Separation Axioms and δ - Open Sets in Bitopological Spaces #### Asaad M.A. Alhosaini University of Babylon, college of Education, Dept. Mathematics #### **Abstract** In this paper we study especial cases of separation axioms in bitopological spaces by considering δ -open sets and prove some results about them comparing with similar cases in topological spaces. ### **Keywords** Bitopological space (B.S) , δ -open set , pre open set , δ -T $_i$ B.S (i=0, $\frac{1}{2}$,1,2,2 $\frac{1}{2}$,3,4) , δ -regular , δ - normal B.S . δ #### 1.Introduction The study of bitopological spaces was initiated by (Kelly, 1963). A triple X, τ, Ω is called bitopological space if X, τ and X, Ω are two topological spaces. This notion was studied in different senses ,one of these is the δ -open sets ,that suggested by (Jaleel, 2003). We have study especial case of connectedness and especial case of compactness in bitopological spaces in the sense of δ -open sets in (Alhosaini, 2007; Alswidi and Alhosaini, 2007). Other sense in bitopological spaces ,is the pre open sets that was suggested by Abdul (Raaof , 2005). In this paper we first (in section 2) introduce a comparable studying between δ -open and pre open sets ,and then (in section 3) we study especial case of separation axioms in bitopological spaces in the sense of δ -open sets. ### 2.pre open sets and δ - open sets **2.1 Definition :**Let X, τ and X, Ω be two topological spaces then X, τ, Ω is called a bitopological space (B.S). A subset A in X, τ, Ω is called pre open set if A $\subseteq \tau$ -int(Ω -clA). The set of all pre open sets in X, τ , Ω is denoted by pr-o(X), (Raaof, 2005). A subset A in X, τ, Ω is called δ -open set if $A \subseteq \tau$ -int(Ω -cl(τ -intA)). The set of all δ -open sets in X, τ, Ω is denoted by δ -o(X), (Jaleel, 2003).. **2.2 Remark :** In general pr-o(X) and δ -o(X) do not form a topology on X. In fact ,the union of any family of elements in pr-o(X) (δ -o(X)) is an element of pr-o(X) (δ -o(X)),but the intersection of any two elements of pr-o(X) (δ -o(X)) need not be an element of pr-o(X) (δ -o(X)), (Jaleel, 2003; Raaof , 2005).Of course X and ϕ are always elements of pr-o(X) (δ -o(X)). 2009 : (17) مجلة جامعة بابل / العلوم الصرفة والتطبيقية / العدد (1) / المجلد **2.3 Remark :** If X, τ, Ω is a B.S, then $\tau \subseteq \delta$ -o(X) \subseteq pr-o(X). proof: $A \in \tau$ implies τ -int $A = A, A \subseteq \Omega$ -clA implies τ -int $A \subseteq \tau$ -int $(\Omega$ -clA) so $A \in \tau$ implies $A \subseteq \tau$ -int $(\Omega$ -clA)= τ - int $(\Omega$ -cl $(\tau$ -intA)) i.e $\tau \subseteq \delta$ -o(X) and $\tau \subseteq \text{pr-o}(X)$. Now since τ -int $A \subseteq A$ so, τ - int $(\Omega$ -cl $(\tau$ -intA)) $\subseteq \tau$ - int $(\Omega$ -clA) which implies ,if $A \subseteq \tau$ - int $(\Omega$ -cl $(\tau$ -intA)) then $A \subseteq \tau$ - int $(\Omega$ -clA) i.e δ -o(X) \subseteq pr-o(X). - **2.4 Remark :** A necessary condition for a non empty set A to be δ -open set is ι -int A $\neq \phi$, (Jaleel, 2003). This is not true for pr open sets, see the following example. - **2.5 Example :** X= $\{a,b,c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$, $\Omega = \{X, \phi, \{c\}\}$ then δ -o(X)= τ but pr-o(X)= $\tau \cup \{\{c\}, \{a,c\}, \{b,c\}\}$. Not that τ -int $\{c\} = \phi$. - **2.6 Remark :** In X, I, Ω , where I is the indiscrete and Ω is any topology on X, δ -o(X)=I but pr-o(X) may contain subsets other than X and ϕ . Proof: The first part follows from Remark 2.4 and the second is shown in the following example. - **2.7 Example:** X={a,b,c,d},I={ X,ϕ }, Ω ={ $X,\phi,\{a\}$ },then δ -o(X)=I but pr-o(X)={ $X,\phi,\{a\},\{a,b\}\{a,c\},\{a,d\},\{a,b,c\},\{a,b,d\}\}$. - **2.8 Remark :** If D is the discrete and Ω is any topology on X, then in X,D, Ω we have δ -o(X)= pr-o(X)=D. proof: It follows from 2.3. - **2.9 Remark :** If τ is any topology and D is the discrete topology on X , then in X, τ ,D we have; δ -o(X)= pr-o(X)= τ . Proof: It follows from the facts 1) D-cl A=A, 2) D-cl(τ -int A) = τ -int A ,and 3) A $\subseteq \tau$ -int A if and only if A $\in \tau$. - **2.10 Remark :** If τ is any topology and I is the indiscrete topology on X ,then in X, τ , I we have pr-o(X)= P(X) ,set of all subsets of X, but δ -o(X) need not equal P(X). - **2.11 Example :** $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}\}$, $I = \{X, \phi\}$, then pr-o(X)= P(X), where δ -o(X)= $\{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}\}$. - **2.12 Remark :** If I is the indiscrete and τ is any topology on X , then in X , τ ,I we have δ -o(X)= $\{A\subseteq X\mid A\ contains\ some\ non\ empty\ \tau-open\ set\}\cup\{\phi\}$. - **2.13 Remark :** If I is the indiscrete and Ω any topology on X , then in X , I , Ω we have: a non empty subset A of X is pre open if and only if Ω -cl A=X i.e pr-o(X)= $\{A \subseteq X \mid A \text{ is } \Omega dense \text{ subset of } X \} \cup \{\phi\}$. The following table summarize the above Remarks; | Case | first topology | second topology | pr-o(X) | δ -o(X) | |------|----------------|-----------------|-----------|----------------| | 1 | D | Ω | D | D | | 2 | au | D | au | au | | 3 | I | Ω | not fixed | I | | 4 | au | I | D | not fixed | where I is the indiscrete , D ,the discrete , τ and Ω are any topologies on X. ### 3. Separation axioms in bitopological spaces We first recall some definitions and notations from(Jaleel, 2003); A subset F of X, τ , Ω is called δ -closed if X-F is δ -open. δ -cl A= \cap {F | F is δ -closed and $A \subseteq F$ } it is called δ -closure of A. A set A is said to be a δ -neighborhood of a point x if there exists a δ -open set U such that $x \in U \subseteq A$. **3.1 Definition**: Let X, τ, Ω be a B.S; two subsets A and B of X are δ -separated if each is disjoint from the other's δ -closure. (i.e. $A \cap \delta$ -clB= ϕ and (δ -clA) \cap B= ϕ). Two points x and y in X are δ -distinguishable if they do not have exactly the same δ -neighborhoods (i.e there exists a δ -open set containing x but not containing y or containing y but not containing x). Two points x and y are δ -separated if the singletons $\{x\}$ and $\{y\}$ are δ -separated. - **3.2 Definition :** A B.S X $, \tau$, Ω is called δ -T $_0$ if any two distinct points are δ -distinguishable. - **3.3 Remark :** If X, τ is a T_0 space then for any topology Ω on X the B.S X, τ , Ω is δ - T_0 . proof: It follows from the fact that any τ -open set is a δ -open set in X, τ , Ω . - **3.4 Remark :** The converse of 3.3 is not true ,see the following example. - **3.5 Example :** $X = \{a,b,c,d\}$, $\tau = \{X,\phi,\{a\},\{a,d\},\{b,c\},\{a,b,c\}\}\}$, $\Omega = \{X,\phi,\{a\}\}\}$, then δ -o(X)= $\tau \cup \{\{a,b\},\{a,b,d\},\{a,c\},\{a,c,d\}\}\}$ and it is clear that X,τ , Ω is δ -T₀ but X, τ is not T_0 space since the points b and c are not distinguishable. **3.6 Theorem :** A B.S X, τ , Ω is δ -T₀ if and only if for each two distinct points x and y δ -cl $\{x\} \neq \delta$ -cl $\{y\}$. Proof: Suppose that X, τ , Ω is δ - T_0 and let $x \neq y$ be two points of X such that δ - $cl\{x\} = \delta$ - $cl\{y\}$, therefore $x \in \delta$ - $cl\{y\}$ and $y \in \delta$ - $cl\{x\}$. If U is a δ -open set such that $x \in U$ and $y \notin U$, then $y \in X$ -U (a δ -closed set) so δ - $cl\{y\} \subseteq X$ -U which means δ - $cl\{x\} \subseteq X$ -U and so $x \in X$ -U i.e $x \notin U$ a contradiction!. Similarly the assumption that $x \notin V$ and $y \in V$ (for some δ -open set V) leads to a contradiction ,that is X, τ , Ω is not a δ - T_0 . On the other hand suppose that for each $x,y \in X$ and $x \neq y$ we have $\delta - \operatorname{cl}\{x\} \neq \delta - \operatorname{cl}\{y\}$, therefore either $x \notin \delta - \operatorname{cl}\{y\}$ and so $x \in X - \operatorname{cl}\{y\}$ but $y \notin X - \operatorname{cl}\{y\}$, or $y \notin \delta - \operatorname{cl}\{x\}$ and so $y \in X - \delta - \operatorname{cl}\{x\}$ but $x \notin X - \delta - \operatorname{cl}\{x\}$ (where $X - \delta - \operatorname{cl}\{x\}$ and $X - \operatorname{cl}\{y\}$ are δ -open sets in X, τ, Ω) i.e x and y are δ - distinguishable,hence X, τ, Ω is $\delta - T_0$. **3.7 Theorem :** If X, τ, Ω is a δ -T₀ B.S and Y is a subset of X then Y, τ_{Y}, Ω_{Y} is a δ -T₀ too. Proof: It follows from the fact that the δ -open sets of Y, τ_y , Ω_y are the intersections of Y with the δ -open sets of X, τ , Ω . - **3.8 Definition :** A subset A of a B.S X, τ , Ω is said to be δ -g-closed set if δ -clA \subseteq U whenever $A \subseteq U$ and U is a δ -open set in X, τ , Ω . - **3.9 Definition :** A B.S X, τ, Ω is said to be δ -T_{1/2} if every δ -g-closed set in X, τ, Ω is δ -closed. **3.10 Lemma :** A subset A of X, τ , Ω is δ -g-closed set if and only if δ -cl $\{x\} \cap A \neq \emptyset$ for each $x \in \delta$ -clA. Proof: Suppose that A is a δ -g-closed set, and for some $x \in \delta$ -clA, δ -cl $\{x\} \cap A = \emptyset$, then $A \subseteq X$ - $(\delta - cl\{x\})$, where X- $(\delta - cl\{x\})$ is a δ -open set, so by definition 3.8 δ -clA $\subseteq X$ - $(\delta - cl\{x\})$, hence $x \in X$ - $(\delta - cl\{x\})$ i.e. $x \notin \delta$ -cl $\{x\}$ which is a contradiction. Conversely assume that for each $x \in \delta$ -clA, δ -cl $\{x\} \cap A \neq \emptyset$; if there is a δ -open set U such that $A \subseteq U$ but δ -clA $\not\subset U$ then there exists $x \in \delta$ -clA and $x \notin U$, so $x \in X$ -U which implies δ -cl $\{x\} \subseteq X$ -U(since X-U is δ -closed) i.e. δ -cl $\{x\} \cap A = \emptyset$, a contradiction. Therefore A is δ -g-closed set. **3.11 Lemma :** If $\delta - \operatorname{cl}\{x\} \cap A \neq \emptyset$ for each $x \in \delta - \operatorname{clA}$, then $(\delta - \operatorname{clA})$ -A does not contain a non empty δ -closed set. proof: Suppose (δ -clA)-A contains a non empty δ -closed set ,say B, then $x \in B$ implies δ -cl $\{x\} \subseteq B \subseteq \delta$ -clA-A, and δ -cl $\{x\} \cap A = \emptyset$, which contradicts the hypothesis. **3.12 Theorem :** A B.S X, τ , Ω is δ -T $\frac{1}{2}$ if and only if ,for each $x \in X$, $\{x\}$ is δ -closed or δ -open. Proof: Assume that X, τ, Ω is $\delta - T_{\frac{1}{2}}$ and $\{x\}$ is neither δ -closed nor δ -open then $X - \{x\}$ is not δ -closed so δ -cl($X - \{x\}$)= $X \subseteq X$ i.e $X - \{x\}$ is a δ -g-closed set, by definition of $\delta - T_{\frac{1}{2}}$, $X - \{x\}$ must be δ -closed, a contradiction with the assumption. On the other hand suppose that for each x in X, τ , Ω , $\{x\}$ is δ -closed or δ -open. Let A be a δ -g-closed set in X, τ , Ω , then by 2.10 and 2.11 (δ -clA)-A does not contain a non empty δ -closed set, so if $x \in (\delta$ -clA)-A then δ -cl $\{x\} \not\subset (\delta$ -clA)-A i.e δ -cl $\{x\} \not= \{x\}$ which means $\{x\}$ is not δ -closed, so it must be δ -open, but $\{x\} \cap A = \emptyset$ implies $x \not\in \delta$ -clA, a contradiction, hence $(\delta$ -clA)-A= \emptyset . Therefore A is δ -closed, and so X, τ , Ω is δ -T **3.13 Theorem :** If X, τ , Ω is δ -T $_{1/2}$ then it is δ -T $_{0}$. proof: Suppose X, τ, Ω is δ -T $_{\frac{1}{2}}$, by 2.12 every singleton is either δ -closed or δ -open. Let $x \neq y$ (in X), if $\{x\}$ is δ -closed then X- $\{x\}$ is a δ -open set containing y but not containing x; and if $\{x\}$ δ -open then it is containing x but not containing y. So X, τ, Ω is δ -T $_0$. - **3.14 Remark :** The converse of 2.13 is not true, see the following example. - **3.15 Example :** $X = \{a,b,c\}$, $\tau = \{X,\phi,\{a\},\{a,b\}\}$, $\Omega = D$ (the discrete topology on X) then $\delta o(X) = \tau$ and X, τ , Ω is a δ -T₀ but not δ -T_{1/2} (since $\{b\}$ is neither δ -closed nor δ open). - **3.16 Theorem:** If X, τ is T $_{\frac{1}{2}}$ space ,then for any topology Ω on X ,the B.S X, τ , Ω is δ -T $_{\frac{1}{2}}$. proof: It follows the fact that $\tau \subseteq \delta$ -o(X) and theorem 3.12. **3.17 Remark :** The converse of 3.26 is not true ,see the following example. **3.18 Example :** X= $\{a,b,c\}$, $\tau = \{X,\phi,\{a\},\{a,b\}\}$, $\Omega = I$ (the indiscrete topology on X) then $\delta - o(X) = \tau \cup \{\{a,c\}\}\}$ and X, τ is not $T_{\frac{1}{2}}$ but X, τ , Ω is $\delta - T_{\frac{1}{2}}$. **3.19 Definition :** A B.S X, τ , Ω is said to be δ -T₁ if any two distinct points in X are δ -separated. **3.20 Theorem:** A B.S X, τ , Ω is δ -T₁ if and only if every singleton of X is δ -closed. Proof: Suppose X, τ, Ω is $\delta - T_1$, and $x \in X$, if $y \in \delta - cl\{x\}$ but $y \neq x$ then δ -cl $\{y\} \subseteq \delta$ -cl $\{x\}$ on the other hand by definition of δ -T₁ we have $\{y\} \cap \delta$ -cl $\{x\} = \phi$ which is a contradiction ,so δ -cl $\{x\} = \{x\}$ i.e $\{x\}$ is a δ -closed set. Conversely if for each x , $\{x\}$ is δ -closed then δ -cl $\{x\} = \{x\}$ and any two distinct points of X are δ -separated i.e X, τ , Ω is δ -T₁. proof: It follows from the fact that in T_1 -space every singleton is a closed set in X, τ , also any closed set in X, τ is a δ -closed set in X, τ , Ω . **3.22 Remark**: The converse of 3.21 is not true, see the following example. ### **3.23 Example:** $\begin{aligned} \mathbf{X} &= \left\{a,b,c,d\right\}, \tau = \left\{X,\phi,\left\{a\right\},\left\{d\right\},\left\{a,d\right\},\left\{b,c\right\},\left\{a,b,c\right\},\left\{b,c,d\right\}\right\}, \Omega = \left\{X,\phi,\left\{a\right\},\left\{d\right\},\left\{a,d\right\}\right\}, \\ \text{then } \delta & \text{-o}(\mathbf{X}) = \tau \cup \left\{\left\{a,b\right\},\left\{a,c\right\},\left\{b,d\right\},\left\{c,d\right\},\left\{a,c,d\right\},\left\{a,b,d\right\}\right\}, \text{so } \mathbf{X},\tau,\Omega \text{ is } \delta & \text{-T}_1 \text{ since all singletons are } \delta & \text{-closed sets but } \mathbf{X},\tau \text{ is not a } \mathbf{T}_1 & \text{-space since } \left\{b\right\} \text{ and } \left\{c\right\} \text{ are not closed sets.} \end{aligned}$ **3.24 Theorem:** If X, τ , Ω is δ - T_1 and Y is a subset of X then Y, τ_Y , Ω_Y is a δ - T_1 too. Proof: It follows from theorem 3.20. **3.25 Theorem:** If X, τ, Ω is $\delta - T_1$ then it is $\delta - T_{1/2}$. proof: It follows from theorems 3.20 and 3.12. **3.26 Remark :** The converse of 3.25 is not true ,see the following example. **3.27 Example :**X = $\{a,b\}$, $\tau = \{X, \phi, \{a\}\}$, $\Omega = D$ (the discrete topology on X), then δ -o(X)= τ (for X, τ , Ω), and X, τ , Ω is δ -T_{1/2} (since $\{a\}$ is δ -open and $\{b\}$ is δ -closed), but not δ -T₁ since $\{a\}$ is not δ -closed. - **3.28 Definition :** A B.S X, τ, Ω is called δ -T₂ or δ -Hausdorff if any two distinct points in X are separated by δ -neighborhoods (i.e if for each $x, y \in X$, $x \neq y$ there is δ -open sets U and V such that $x \in U$, $y \in V$ and $U \cap V = \phi$). - **3.29 Theorem:** If X, τ is a T₂ space ,then for any topology Ω on X, the B.S X, τ , Ω is δ -T₂. proof: It follows from the fact that $\tau \subseteq \delta$ -o(X). - **3.30 Remark :** The converse of 3.29 is not true ,see the following example. - **3.31 Example :** $X = \{a,b,c,d\}, \tau = \{X,\phi,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\}\}, \Omega = I(\text{the indiscrete topology on } X)$, then δ -o(X)= $τ \cup \{\{a,d\},\{b,d\},\{c,d\},\{a,b,d\},\{a,c,d\},\{b,c,d\}\}\}$ and X, τ is not T₂ space but X, τ, Ω is δ-T₂. - **3.32 Remark :** If X, τ, Ω is δT_2 then it is δT_1 too. But the converse is not true see the following example. - **3.33 Example :** $X = \{a,b,c,d\}, \tau = \{X,\phi,\{c\},\{a,b,d\}\}, \Omega = \{X,\phi,\{c\}\}\}$ then - δ -o(X)= τ \cup {{a,b,c},{a,c},{b,c},{a,c,d},{b,c,d},{c,d}} and it is clear that X, τ , Ω is δ -T₁(since all singletons are δ -closed sets) but it is not δ -T₂ (since the points a and b are not separated by δ neighborhoods). - **3.34 Theorem:** If X, τ , Ω is a δ -T₂ B.S and Y is a subset of X, then Y, τ_{γ} , Ω_{γ} is δ -T, too. Proof: It is obvious. - **3.35 Definition :** A B.S X, τ , Ω is called δ -T_{2½},or δ -Urysohn , if any two distinct points in X are separated by δ -closed neighborhoods . Not that a δ -T_{2½} B.S must be δ -T₂. - **3.36 Definition :** A B.S X, τ , Ω is called δ -regular if given any point x and δ -closed set F in X such that $x \notin F$, then they are separated by δ neighborhoods. - **3.37 Remark :** If X, τ, Ω is a B.S, then the cases that X, τ is regular and X, τ, Ω is δ -regular are independent, see the following two examples. #### **3.38 Example:** $X=\{a,b,c,d\}$, $\tau=\{X,\phi,\{a\},\{c\},\{a,c\},\{b,c\},\{c,d\},\{a,c,d\},\{a,b,c\},\{b,c,d\}\}\}$, $\Omega=\{X,\phi,\{a\}\}$ then δ -o(X)= $\tau\cup\{\{a,b\},\{a,d\},\{a,b,d\}\}$ and X,τ , Ω is δ -regular but X,τ is not regular since the point b and the closed set $\{a,d\}$ are not separated by neighborhoods. **3.39 Example :** $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{d\}, \{a, d\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\},$ $\Omega = \{X, \phi, \{a\}\}\$, then δ -o(X)= $\tau \cup \{\{a,b\}, \{a,c\}, \{a,b,d\}, \{a,c,d\}\}\$ and it is clear that X, τ is regular but X, τ , Ω is not δ -regular ,since the point b and the δ -closed set $\{c,d\}$ are not separated by δ - neighborhoods. - **3.40 Remark :** The notions of δ -T₁ and δ -regular are independent ,and the notions of δ -T₂ and δ -regular are independent too. In example 3.39 X, τ , Ω is δ -T₁ and δ -T₂ but not δ -regular, for the other part see the following example . - **3.41 Example :** $X = \{a,b,c\}$, $\tau = \{X, \phi, \{a\}, \{b,c\}\}\}$, $\Omega = \{X, \phi, \{a\}, \{c\}, \{a,c\}\}\}$, then δ -o(X)= τ and X, τ , Ω is δ -regular but it is neither δ -T₁ nor δ -T₂. - **3.42 Theorem:** A B.S X, τ, Ω is δ -regular if and only if for each δ -open set U and $x \in U$ there exists a δ -open set V such that $x \in V$ and δ -clV $\subseteq U$. proof: Suppose that X, τ, Ω is a δ -regular B.S, and let $x \in U$ where U is a δ -open set, take H = X-U, then H is δ - closed and $x \notin H$, so there exist two δ -open sets V and W such that $x \in V$, $H \subseteq W$ and $V \cap W = \emptyset$ i.eV $\subseteq X-W$, which implies δ -clV $\subseteq \delta$ -cl(X-W)=X-W.On the other hand $H \subseteq W$ implies $X-W \subseteq X-H=U$, therefore δ -clV $\subseteq U$. Conversely ,if H is a δ - closed set and $x \notin H$, then $x \in X-H$ (=U),U is a δ -open set, and by the condition of the theorem there exists a δ -open set V such that $x \in V$ and δ -clV \subseteq U therefore $H \subseteq X-\delta$ -clV, $x \in V$ and $V \cap X-(\delta - clV) = \phi$. Hence X, τ, Ω is δ -regular. **3.43 Definition :** A B.S X, τ , Ω is said to be δ -T₃, if it is δ -T₁ and δ -regular. δ -T₁ and - **3.44 Definition :** A B.S X, τ, Ω is said to be δ -normal if any two disjoint δ -closed sets in X are separated by δ -neighborhoods. - **3.45 Remark :** The notions of δ -T₁ and δ -normal and are independent, and the notions of δ -T₂ and δ -normal are independent too. See examples 3.39 and 3.41. - **3.46 Remark :** If X, τ, Ω is a B.S, then the cases that X, τ is normal and X, τ, Ω is δ -normal are independent. In example 3.38 X, τ, Ω is δ -normal but X, τ is not normal since the closed sets $\{b\}$ and $\{a,d\}$ are not separated by neighborhoods. On the other hand, in example 3.39 X, τ is a normal space where the B.S X, τ , Ω is not δ -normal , since the closed sets $\{b\}$ and $\{c,d\}$ are not separated by δ -neighborhoods. - **3.47 Definition :** A B.S X, τ , Ω is said to be δ -T₄ if it is δ -T₁ and δ -normal. - **3.48 Theorem:** If Y is a δ -closed subset of a δ -T₄ B.S X, τ , Ω , then the B.S Y, τ _y, Ω _y is δ -T₄ too. Proof: Since X, τ, Ω is δ - T_1, Y, τ_Y, Ω_Y is δ - $T_1(3.24)$. Since Y is δ -closed, a subset F of Y is δ -closed in Y if and only if F is δ -closed in X. Therefore if F and H are disjoint δ -closed subsets of Y, they are also disjoint δ -closed subsets of X. there are thus δ -open sets U and V such that $F \subseteq U$, $H \subseteq V$ and $U \cap V = \phi$. But then $F \subseteq Y \cap U$, $H \subseteq Y \cap V$ where $Y \cap U$ and $Y \cap V$ are disjoint subsets of Y which are δ -open in Y. Therefore Y is δ -normal ,hence Y is δ -T₄ #### References - Abdul Raaof A.E. (2005). "Pre open set in bitopological spaces" Ms. Thesis, Babylon University . - Alhosaini, A.M.A. (2007) "Especial case of compactness in bitopological spaces" to appear in Journal of Babylon University. - Alswidi L.A. and Alhosaini, A. M.A. (2007). "Especial case of connectedness in topological spaces" to appear in Journal of Babylon University. - Jaleel, I.D. (2003). " δ -open set in bitopological space" Ms. Thesis, Babylon University . - Kelly, C.J. (1963). "Bitopological spaces", Proc. London Math. Soc.13, 11-89. - Sai G. Sundara Krishnan, "A New class of semi open sets in topological spaces" Topology Atlas Preprint # 535.