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Abstract

In this paper we study especial cases of separation axioms in bitopological spaces
by considering o -open sets and prove some results about them comparing with
similar cases in topological spaces.
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1.Introduction
The study of bitopological spaces was initiated by (Kelly, 1963).

A triple X, 7,Q is called bitopological space if X,z and X,Q are two topological
spaces.

This notion was studied in different senses ,one of these is the ¢ -open sets ,that
suggested by (Jaleel, 2003).We have study especial case of connectedness and
especial case of compactness in bitopological spaces in the sense of & -open sets in
(Alhosaini, 2007; Alswidi and Alhosaini, 2007).

Other sense in bitopological spaces ,is the pre open sets that was suggested by
Abdul (Raaof , 2005).In this paper we first (in section 2) introduce a comparable
studying between

o -open and pre open sets ,and then (in section 3) we study especial case of
separation axioms in bitopological spaces in the sense of & -open sets.

2.pre open sets and o - open sets

2.1 Definition :Let X,z and X,Q be two topological spaces then X, z,Q is called a
bitopological space (B.S). A subset A in X, z,Q is called pre open set if
AcT-int(Q-clA). The set of all pre open sets in X, z,Q is denoted by pr-o(X), (Raaof,
2005).

A sug)set Ain X,z,Q is called ¢ -open set if Ac7-int(Q-cl(z -intA)).The set of all
o -open sets in X, 7,Q is denoted by 6 -0(X), (Jaleel, 2003)..

2.2 Remark :In general pr-o(X) and ¢ -0(X) do not form a topology on X. In fact ,the
union of any family of elements in pr-o(X) (o -0(X)) is an element of pr-o(X) (o -
0(X)),but the intersection of any two elements of pr-o(X) (o -0(X)) need not be an
element of pr-o(X) (o -0(X)), (Jaleel, 2003; Raaof , 2005).0f course X and ¢ are

always elements of pr-o(X) (6 -0(X)).



2.3 Remark : If X,7,Q isaB.S, then < §-0(X) < pr-o(X).

proof: Aecczimplies 7-intA=AAc Q-clA implies z-intAcz-int(Q-clA) so
Accimplies AC7-int(Q-clA)= 7 - int(Q-cl(z -intA)) i.e - ¢ 0 -0(X) and

r < pr-o(X).Now since 7z -intAc A so, 7 - int(Q-cl(z -intA)) c 7 - int(Q -clA)

which implies ,if Ac 7 - int(Q -cl( 7 -intA)) then Ac ¢ - int(Q -clA)

I.e 0-0(X) < pr-o(X).

2.4 Remark : A necessary condition for a non empty set A to be ¢ -open set is

~int A= ¢,(Jaleel, 2003). This is not true for pr open sets, see the following example.

2.5 Example : X= {ab,c},z={X 4,{a},{b} . {ab}},Q={X 4 {c}} then 5-0(X)= r
but pr-o(X)= r u{{c}.{a,c}.{b.c}} .Not that ~int {c} = 4.

2.6 Remark : In X, I,Q ,where | is the indiscrete and Q is any topology on X,

o0 -0(X)=I but pr-o(X) may contain subsets other than X and ¢ .

Proof: The first part follows from Remark 2.4 and the second is shown in the
following example.

2.7 Example: X={a,b,c,d},I={X ¢}, Q={X ¢ {a}} then & -0(X)=I but

pr-o(X)={X ,¢.{a},{a,b}{ac} {a,d} {a,b,c} {ab,d}}.

2.8 Remark : If D is the discrete and Q is any topology on X, then in X,D,Q we

have ¢ -0(X)= pr-o(X)=D.

proof: It follows from 2.3.

2.9 Remark : If zis any topology and D is the discrete topology on X, then in X,z ,D

we have; 6 -0(X)= pr-o(X)= r.

Proof: It follows from the facts 1) D-cl A=A, 2) D-cl(r -int A) =z -int A ,and

3) Acr-intAifandonlyif Aer.

2.10 Remark : If 7 is any topology and I is the indiscrete topology on X ,then in
X,z,l we have pr-o(X)= P(X) ,set of all subsets of X, but ¢ -0(X) need not equal
P(X).

2.11 Example : X={a,b,c},z ={X ,¢,{a}}, I={X , ¢} ,then pr-o(X)= P(X), where

0 -0(X)= {X ,4.{a},{a,b} {ac}}.

2.12 Remark : If | is the indiscrete and - is any topology on X , then in X,z ,I we
have 6 -0(X)={A =X |A contains some non empty z—open set }U{g}.

2.13 Remark : If | is the indiscrete and Q any topology on X, thenin X, 1, Q we
have: a non empty subset A of X is pre open if and only if @ -cl A=X i.e
pr-o(X)= {A =X |A is Q—dense subset of X }u{g}.

The following table summarize the above Remarks;

Case first topology  second topology  pr-o(X) 0 -0(X)
1 D Q D D
2 r D 2 T
3 I Q not fixed I
4 T I D not fixed

where | is the indiscrete , D ,the discrete ,  and Q are any topologies on X.



3. Separation axioms in bitopological spaces

We first recall some definitions and notations from(Jaleel, 2003) ;

Asubset Fof X ,z, Q iscalled ¢ -closed if X-F is o -open.

O -Cl A=~ {F|F is 5-closed and A cF} itis called ¢ -closure of A.

A set A is said to be a ¢ -neighborhood of a point x if there exists a o -open set U
such that xeu c A.

3.1 Definition :Let X,z,Q be a B.S ;two subsets A and B of X are ¢ -separated if
each is disjoint from the other’s & -closure.(i.e An 6 -cIB=¢ and (0 -ClA) nB=¢).
Two points x and y in X are ¢ -distinguishable if they do not have exactly the same
o -neighborhoods (i.e there exists a J -open set containing x but not containing y or
containing y but not containing x).

Two points x and y are ¢ -separated if the singletons {x} and {y}are o -separated.
3.2 Definition : A B.S X ,z, Q is called o -T, if any two distinct points are o -

distinguishable.
3.3 Remark : If X,zisa T,space then for any topology @ on Xthe B.S X ,r, Q is

o-T,.
proof: It follows from the fact that any - -open setisa o -opensetin X ,z, Q.

3.4 Remark :The converse of 3.3 is not true ,see the following example.

3.5 Example : X={a,b,c,d},z={X ,¢,{a} {a,d},{b.c}.{a,b,c}},Q={X ¢ {a}} then
6-0(X)= r u{{a,b},{a,b,d},{ac},{ac,d}} anditis clear that X ,r, Q is & -T, but
X,z is not T space since the points b and c are not distinguishable.

3.6 Theorem : AB.S X ,z, Q is 6-T, if and only if for each two distinct points x
andy J-cl{x} = o-cl{y}.

Proof: Suppose that X ,z, Q is ¢ -T ;and let x=y be two points of X such that

o -cl{x} =0 -cl{y} therefore xe 5 -cl{y}and ye o -cl{x} .If U is a & -open set such
that xeU and y¢ U, then ye X-U (a ¢ -closed set) so o -cl{y} = X-U which means

o -cl{x} =X-U and so xeX-U i.e xzU a contradiction!. Similarly the assumption
that

xeV and yeV(for some & -open set V) leads to a contradiction ,thatis X ,z, Q is
nota o -T,.

On the other hand suppose that for each x,y e X and x=y we have o -cl{x} = & -cl{y},
therefore either xe 0 -cl{y } and so xe X- cl{y} butye X-cl{y},orye ¢ -cl{x} and so
yeX-o0-cl{x}but xg X-o-cl{x} (where X-¢ -cl{x}and X-cl{y}are ¢ -open sets in
X,7,Q)i.exandy are ¢ - distinguishable,hence X,z,Q is 6 -T,.

3.7 Theorem : If X,z,Q isa 6-T, B.Sand Y is a subset of X then Y,z , ,Q, isa
o -T ,too.

Proof: It follows from the fact that the ¢ -open sets of Y,z , ,Q ., are the intersections
of Y with the o -open sets of X,7,Q.

3.8 Definition :A subset A of a B.S X, ,Q is said to be ¢ -g-closed set if & -CIA cU
whenever AcU and U isao -opensetin X,z,Q.

3.9 Definition : A B.S X,r,Q is said to be oJ-T

X,z,Q is o0 -closed.

y if every o -g-closed set in



3.10 Lemma : A subset A of X,z,Q is ¢ -g-closed set if and only if
o -cl{x} nA = ¢ for each xe & -CIA.

Proof: Suppose that A is a o -g-closed set, and for some xe & -CIA, 6 -cl{x} NA =¢
,then Ac X-(J -cl{x} ),where X-(o -cl{x} )isa o -open set ,so by definition 3.8

0 -ClAc X-(0 -cl{x} ),hence xe X-(o -cl{x})i.e xe¢ o -cl{x} which is a contradiction.
Conversely assume that for each xe o -ClA, 6 -cl{x} nA =¢; if there is a o -open set
U such that Ac U but 6 -clAz U then there exists xe J -ClA and x¢U, so xe X-U
which implies o -cl{x} = X-U(since X-U is o -closed) i.e d-cl{x} n~A=¢, a
contradiction. Therefore Ais ¢ -g-closed set.

3.11 Lemma : If o6-cl{x} nA=¢ for each xe J-ClA, then(o -clA)-A does not
contain a non empty o -closed set .

proof: Suppose (o -clA)-A contains a non empty o -closed set ,say B, then xeB
implies

o E:I {x} cBc d-ClA-A, and o -cl{x} nA =¢ ,which contradicts the hypothesis.
3.12 Theorem : AB.S X,z,Q is 6-T ,, if and only if ,for each xeX,{x}is ¢ -closed

or o -open.
Proof: Assume that X,z ,Q is 0 -T}/ and {x} is neither & -closed nor 6 -open then

X-{x}is not &-closed so &-cl(X-{x})=XcX i.e X-{x}is ad-g-closed set , by
definition of 6-T ,, ,X-{x} must be ¢ -closed, a contradiction with the assumption.

b

On the other hand suppose that for each x in X,z,Q ,{x}is ¢ -closed or o -open .Let

A be ao -g-closed set in X,z,Q , then by 2.10 and 2.11 (¢ -clA)-A does not contain a
non empty o -closed set ,so if xe (0 -ClA)-A then & -cl{x} « (o -CIA)-Ai.e

o -Cl{x} = {x} which means {x}is not o -closed, so it must be &-open , but
{x} mA =¢ implies xe o -clA ,a contradiction ,hence (o -CclA)-A=¢ .Therefore A is
o -closed ,and so X,z ,Q is o -Ty .

3.13 Theorem : If X,z,Q is 5-Ty thenitis 6 -T,.
proof: Suppose X,z,Q is o-T,, by 2.12 every singleton is either ¢ -closed oro -

2

open. Let x=y (in X),if {x}is o -closed then X-{x}is a & -open set containing y but
not containing X ; and if {x} ¢ -open then it is containing x but not containing y. So
X, 7,0 iS5-T0.

3.14 Remark : The converse of 2.13 is not true , see the following example.

3.15 Example : X={a,b,c},z ={X ,¢,{a} {a,b}},=D(the discrete topology on X) then
0-0(X) =z and X,z ,Qisad -T,but not 5-T% (since {b} is neither o -closed nor o -

open).

3.16 Theorem: If X, zis Tyspace ,then for any topology @ on X ,the B.S X,z,Q
2

iSO -T%.

proof: It follows the fact that < o -0(X) and theorem 3.12.

3.17 Remark : The converse of 3.26 is not true ,see the following example.



3.18 Example : X= {a,b,c},z={X,4,{a},{a,b}},Q=I (the indiscrete topology on X)

then 6 -0(X) =z u{{a,c}jand X, zis notT, but X,z,Q is 5-T}/.

3.19 Definition : A B.S X,z ,Qis said to be o -T, if any two distinct points in X are

o0 -separated.
3.20 Theorem: AB.S X,7,Q iso -T,if and only if every singleton of X is o -closed.

Proof: Suppose X,z,Q iso -T,,and xe X ,if ye & -cl{x} but y= X then

o -cl{y} = & -cl{x} on the other hand by definition of & -T,we have
{ylno-clix}=¢

which is a contradiction ,so o -cl{x} ={x} i.e {x}isa ¢ -closed set.

Conversely if for each x , {x} is o -closed then & -cl{x}={x} and any two distinct

points of X are o -separated i.e X,7,Q iso -T,.

iso0-T,.

proof: It follows from the fact that in T, -space every singleton is a closed set in X, z,

also any closed setin X,z isao -closed setin X,z,Q.
3.22 Remark :The converse of 3.21 is not true ,see the following example.
3.23 Example :

X={a,b,c,d},r={X ¢ {a},{d},{a,d},{b.c},{ab.c},{b.c.d}},Q={X ¢fa} {d}.{ad}},
then 6 -0(X) =7 u{{a,b}.{a,c},{b.d},{c.d},{ac,d} {ab,d}}s0 X,z,Q is &-T, since
all singletons are o -closed sets but X,z is not a T,-space since {b} and {c} are not

closed sets.
3.24 Theorem: If X,z ,Q iso -T, and Y is a subset of X then Y,z , ,Q, isa

o -T,too.
Proof: It follows from theorem 3.20.
3.25 Theorem: If X,z,Q iso -T, thenitis o -T

proof: It follows from theorems 3.20 and 3.12 .
3.26 Remark :The converse of 3.25 is not true ,see the following example.
3.27 Example :X ={a,b},z ={X ,¢,{a}} , Q=D (the discrete topology on X),then

0-0(X)= 7 (for X,z,Q)and X,z,Q is 5-Ty(since {a}is & -open and {b}iso -
closed),but not 6 -T, since {a} is not o -closed .

3.28 Definition : A B.S X,7,Q is called 6-T,or ¢ -Hausdorff if any two distinct

points in X are separated by ¢ -neighborhoods (i.e if for each x ,y € X, x=y there is
o -open sets U and V such that xeU , yeV and UnV=9).

3.29 Theorem: If X, zisa T, space ,then for any topology Qon X, the B.S X,z ,Q is
o-T,.

proof: It follows from the fact that - < o -0(X).

3.30 Remark : The converse of 3.29 is not true ,see the following example.

3.31 Example : X={ab,c,d},z={X,4,{a},{b},{c}.{a.b}.{a,c},{b,c}.{ab,c}},Q=I(the
indiscrete topology on X) ,then

0-0(X)= r u{{a,d},{b,d},{c.d},{ab,d},{ac.d},{b,c.d}}and X, ris not T, space but
X,z,Qis 0-T,.

Y
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3.32 Remark : If X,z,Q is o0-T, thenitis ¢ -T, too. But the converse is not true
see the following example.

3.33 Example : X= {a,b,c,d},z={X ,4,{c} . {a,b,d}},Q={X 4 {c}} then

6 -0(X)= r u{{a,b,c}.{a,c},{b,c}.{ac,d},{b,c,d},{c.d}}and it is clear that X,z,Q is
o -T,(since all singletons are ¢ -closed sets ) but it is not 6 -T, (since the points a

and b are not separated by & - neighborhoods).
3.34 Theorem: If X,z ,Q isa 0 -T, B.Sand Y is a subset of X ,then Y,z , ,Q, is

o -T ,too.

Proof : It is obvious.

3.35 Definition : A B.S X,z ,Q is called 5-T2y,
points in X are separated by o -closed neighborhoods . Not thatao -T ” B.S must be
o-T,.

3.36 Definition : A B.S X,z ,Q is called ¢ -regular if given any point x and ¢ -closed
set F in X such that x¢F , then they are separated by ¢ - neighborhoods.

3.37 Remark : If X,z,Q is a B.S ,then the cases that X, is regular and X,z ,Q is
o -regular are independent, see the following two examples.

or ¢ -Urysohn , if any two distinct

3.38 Example :

X={ab,c,d},z={X ¢ {a},{c}.{ac} {b.c} {c.d}.{ac,d},{ab,c} {bc.d}},Q={X ¢/ a}}
then 6 -0(X)= r u{{ab},{a,d},{ab,d}} and X,r,Q is J-regular but X,z is not
regular since the point b and the closed set {a,d} are not separated by neighborhoods.
3.39 Example : X={a,b,c,d},r ={X ,¢,{a},{d},{a,d},{b,c} {ab.c} {b,c.d}},
Q={X,¢,{a}} then 5-0(X)= r u{{a,b},{a,c},{a,b,d},{a,c,d}} and itis clear that X, ¢
is regular but X,z ,Q is not & -regular ,since the point b and the o -closed set {c.d}

are not separated by o - neighborhoods.

3.40 Remark : The notions of 6 -T,and ¢ -regular are independent ,and the notions
of -T, and ¢ -regular are independent too. In example 3.39 X,z,Q is 6 -T,and ¢ -
T, but not o -regular, for the other part see the following example .

3.41 Example : X={a,b,c},z={X ,4,{a},{b.c}},Q={X .¢.{a}.{c}.{a,c}} then
0-0(X)=r and X,z ,Q is o -regular but it is neither 6 -T ,nor 6 -T,.

3.42 Theorem: A B.S X,7r,Q is o -regular if and only if for each ¢ -open set U and
X e U there exists a o -open set V such that xeV and ¢ -clV c U.

proof: Suppose that X,z ,Q isa ¢ -regular B.S ,and let xe U where U is a ¢ -open set,
take H =X-U ,then H is ¢ - closed and x¢H ,so there exist two ¢ -open sets VV and W
such that xeV HcW and V nW=4¢ i.eVc X-W, which implies¢é -clV c ¢ -cl(X-
W)=X-W.On the other hand H< W implies X-W c X-H=U ,therefore ¢ -clV c U.
Conversely ,if H is a o - closed set and x¢H, then x e X-H (=U),U is a ¢ -open set,
and by the condition of the theorem there exists a ¢ -open set V such that xeV and

0 -clV c U therefore Hc X- 6 -clV, xeV and Vn X-(0 -clV)=¢.

Hence X,z ,Q is o -regular.
3.43 Definition : AB.SX,z,Q issaidtobe o -T,,ifitis ¢-T,and & -regular.

o -T,and

11



3.44 Definition : A B.S X,7r,Q is said to be ¢ -normal if any two disjoint ¢ -closed
sets in X are separated by ¢ - neighborhoods.

3.45 Remark : The notions of ¢-T,and ¢ -normal and are independent , and the
notions of o -T ,and & -normal are independent too. See examples 3.39 and 3.41.

3.46 Remark :1f X,z ,Q is a B.S ,then the cases that X,z isnormal and X,z,Q is o -
normal are independent. In example 3.38 X,z ,Q is ¢ -normal but X,z is not normal
since the closed sets {b}and {a,d} are not separated by neighborhoods.

On the other hand ,in example 3.39 X,z is a normal space where the B.S X,z,Q is
noto -normal ,since the closed sets {b}and{c,d}are not separated byo -
neighborhoods.

3.47 Definition : AB.S X,z,Q issaidtobe o -T,ifitis J-T,and o -normal.

3.48 Theorem: If Y is a o -closed subset of a 6-T, B.S X,z,Q, then the B.S
Y,z,,Q,Iis 0-T, too.

Proof: Since X,z,Q is 6-T,, Y,z , ,Q, is 0 -T,(3.24).Since Y is ¢ -closed ,a subset
Fof Y is o-closed in Y if and only if F is o -closed in X .Therefore if F and H are
disjoint o -closed subsets of Y , they are also disjoint & -closed subsets of X . there
are thus o -open sets U and V such that Fc U ,HcV and U~ V=4 .But then
FcYnU,HcYnV where YAU and Y~V are disjoint subsets of Y which are o -
openinY .Therefore Y is 6 -normal ,hence Y'is 6 -T,
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