. (4): ¹³C-NMR spectrum of compound (9).

References

- Albert Lévai (2005). Synthesis of chlorinated 3,5-diaryl-2-pyrazolines by the reaction of chlorochalcones with hydrazines. Issue in Honor of Prof. J. Elguero and P. Molina . p.344 ISSN 1424-6376.
- Avaji, P. G.; Vinod Kumar, C. H. ; Shivananda, K. N. (2009). Synthesis, spectral characterization, in-vitro microbiological evaluation and cytotoxic activities of novel macrocyclic bis hydrazone. C. Eur. J. Med. Chem, V.xxx, pp.1-8.
- Basagoiti, F.P.; Tilgner, M.; Forshey, B.M.; Philpott, S.M.; Espina, N.G.; Wentworth, D.E.; Goebol, S.J.; Masters, P.S.; Falgout, B.; Ren, P.; Ferguson, D.M.; Shi, P.Y.(2006). Antimicrob Agents Chemother. 50. (4): pp. 1320-1329.
- Bauer, AW.; Kirby, WMM; Sherris, JC.; Truck, M.; (1966). Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol, 45: pp493-496.

Brown, R. E.; Shavrel Jr., (1972) US Patent, 3,624,102; Chem. Abstr. 76, 59618.

Conti P.; pinto A.; Tamborini L.; Rizzo V. and Michel C.D. (2007). Tetrahedron, Vol. 63, pp. 5554-5560.

- Elguero, J. (1996). Comprehensive Heterocyclic Chemistry II, Eds; Pergamon Press: Oxford. Vol. 3, pp1.
- Eichorand, T. ; Hauptman, S. (2005). The Chemistry of Heterocyclic: structure, reactions, synthesis and application. 2th Ed., pp.114.
- Ericsson, HM; Tunevall, G; Wickman K. (1960).Scand. J. clin. Lab. Inves., 12, pp. 414-422.
- Fabio, S.; Benvenuti, S.; Costantino L.; Vampa, G.(1998). Synthesis and activity of a
- new series of chalcone as aldose reductase inhibitor. Eur. J. Med. Chem., 33:pp859-866.
- Lombardino, J. G.; Otterness, I. G.(1981) J. Med. Chem., Vol. 24, pp830.
- Lévai, A. Khim. (1997). Geterotsikl. Soedin., pp747.
- Lévai. (2002).A. J. Heterocycl. Chem., 39, 1.
- Rahaman, S.A.; Ragjendra P.Y.; Bhuva N.K.; Phani K. (2010). Synthesis and antihistaminic activity of novel pyrazoline derivatives. International Journal of ChemTech Research, Vol.2, No.1, pp 16-20, ISSN : 0974-4290.
- Ramalingham, K.; Thyvekikakath, G. X.; Berlin, K.D.; Chesnut, R.W.; Brown, R. A.; Durham, N. N.; Ealick, A. E.;. (1977) J. Med. Chem., Vol.20, pp847.
- Robert, M. ;Silverstein Francis, X. ; David, J. (2005). Spectrometric Identification of Organic Compounds. John Wiley.
- Silverstein, RM.; Webster, FX.(1996). Spectrometric Identification of Organic Compounds. 6th Ed, pp.92.
- United States Patent (2005). Issued on October 25.
- United States Patent (1993). 5196549.
- Vandepitte, J.; Engback, K.; Pio,t P.; Hench, CC.; (1991).Basic laboratory procedures in clinical bacteriology. World Health Organization, Geneva, Switzerland, pp. 78-95.
- Vogel AI.(1981). Text Book of Practical Chemistry", 3rd Ed., Longmans, pp.79.
- Wiley, R. H. (1967). The Chemistry of Heterocyclic Compounds. Weissberger, Interscience Publishers: New York, Vol. 22, pp 180.