Separation Axioms and δ - Open Sets in Bitopological Spaces

Asaad M.A. Alhosaini

University of Babylon, college of Education, Dept. Mathematics

Abstract

In this paper we study especial cases of separation axioms in bitopological spaces by considering δ -open sets and prove some results about them comparing with similar cases in topological spaces.

Keywords

Bitopological space (B.S) , δ -open set , pre open set , δ -T $_i$ B.S (i=0, $\frac{1}{2}$,1,2,2 $\frac{1}{2}$,3,4) , δ -regular , δ - normal B.S .

δ

1.Introduction

The study of bitopological spaces was initiated by (Kelly, 1963).

A triple X, τ, Ω is called bitopological space if X, τ and X, Ω are two topological spaces.

This notion was studied in different senses ,one of these is the δ -open sets ,that suggested by (Jaleel, 2003). We have study especial case of connectedness and especial case of compactness in bitopological spaces in the sense of δ -open sets in (Alhosaini, 2007; Alswidi and Alhosaini, 2007).

Other sense in bitopological spaces ,is the pre open sets that was suggested by Abdul (Raaof , 2005). In this paper we first (in section 2) introduce a comparable studying between

 δ -open and pre open sets ,and then (in section 3) we study especial case of separation axioms in bitopological spaces in the sense of δ -open sets.

2.pre open sets and δ - open sets

2.1 Definition :Let X, τ and X, Ω be two topological spaces then X, τ, Ω is called a bitopological space (B.S). A subset A in X, τ, Ω is called pre open set if

A $\subseteq \tau$ -int(Ω -clA). The set of all pre open sets in X, τ , Ω is denoted by pr-o(X), (Raaof, 2005).

A subset A in X, τ, Ω is called δ -open set if $A \subseteq \tau$ -int(Ω -cl(τ -intA)). The set of all δ -open sets in X, τ, Ω is denoted by δ -o(X), (Jaleel, 2003)..

2.2 Remark : In general pr-o(X) and δ -o(X) do not form a topology on X. In fact ,the union of any family of elements in pr-o(X) (δ -o(X)) is an element of pr-o(X) (δ -o(X)),but the intersection of any two elements of pr-o(X) (δ -o(X)) need not be an element of pr-o(X) (δ -o(X)), (Jaleel, 2003; Raaof , 2005).Of course X and ϕ are always elements of pr-o(X) (δ -o(X)).

2009 : (17) مجلة جامعة بابل / العلوم الصرفة والتطبيقية / العدد (1) / المجلد

2.3 Remark : If X, τ, Ω is a B.S, then $\tau \subseteq \delta$ -o(X) \subseteq pr-o(X).

proof: $A \in \tau$ implies τ -int $A = A, A \subseteq \Omega$ -clA implies τ -int $A \subseteq \tau$ -int $(\Omega$ -clA) so $A \in \tau$ implies $A \subseteq \tau$ -int $(\Omega$ -clA)= τ - int $(\Omega$ -cl $(\tau$ -intA)) i.e $\tau \subseteq \delta$ -o(X) and $\tau \subseteq \text{pr-o}(X)$. Now since τ -int $A \subseteq A$ so, τ - int $(\Omega$ -cl $(\tau$ -intA)) $\subseteq \tau$ - int $(\Omega$ -clA) which implies ,if $A \subseteq \tau$ - int $(\Omega$ -cl $(\tau$ -intA)) then $A \subseteq \tau$ - int $(\Omega$ -clA) i.e δ -o(X) \subseteq pr-o(X).

- **2.4 Remark :** A necessary condition for a non empty set A to be δ -open set is ι -int A $\neq \phi$, (Jaleel, 2003). This is not true for pr open sets, see the following example.
- **2.5 Example :** X= $\{a,b,c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$, $\Omega = \{X, \phi, \{c\}\}$ then δ -o(X)= τ but pr-o(X)= $\tau \cup \{\{c\}, \{a,c\}, \{b,c\}\}$. Not that τ -int $\{c\} = \phi$.
- **2.6 Remark :** In X, I, Ω , where I is the indiscrete and Ω is any topology on X, δ -o(X)=I but pr-o(X) may contain subsets other than X and ϕ .

Proof: The first part follows from Remark 2.4 and the second is shown in the following example.

- **2.7 Example:** X={a,b,c,d},I={ X,ϕ }, Ω ={ $X,\phi,\{a\}$ },then δ -o(X)=I but pr-o(X)={ $X,\phi,\{a\},\{a,b\}\{a,c\},\{a,d\},\{a,b,c\},\{a,b,d\}\}$.
- **2.8 Remark :** If D is the discrete and Ω is any topology on X, then in X,D, Ω we have δ -o(X)= pr-o(X)=D. proof: It follows from 2.3.
- **2.9 Remark :** If τ is any topology and D is the discrete topology on X , then in X, τ ,D we have; δ -o(X)= pr-o(X)= τ .

Proof: It follows from the facts 1) D-cl A=A, 2) D-cl(τ -int A) = τ -int A ,and 3) A $\subseteq \tau$ -int A if and only if A $\in \tau$.

- **2.10 Remark :** If τ is any topology and I is the indiscrete topology on X ,then in X, τ , I we have pr-o(X)= P(X) ,set of all subsets of X, but δ -o(X) need not equal P(X).
- **2.11 Example :** $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}\}$, $I = \{X, \phi\}$, then pr-o(X)= P(X), where δ -o(X)= $\{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}\}$.
- **2.12 Remark :** If I is the indiscrete and τ is any topology on X , then in X , τ ,I we have δ -o(X)= $\{A\subseteq X\mid A\ contains\ some\ non\ empty\ \tau-open\ set\}\cup\{\phi\}$.
- **2.13 Remark :** If I is the indiscrete and Ω any topology on X , then in X , I , Ω we have: a non empty subset A of X is pre open if and only if Ω -cl A=X i.e pr-o(X)= $\{A \subseteq X \mid A \text{ is } \Omega dense \text{ subset of } X \} \cup \{\phi\}$.

The following table summarize the above Remarks;

Case	first topology	second topology	pr-o(X)	δ -o(X)
1	D	Ω	D	D
2	au	D	au	au
3	I	Ω	not fixed	I
4	au	I	D	not fixed

where I is the indiscrete , D ,the discrete , τ and Ω are any topologies on X.

3. Separation axioms in bitopological spaces

We first recall some definitions and notations from(Jaleel, 2003);

A subset F of X, τ , Ω is called δ -closed if X-F is δ -open.

 δ -cl A= \cap {F | F is δ -closed and $A \subseteq F$ } it is called δ -closure of A.

A set A is said to be a δ -neighborhood of a point x if there exists a δ -open set U such that $x \in U \subseteq A$.

3.1 Definition: Let X, τ, Ω be a B.S; two subsets A and B of X are δ -separated if each is disjoint from the other's δ -closure. (i.e. $A \cap \delta$ -clB= ϕ and (δ -clA) \cap B= ϕ).

Two points x and y in X are δ -distinguishable if they do not have exactly the same δ -neighborhoods (i.e there exists a δ -open set containing x but not containing y or containing y but not containing x).

Two points x and y are δ -separated if the singletons $\{x\}$ and $\{y\}$ are δ -separated.

- **3.2 Definition :** A B.S X $, \tau$, Ω is called δ -T $_0$ if any two distinct points are δ -distinguishable.
- **3.3 Remark :** If X, τ is a T_0 space then for any topology Ω on X the B.S X, τ , Ω is δ - T_0 .

proof: It follows from the fact that any τ -open set is a δ -open set in X, τ , Ω .

- **3.4 Remark :** The converse of 3.3 is not true ,see the following example.
- **3.5 Example :** $X = \{a,b,c,d\}$, $\tau = \{X,\phi,\{a\},\{a,d\},\{b,c\},\{a,b,c\}\}\}$, $\Omega = \{X,\phi,\{a\}\}\}$, then δ -o(X)= $\tau \cup \{\{a,b\},\{a,b,d\},\{a,c\},\{a,c,d\}\}\}$ and it is clear that X,τ , Ω is δ -T₀ but

X, τ is not T_0 space since the points b and c are not distinguishable.

3.6 Theorem : A B.S X, τ , Ω is δ -T₀ if and only if for each two distinct points x and y δ -cl $\{x\} \neq \delta$ -cl $\{y\}$.

Proof: Suppose that X, τ , Ω is δ - T_0 and let $x \neq y$ be two points of X such that δ - $cl\{x\} = \delta$ - $cl\{y\}$, therefore $x \in \delta$ - $cl\{y\}$ and $y \in \delta$ - $cl\{x\}$. If U is a δ -open set such that $x \in U$ and $y \notin U$, then $y \in X$ -U (a δ -closed set) so δ - $cl\{y\} \subseteq X$ -U which means δ - $cl\{x\} \subseteq X$ -U and so $x \in X$ -U i.e $x \notin U$ a contradiction!. Similarly the assumption that

 $x \notin V$ and $y \in V$ (for some δ -open set V) leads to a contradiction ,that is X, τ , Ω is not a δ - T_0 .

On the other hand suppose that for each $x,y \in X$ and $x \neq y$ we have $\delta - \operatorname{cl}\{x\} \neq \delta - \operatorname{cl}\{y\}$, therefore either $x \notin \delta - \operatorname{cl}\{y\}$ and so $x \in X - \operatorname{cl}\{y\}$ but $y \notin X - \operatorname{cl}\{y\}$, or $y \notin \delta - \operatorname{cl}\{x\}$ and so $y \in X - \delta - \operatorname{cl}\{x\}$ but $x \notin X - \delta - \operatorname{cl}\{x\}$ (where $X - \delta - \operatorname{cl}\{x\}$ and $X - \operatorname{cl}\{y\}$ are δ -open sets in X, τ, Ω) i.e x and y are δ - distinguishable,hence X, τ, Ω is $\delta - T_0$.

3.7 Theorem : If X, τ, Ω is a δ -T₀ B.S and Y is a subset of X then Y, τ_{Y}, Ω_{Y} is a δ -T₀ too.

Proof: It follows from the fact that the δ -open sets of Y, τ_y , Ω_y are the intersections of Y with the δ -open sets of X, τ , Ω .

- **3.8 Definition :** A subset A of a B.S X, τ , Ω is said to be δ -g-closed set if δ -clA \subseteq U whenever $A \subseteq U$ and U is a δ -open set in X, τ , Ω .
- **3.9 Definition :** A B.S X, τ, Ω is said to be δ -T_{1/2} if every δ -g-closed set in X, τ, Ω is δ -closed.

3.10 Lemma : A subset A of X, τ , Ω is δ -g-closed set if and only if δ -cl $\{x\} \cap A \neq \emptyset$ for each $x \in \delta$ -clA.

Proof: Suppose that A is a δ -g-closed set, and for some $x \in \delta$ -clA, δ -cl $\{x\} \cap A = \emptyset$, then $A \subseteq X$ - $(\delta - cl\{x\})$, where X- $(\delta - cl\{x\})$ is a δ -open set, so by definition 3.8 δ -clA $\subseteq X$ - $(\delta - cl\{x\})$, hence $x \in X$ - $(\delta - cl\{x\})$ i.e. $x \notin \delta$ -cl $\{x\}$ which is a contradiction. Conversely assume that for each $x \in \delta$ -clA, δ -cl $\{x\} \cap A \neq \emptyset$; if there is a δ -open set U such that $A \subseteq U$ but δ -clA $\not\subset U$ then there exists $x \in \delta$ -clA and $x \notin U$, so $x \in X$ -U which implies δ -cl $\{x\} \subseteq X$ -U(since X-U is δ -closed) i.e. δ -cl $\{x\} \cap A = \emptyset$, a contradiction. Therefore A is δ -g-closed set.

3.11 Lemma : If $\delta - \operatorname{cl}\{x\} \cap A \neq \emptyset$ for each $x \in \delta - \operatorname{clA}$, then $(\delta - \operatorname{clA})$ -A does not contain a non empty δ -closed set.

proof: Suppose (δ -clA)-A contains a non empty δ -closed set ,say B, then $x \in B$ implies

 δ -cl $\{x\} \subseteq B \subseteq \delta$ -clA-A, and δ -cl $\{x\} \cap A = \emptyset$, which contradicts the hypothesis.

3.12 Theorem : A B.S X, τ , Ω is δ -T $\frac{1}{2}$ if and only if ,for each $x \in X$, $\{x\}$ is δ -closed or δ -open.

Proof: Assume that X, τ, Ω is $\delta - T_{\frac{1}{2}}$ and $\{x\}$ is neither δ -closed nor δ -open then $X - \{x\}$ is not δ -closed so δ -cl($X - \{x\}$)= $X \subseteq X$ i.e $X - \{x\}$ is a δ -g-closed set, by definition of $\delta - T_{\frac{1}{2}}$, $X - \{x\}$ must be δ -closed, a contradiction with the assumption.

On the other hand suppose that for each x in X, τ , Ω , $\{x\}$ is δ -closed or δ -open. Let A be a δ -g-closed set in X, τ , Ω , then by 2.10 and 2.11 (δ -clA)-A does not contain a non empty δ -closed set, so if $x \in (\delta$ -clA)-A then δ -cl $\{x\} \not\subset (\delta$ -clA)-A i.e δ -cl $\{x\} \not= \{x\}$ which means $\{x\}$ is not δ -closed, so it must be δ -open, but $\{x\} \cap A = \emptyset$ implies $x \not\in \delta$ -clA, a contradiction, hence $(\delta$ -clA)-A= \emptyset . Therefore A is δ -closed, and so X, τ , Ω is δ -T

3.13 Theorem : If X, τ , Ω is δ -T $_{1/2}$ then it is δ -T $_{0}$.

proof: Suppose X, τ, Ω is δ -T $_{\frac{1}{2}}$, by 2.12 every singleton is either δ -closed or δ -open. Let $x \neq y$ (in X), if $\{x\}$ is δ -closed then X- $\{x\}$ is a δ -open set containing y but not containing x; and if $\{x\}$ δ -open then it is containing x but not containing y. So X, τ, Ω is δ -T $_0$.

- **3.14 Remark :** The converse of 2.13 is not true, see the following example.
- **3.15 Example :** $X = \{a,b,c\}$, $\tau = \{X,\phi,\{a\},\{a,b\}\}$, $\Omega = D$ (the discrete topology on X) then $\delta o(X) = \tau$ and X, τ , Ω is a δ -T₀ but not δ -T_{1/2} (since $\{b\}$ is neither δ -closed nor δ open).
- **3.16 Theorem:** If X, τ is T $_{\frac{1}{2}}$ space ,then for any topology Ω on X ,the B.S X, τ , Ω is δ -T $_{\frac{1}{2}}$.

proof: It follows the fact that $\tau \subseteq \delta$ -o(X) and theorem 3.12.

3.17 Remark : The converse of 3.26 is not true ,see the following example.

3.18 Example : X= $\{a,b,c\}$, $\tau = \{X,\phi,\{a\},\{a,b\}\}$, $\Omega = I$ (the indiscrete topology on X) then $\delta - o(X) = \tau \cup \{\{a,c\}\}\}$ and X, τ is not $T_{\frac{1}{2}}$ but X, τ , Ω is $\delta - T_{\frac{1}{2}}$.

3.19 Definition : A B.S X, τ , Ω is said to be δ -T₁ if any two distinct points in X are δ -separated.

3.20 Theorem: A B.S X, τ , Ω is δ -T₁ if and only if every singleton of X is δ -closed.

Proof: Suppose X, τ, Ω is $\delta - T_1$, and $x \in X$, if $y \in \delta - cl\{x\}$ but $y \neq x$ then

 δ -cl $\{y\} \subseteq \delta$ -cl $\{x\}$ on the other hand by definition of δ -T₁ we have $\{y\} \cap \delta$ -cl $\{x\} = \phi$

which is a contradiction ,so δ -cl $\{x\} = \{x\}$ i.e $\{x\}$ is a δ -closed set.

Conversely if for each x , $\{x\}$ is δ -closed then δ -cl $\{x\} = \{x\}$ and any two distinct points of X are δ -separated i.e X, τ , Ω is δ -T₁.

proof: It follows from the fact that in T_1 -space every singleton is a closed set in X, τ , also any closed set in X, τ is a δ -closed set in X, τ , Ω .

3.22 Remark: The converse of 3.21 is not true, see the following example.

3.23 Example:

 $\begin{aligned} \mathbf{X} &= \left\{a,b,c,d\right\}, \tau = \left\{X,\phi,\left\{a\right\},\left\{d\right\},\left\{a,d\right\},\left\{b,c\right\},\left\{a,b,c\right\},\left\{b,c,d\right\}\right\}, \Omega = \left\{X,\phi,\left\{a\right\},\left\{d\right\},\left\{a,d\right\}\right\}, \\ \text{then } \delta & \text{-o}(\mathbf{X}) = \tau \cup \left\{\left\{a,b\right\},\left\{a,c\right\},\left\{b,d\right\},\left\{c,d\right\},\left\{a,c,d\right\},\left\{a,b,d\right\}\right\}, \text{so } \mathbf{X},\tau,\Omega \text{ is } \delta & \text{-T}_1 \text{ since all singletons are } \delta & \text{-closed sets but } \mathbf{X},\tau \text{ is not a } \mathbf{T}_1 & \text{-space since } \left\{b\right\} \text{ and } \left\{c\right\} \text{ are not closed sets.} \end{aligned}$

3.24 Theorem: If X, τ , Ω is δ - T_1 and Y is a subset of X then Y, τ_Y , Ω_Y is a δ - T_1 too.

Proof: It follows from theorem 3.20.

3.25 Theorem: If X, τ, Ω is $\delta - T_1$ then it is $\delta - T_{1/2}$.

proof: It follows from theorems 3.20 and 3.12.

3.26 Remark : The converse of 3.25 is not true ,see the following example.

3.27 Example :X = $\{a,b\}$, $\tau = \{X, \phi, \{a\}\}$, $\Omega = D$ (the discrete topology on X), then

 δ -o(X)= τ (for X, τ , Ω), and X, τ , Ω is δ -T_{1/2} (since $\{a\}$ is δ -open and $\{b\}$ is δ -closed), but not δ -T₁ since $\{a\}$ is not δ -closed.

- **3.28 Definition :** A B.S X, τ, Ω is called δ -T₂ or δ -Hausdorff if any two distinct points in X are separated by δ -neighborhoods (i.e if for each $x, y \in X$, $x \neq y$ there is δ -open sets U and V such that $x \in U$, $y \in V$ and $U \cap V = \phi$).
- **3.29 Theorem:** If X, τ is a T₂ space ,then for any topology Ω on X, the B.S X, τ , Ω is δ -T₂.

proof: It follows from the fact that $\tau \subseteq \delta$ -o(X).

- **3.30 Remark :** The converse of 3.29 is not true ,see the following example.
- **3.31 Example :** $X = \{a,b,c,d\}, \tau = \{X,\phi,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\}\}, \Omega = I(\text{the indiscrete topology on } X)$, then

δ -o(X)= $τ \cup \{\{a,d\},\{b,d\},\{c,d\},\{a,b,d\},\{a,c,d\},\{b,c,d\}\}\}$ and X, τ is not T₂ space but X, τ, Ω is δ-T₂.

- **3.32 Remark :** If X, τ, Ω is δT_2 then it is δT_1 too. But the converse is not true see the following example.
- **3.33 Example :** $X = \{a,b,c,d\}, \tau = \{X,\phi,\{c\},\{a,b,d\}\}, \Omega = \{X,\phi,\{c\}\}\}$ then
- δ -o(X)= τ \cup {{a,b,c},{a,c},{b,c},{a,c,d},{b,c,d},{c,d}} and it is clear that X, τ , Ω is δ -T₁(since all singletons are δ -closed sets) but it is not δ -T₂ (since the points a and b are not separated by δ neighborhoods).
- **3.34 Theorem:** If X, τ , Ω is a δ -T₂ B.S and Y is a subset of X, then Y, τ_{γ} , Ω_{γ} is δ -T, too.

Proof: It is obvious.

- **3.35 Definition :** A B.S X, τ , Ω is called δ -T_{2½},or δ -Urysohn , if any two distinct points in X are separated by δ -closed neighborhoods . Not that a δ -T_{2½} B.S must be δ -T₂.
- **3.36 Definition :** A B.S X, τ , Ω is called δ -regular if given any point x and δ -closed set F in X such that $x \notin F$, then they are separated by δ neighborhoods.
- **3.37 Remark :** If X, τ, Ω is a B.S, then the cases that X, τ is regular and X, τ, Ω is δ -regular are independent, see the following two examples.

3.38 Example:

 $X=\{a,b,c,d\}$, $\tau=\{X,\phi,\{a\},\{c\},\{a,c\},\{b,c\},\{c,d\},\{a,c,d\},\{a,b,c\},\{b,c,d\}\}\}$, $\Omega=\{X,\phi,\{a\}\}$ then δ -o(X)= $\tau\cup\{\{a,b\},\{a,d\},\{a,b,d\}\}$ and X,τ , Ω is δ -regular but X,τ is not regular since the point b and the closed set $\{a,d\}$ are not separated by neighborhoods.

3.39 Example : $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{d\}, \{a, d\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\},$

 $\Omega = \{X, \phi, \{a\}\}\$, then δ -o(X)= $\tau \cup \{\{a,b\}, \{a,c\}, \{a,b,d\}, \{a,c,d\}\}\$ and it is clear that X, τ is regular but X, τ , Ω is not δ -regular ,since the point b and the δ -closed set $\{c,d\}$ are not separated by δ - neighborhoods.

- **3.40 Remark :** The notions of δ -T₁ and δ -regular are independent ,and the notions of δ -T₂ and δ -regular are independent too. In example 3.39 X, τ , Ω is δ -T₁ and δ -T₂ but not δ -regular, for the other part see the following example .
- **3.41 Example :** $X = \{a,b,c\}$, $\tau = \{X, \phi, \{a\}, \{b,c\}\}\}$, $\Omega = \{X, \phi, \{a\}, \{c\}, \{a,c\}\}\}$, then δ -o(X)= τ and X, τ , Ω is δ -regular but it is neither δ -T₁ nor δ -T₂.
- **3.42 Theorem:** A B.S X, τ, Ω is δ -regular if and only if for each δ -open set U and $x \in U$ there exists a δ -open set V such that $x \in V$ and δ -clV $\subseteq U$.

proof: Suppose that X, τ, Ω is a δ -regular B.S, and let $x \in U$ where U is a δ -open set, take H = X-U, then H is δ - closed and $x \notin H$, so there exist two δ -open sets V and W such that $x \in V$, $H \subseteq W$ and $V \cap W = \emptyset$ i.eV $\subseteq X-W$, which implies δ -clV $\subseteq \delta$ -cl(X-W)=X-W.On the other hand $H \subseteq W$ implies $X-W \subseteq X-H=U$, therefore δ -clV $\subseteq U$.

Conversely ,if H is a δ - closed set and $x \notin H$, then $x \in X-H$ (=U),U is a δ -open set, and by the condition of the theorem there exists a δ -open set V such that $x \in V$ and δ -clV \subseteq U therefore $H \subseteq X-\delta$ -clV, $x \in V$ and $V \cap X-(\delta - clV) = \phi$.

Hence X, τ, Ω is δ -regular.

3.43 Definition : A B.S X, τ , Ω is said to be δ -T₃, if it is δ -T₁ and δ -regular. δ -T₁ and

- **3.44 Definition :** A B.S X, τ, Ω is said to be δ -normal if any two disjoint δ -closed sets in X are separated by δ -neighborhoods.
- **3.45 Remark :** The notions of δ -T₁ and δ -normal and are independent, and the notions of δ -T₂ and δ -normal are independent too. See examples 3.39 and 3.41.
- **3.46 Remark :** If X, τ, Ω is a B.S, then the cases that X, τ is normal and X, τ, Ω is δ -normal are independent. In example 3.38 X, τ, Ω is δ -normal but X, τ is not normal since the closed sets $\{b\}$ and $\{a,d\}$ are not separated by neighborhoods.

On the other hand, in example 3.39 X, τ is a normal space where the B.S X, τ , Ω is not δ -normal , since the closed sets $\{b\}$ and $\{c,d\}$ are not separated by δ -neighborhoods.

- **3.47 Definition :** A B.S X, τ , Ω is said to be δ -T₄ if it is δ -T₁ and δ -normal.
- **3.48 Theorem:** If Y is a δ -closed subset of a δ -T₄ B.S X, τ , Ω , then the B.S Y, τ _y, Ω _y is δ -T₄ too.

Proof: Since X, τ, Ω is δ - T_1, Y, τ_Y, Ω_Y is δ - $T_1(3.24)$. Since Y is δ -closed, a subset F of Y is δ -closed in Y if and only if F is δ -closed in X. Therefore if F and H are disjoint δ -closed subsets of Y, they are also disjoint δ -closed subsets of X. there are thus δ -open sets U and V such that $F \subseteq U$, $H \subseteq V$ and $U \cap V = \phi$. But then

 $F \subseteq Y \cap U$, $H \subseteq Y \cap V$ where $Y \cap U$ and $Y \cap V$ are disjoint subsets of Y which are δ -open in Y. Therefore Y is δ -normal ,hence Y is δ -T₄

References

- Abdul Raaof A.E. (2005). "Pre open set in bitopological spaces" Ms. Thesis, Babylon University .
- Alhosaini, A.M.A. (2007) "Especial case of compactness in bitopological spaces" to appear in Journal of Babylon University.
- Alswidi L.A. and Alhosaini, A. M.A. (2007). "Especial case of connectedness in topological spaces" to appear in Journal of Babylon University.
- Jaleel, I.D. (2003). " δ -open set in bitopological space" Ms. Thesis, Babylon University .
- Kelly, C.J. (1963). "Bitopological spaces", Proc. London Math. Soc.13, 11-89.
- Sai G. Sundara Krishnan, "A New class of semi open sets in topological spaces" Topology Atlas Preprint # 535.