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Abstract 
In this article we estimate the degree of 3-monotone uniform multiapproximation to get a Jackson 

type estimation as a direct consequence. 
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 الخلاصة
رتيبة متعددة المتغيرات لمحصول عمى مبرهنة مباشرة من نوع  -3برهنا في هذا البحث نظرية حول درجة التقريب المنتظم لمدوال 

 مبرهنة جاكسون.
 رتيبة باستخدام متعددات الحدود بأكثر من متغير, درجة التقريب المتعدد.-3المتعدد لمدوال  التقريب الكممات المفتاحية:

 
1. Introduction and main results 

Let   be function defined on     [      ]    [      ] and   a natural number. 

Denoted by 

 [(        )   (        )]  ∑
 ((         ))

∏ (       ) (       ) 
       

 

   

 

the     order multi divided difference of   at the distinct points 

   (        )         (        ). The function   is called  - monotone on I ,if  

 [(        )   (        )]    for all choices of      distinct points    
(         )         (        )     Let us define   

  the set of all  - monotone 

function on    , and let     
  and    

 are the sets of non – decreasing and convex 

multifunctions on  . It is well known that   
  is the set of all bounded functions, having a 

convex derivative on(      )    (      ) see [A.Guntuboyina and B.Sen (2012)]. 

Note that when      
        then   is continuous on (      )    (      )  and 

 ((         ))     ((         )) exist. Let  ( ) be the space of all continuous 

multivariate functions defined on   and equipped with the uniform norm ‖ ‖  

   
  (       )

| ((       ))| . 

Many authors studied the monotone and convex approximations such us [DeVore, 

1977; Beatson, 1981; Hu, 1993; Kopotun, 1994; Shevchuk, 1997; Leviatan and Prymak, 

2005] they used functions of one variable defined on finite interval. Little is known for 

the shape preserving approximation of  -monotone functions for    . In [Shvedov, 

1981] , Shvedov prove positive and negative inequality for the best approximation of 

   monotone univariate  function for    . 

In  this paper we shall prove the following theorem 

Theorem. Let       
  and  ((       ))    ((       ))    (       )  

(      )    (      )  and let   be an  integer greater than or equal 2 a partition 

                                                 and a 

piecewise multipolynomial      
  of degree not exceeding or equal      , with knots 

   (         )             such that  
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                         ((         ))   ((         ))  

                                                             ( )  
there exists a piecewise multipolynomial     

  of degree not exceeding or equal    

with knots    (         )            for which  

                                   ‖   ‖
     

     
‖   ‖  ( )                                                                              ( )  

where    [         ]    [         ] ,   is positive constant  and ‖ ‖  ( ) denotes 

the   - norm on  , defined by ‖ ‖  ( )  (∫  ∫ | ((       ))|
   

     

   

     
       ) 

Note that we can consider the above theorem as a direct estimate for convex 

multiapproximation since it is in terms of a derivative of  a 3-monotone multifunction.  

 

2. Auxiliary results and the proof of the main results. 
Let   be a function defined on      [      ]    [      ]  , let 

 ((       )      )denote the linear Lagrange interpolating multipolynomials of   at 

the points   (       ) and   (       ) . Assume        
To prove our main result we need the following lemmas  

Lemma 1. Let     
 , and let     

  is amultipolynomial  of degree not exceeding or 

equal     , with  ((       ))   ((       ))  and 

 ((       ))   ((       ))  Then there is a multipolynomial     
  of degree not  

exceeding or equal      , satisfying  

       ((       ))   ((       )) 

 ((       ))   ((       ))                                  ( ) 

    ((       ))    ((       ))   ((       ))

   ((       ))                                         ( ) 

                      ‖∫  ∫ ( ((       ))   ((       )))     
( )

  

( )

  

   ‖

 

 

             ‖∫  ∫ ( ((       ))
( )

  

( )

  

  ((       )))        ‖
 

                                             ( ) 

and 

                     ∫  ∫  ((       ))
  

  

  

  

       

 ∫  ∫  ((       ))
  

  

  

  

                        ( ) 

Proof . If  

∫  ∫  ((       ))
  

  

  

  

        ∫  ∫  ((       ))
  

  

  

  

         

then we take        and ( ) through ( ) are self evident. Otherwise, 

∫  ∫  ((       ))
  

  

  

  

        ∫  ∫  ((       ))
  

  

  

  

        

      
Clearly  
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                          ‖∫  ∫ ( ((       ))
( )

  

( )

  

  ((       )))        ‖
 

                              ( ) 

Let  ((       ))   ((       )   (       ) (       ))  Then since   is   

convex,  ((       ))   ((       )) , (       )     Hence  

                 ∫  ∫  ((       ))
  

  

  

  

       

 ∫  ∫  ((       ))
  

  

  

  

                            ( )  

        ∫  ∫  ((       ))
  

  

  

  

         ∫  ∫  ((       ))
  

  

  

  

            

    
                   (       )     
Let  

 ((       ))  
  ((       ))    ((       ))

   
 (       )     

(3) and (4) imply   is a convex  . using (8) and (7) to get 

|∫  ∫  ((       ))
  

  

  

  

        ∫  ∫  ((       ))
  

  

  

  

       | 

   |
 

   
∫  ∫ ( ((       ))   ((       )))

  

  

  

  

       

 
 

   
∫  ∫ ( ((       ))   ((       )))        

  

  

  

  

| 

 
 

   
|∫  ∫ ( ((       ))   ((       )))

  

  

  

  

       |

 
 

   
|∫  ∫ ( ((       ))   ((       )))        

  

  

  

  

| 

 
 

   
  

 

   
‖∫  ∫ ( ((       ))   ((       )))        

( )

  

( )

  

‖

 

 

 
  

   
‖∫  ∫ ( ((       ))   ((       )))        

( )

  

( )

  

‖

 

 

  ‖∫  ∫ ( ((       ))   ((       )))        

( )

  

( )

  

‖

 

  

that is, (5).  Finally, 
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∫  ∫  ((       ))
  

  

  

  

       

 
 

   
∫  ∫  ((       ))

  

  

  

  

       

 
 

   
∫  ∫  ((       ))

  

  

  

  

       

 
 

   
(   ∫  ∫  ((       ))

  

  

  

  

       )

 
 

   
(∫  ∫  ((       ))

  

  

  

  

         ) 

                            ∫  ∫  ((       ))
  

  

  

  

         

Which prove (6) , and that completes our proof. 

Lemma 2. Let      
  be a multipolynomial of degree        and let   and   be 

arbitrary nonnegative real numbers. Suppose that    
  and      

  ,         are real 

numbers satisfying, 

               
    

 
( ((       ))   )  ( ((       ))   )

(     ) (     )
    

    
                           ( )  

and 

   
    

   ((       ))    ((       ))     
    

  

Then there is a multipolynomial     
  of degree       such that  

                                                   ((       ))

  ((       ))                                                      (  ) 

   ((       ))   ((       ))               

                     
    

   ((       ))

   ((       ))     
    

                                        (  ) 

and 

 ((       ))   ((       ))       (       )   

 [      ]    [      ]                         (  ) 

Proof. If       , and   ((       ))   ((       ))    ,             

         and the proof of  (10), (11) and (12) is clear. then, assume that      

(the other results are similar). Let 

  
((     ) (     ))(   

    
)   ((       ))   ((       ))

    
 

we have that the right hand side of (  ) is equivalent to      Put 

 ((       ))  (   
    

)((     ) (     ))   ((       ))      

Then , 

     ((       ))  (   
    

)((     ) (     ))   ((       ))   

                                ((       ))           (       )

                                                                      (  )  
Now  let  

 ((       ))     ((   ) ((       ))   ((       )))    (       )    
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Then the multipolynomial   is convex since it is written in terms of    and  , with 

nonnegative coefficients. Also the proof of (  )  and (  )  is clear (  ) since    is 

monotone. Now for (13), 

 ((       ))     ((   ) ((       ))   ((       ))) 

                               ((       ))          (       )   , 

thus (12) is proved and the proof is completed. 

Lemma 3. Let       
   and       

   ( )(  ) , satisfy   ((         ))  

 ((         ))                         ((       ))  ((      ) (   

   ))    ((         ))   ((         ))  and denote  

   ∫  ∫ (  ((       ))   ((       )))
 

   

   

   

   

                      

Then  

                     ‖∫  ∫ ( ((       ))
( )

   

( )

   

  ((       )))        ‖
   

                              (  )   

Proof.  Let      . The convexity of   implies that   ((       ))   

 ((       ))  (       )          [       ]    [       ]  The convexity of 

  and the linearity of   we can find a    (       )        satisfy  ((       ))  

  ((       ))     [      ]    [      ]       ((       ))   ((       ))  

   [      ]    [      ]  Hence 

   ∫  ∫ (  ((       ))   ((       )))
  

   

  

   

         

     ∫  ∫ ( ((       ))   ((       )))
  

   

  

   

         

             ‖∫  ∫ ( ((       ))   ((       )))
( )

   

( )

   

        ‖

   

  

This completes the proof of (14) when         And that implies:  

   ‖∫  ∫ ( ((       ))   ((       )))
   

( )

   

( )

        ‖
   

  

Which yield the proof of (14) when        . 

Lemma 4. Let       
   be a multi real functions with 

                ((       ))   ((       ))

  ((       ))    ((       ))                             (  ) 

Then  

  ((         ))    ((         ))  

Proof. We have    and    are monotone on (      )    (      ). Suppose to the 

contrary that   ((         ))    ((         ))  Therefore  

 ((       ))   ((       ))  ∫  ∫   ((       ))
  

  

  

  

        

   ((         ))((     ) (     )) 

   ((         ))((     ) (     )) 
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 ∫  ∫   ((       ))
  

  

  

  

         ((       ))    ((       ))  

contradicting (15). 

Corollary 1. Let     
 and let     

  be a piecewise multipolynomial of degree not 

exceeding or equal     with knots partition                         
                       satisfying ( )  now if           

, 

                        ((               ))

   ((           ))                                                        (  ) 

                        ((               ))

   ((           ))                                                       (  ) 

Given               
  denote  

                   
     

‖   ‖  ( )          

 [         ]    [         ]                                      (  ) 

Let us write        ,          , when   is a convex piecewise 

multipolynomial of degree not exceeding or equal      on [       ]    [       ]   

with knots (             )   (             )  and satisfies   ((           )) 

   ((           ))  and   ((           ))    ((           ))  and 

 ((         ))   ((         ))  ,  ((         ))   ((         ))   For 

          and    (       ) let  

  ( )  

{
  
 

  
 

  ((           ))                   (         ]    (         ] 

                                                  
   

   ((           ))                    (         ]    (         ]   

  ((           ))                     (         )    (         )  

  ((               ))      [         )    [         )    

                                             

 

and set   

  ((       ))   ((         ))  ∫  ∫   ((       ))        
  

   

  

   

 

using of Corollary 1,we get    is non-decreasing on (      )    (      )  also we 

have    is convex on (      )    (      ) . It follows by ( )  we have 

  ((             ))   ((             ))  and   ((             ))  

 ((             )) . Therefore , 

                           ((       ))

  ((       ))                                                                                 (  )  

  (       )    (           )    (           ). 

By lemma 3, 

               ∫  ∫ (  ((       ))   ((       )))
 

       

     

   

     

   

                              (  ) 
and 

             ∫  ∫ (  ((       ))   ((       )))
 

       

   

     

   

     

                                    (  ) 
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If            let us construct a function              Then, if          , then 

let         
 [         ]   [         ]

, which belongs to         From the other ,we have 

by (19), that    ((         ))    ((         ))    ((         ))      

((         ))  

      is continuous on      [       ]    [       ] ,  therefore there exists 

a    (       )    (       )  such that    ((       ))    ((       )) In 

addition , by (16) and (17)    ((       ))       ((       ))        (       )    

(       )   whence       is nonnegative on (       )    (       )  leads to 

      is non-decreasing on (       )    (       ). Therefore 

   {  ((       ))   ((       ))}  {
  ((       ))                  

  ((       ))                  
 

and we set  ̅   ((       ))     {  ((       ))   ((       ))}       

[       ]    [       ] . Note that  ̅    convex on   . For the integers  ,       

  ,   (       )  satisfies   [         ]    [         ]  And for the 

integers                  the function  ̅    is linear on [         ]    

[         ] , but it may not be so on the interval [         ]    [         ] . 

Then we shall replace it by amultipolynomial of degree     . Then by the convexity 

of  ̅     we get  

 ̅   
 ((               ))  

 ̅   ((         ))   ̅   ((             ))

(         ) (         )
 

               ̅   
 ((           ))  

Put 

   
    

 {
  ((               ))           

  ((               ))                             
 

and  

   
    

 {
  ((           ))                                      

  ((               ))                                  
 

Therefore 

 

   
    

  ̅   
 ((               )) 

         ̅   
 ((           ))       

    
  

Also, in view of (16) and (17), 

   
    

   ((               )) ,   ((           ))     
    

  

Applying Lemma 2 with          and                 , 

   
 [         ]   [         ]

       and  

   ((             ))   ̅   ((             )) and     ((         ))  

 ̅   ((         )), so we get the required polynomial p. Let  

    ((       ))  {
 ̅   ((       ))      [         ]    [         ] 

 ((       ))                   [         ]    [         ] 
 

Then (10) and (11) yield              and (12) gives 
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             ∫  ∫ (    ((       ))
   

     

   

     

  ((       )))
 

                                             (  )   

 ∫  ∫ ( ((       ))   ((       )))
 

   

     

   

     

           

By virtue of (20) and (21) we have 

              ∫  ∫ (    ((       ))   ((       )))
 

     

   

     

   

       

                                 (  ) 
and  

          ∫  ∫ (    ((       ))   ((       )))
 

   

     

   

     

       

                                      (  ) 

Since (21) implies that     ((       ))   ((       ))  for all (       )  

[         ]    [         ]               , we conclude from (21), (23) 

and (24) that 

            ∫  ∫ (    ((       ))   ((       )))
 

   

   

   

   

       

                                        (  ) 

If  ((       )) is a continuous function on    [       ]    [       ], then we 

have 

        ‖∫  ∫  ((       ))       

( )

   

( )

   

‖

  

 

 |∫  ∫  ((       ))       

   

   

   

   

|                                                                                                 (  )  

 ∫  ∫  ((       ))
 
       

   

   

   

   

  

Indeed , for                              when  

∫  ∫  ((       ))       

  

   

  

   

         

  ∫  ∫  ((       ))       

  

   

  

   

 ∫  ∫   ((       ))       

  

   

  

   

 

 ∫  ∫   ((       ))        
   

   

   

   

 

On the other hand, if 

∫  ∫  ((       ))       

  

   

  

   

         

|∫  ∫  ((       ))       

  

   

  

   

|  ∫  ∫   ((       ))       

  

   

  

   

 

                                 ∫  ∫   ((       ))       
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                                ∫  ∫  ((       ))       

   

   

   

   

 

                                    ∫  ∫  ((       ))
 
        

   

   

   

   

       

This completes the proof of (26). Then let 

    ( )  ∫  ∫ (    ((       ))   ((       )))        

( )

   

( )

   

  

using (25) we get 

                       ‖    ‖  

 |    ((         ))|

                                                                                 (  ) 

Lemma 5. If          is an integer. Then, there is an integer           

and a multifunction     
        , satisfying   

    
 ( )  ∫  ∫ (    

 ((       ))   ((       )))        

( )

   

( )

   

  

and  

                          ‖    
 ‖

  

                                                                                                                        (  ) 

When       , we have 

                              
 ((         ))

                                                                                                      (  ) 

Proof. assume        ((             ))    , therefore (25), 

       ((             ))      , and let        
          we get (28) by (27). at the 

other side , at least one of       ((             ))            , is negative. 

When                 ,              ((             ))   , then let      

   also      
         And  (29) is proved , also by (27), we get (28). At last , if all the 

negative numbers above        let            be small and satisfy 

      ((             ))        Then for ,      since       ((       ))  

 ((       )) ,   [         ]    [         ]    whence 

|      ((             ))|   . Let         , and     
 [         ]   [         ]

 . 

Then by (18) ,  

            ‖∫  ∫ ( ((       ))   ((       )))        

( )

     

( )

     

‖

  

                                   (  ) 

   [         ]    [         ]. 

Denote  

 ̃   ((       ))  {
      ((       ))        [         )     [         ) 

 ((       ))                        [         ]    [         ] 
 

And by   ̃           and    ̃           , we have  ̃            Assume 

    
 ((       ))       ((       ))   (   ) ̃   ((       )) ,   (       )  

   [       ]    [       ]  where     |    ((         ))|
  

   . Clearly 
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  (   )    (   )  therefore     
        The definition of    leads to      

      ((             ))       

Then using (27) 

‖∫  ∫ ( ̃   ((       ))   ((       )))        

( )

   

( )

   

‖

  

 

  ‖      ‖  
          [         ]     [         ]  

 |      ((             ))|         

Also by (30)  

|∫  ∫ ( ̃   ((       ))   ((       )))        

  

   

  

   

| 

 |      ((             ))

 ∫  ∫ ( ((       ))   ((       )))        

  

     

  

     

 | 

 |      ((             ))|          

   (       )      [         ]    [         ]. 

Therefore  

          ‖∫  ∫ ( ̃   ((       ))   ((       )))        

( )

   

( )

   

‖

  

                                       (  ) 
In particular , 

 

     
 ((         ))       ((         )) 

 (   )∫  ∫ ( ̃   ((       ))   ((       )))        

   

   

   

   

 

     (   )      
therefore (29) is proved . Then using  (27) and (31) ,to obtain 

‖    
 ‖

  
   ‖    ‖  

 

 (   ) ‖∫  ∫ ( ̃   ((       ))   ((       )))        

( )

   

( )

   

‖

  

 

   (|    ((         ))|    )   (   )               .  Then  (28) 

is proved , which completes the proof . 

Proof of  the Theorem. Note that  

 ((       ))   ((         ))   ∫  ∫  ̅((       ))       

  

   

  

   

     

where  

 ̅((       ))  {

 ((       ))                    [       )    [       )      

                                                 (         ]    (         ]

 ((       ))                     [         ]    [         ] 
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is in       . This shows that   is  3-monotone . Now let us define  (       ) using the 

induction. Then using Lemma1 for    [         ]    [         ] ,           
where    

  
  , then           . Also, we have if         ,             

and          then             We can define   using induction. And using Lemma 1 

for [       ]    [       ] ,with    
 [       ]   [       ]

  ,  we get a 

multipolynomial           and let   ((       ))    ((       )) (       )  
[       ]    [       ]  Assume the   defined on  [       ]    [       ] for 

some        , it belongs to       , with all   [       ]    [       ]  that 

           |∫  ∫ ( ((       ))   ((       )))        

  

   

  

   

|

                                             (  ) 

where   is defined in (18) , then  

           |∫  ∫ ( ((       ))   ((       )))        

   

   

   

   

|

                                           (  ) 

Then we define   on some      [       ]    [       ]         , so that 

           (32) is true, on the interval [       ]    [       ] and when       , 

we have 

 

          |∫  ∫ ( ((       ))   ((       )))        

   

   

   

   

|

                                           (  ) 
If  

            ∫  ∫ ( ((       ))   ((       )))        

   

   

   

   

                                                (  ) 

then if            using Lemma 1 for   [         ]    [         ] and    
   

 

. let  ((       ))    ((       ))    (       )     where p is the required 

multipolynomial. For   (       )    , using (33) and (5) ,we get 

|∫  ∫ ( ((       ))   ((       )))        

  

   

  

   

|

 |∫  ∫ ( ((       ))   ((       )))        

   

   

   

   

|

 |∫  ∫ ( ((       ))   ((       )))        

  

   

  

   

| 

                                            
Hence, combining with (32) for   (       )  [       ]    [       ] , we see 

that (32) holds for    (       )  [       ]    [       ]   

Moreover  (6) implies that 

  ∫  ∫ ( ((       ))   ((       )))        

   

     

   

     

     

which together with (33) and (35) yield 

     ∫  ∫ ( ((       ))   ((       )))        
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So  (34) is proved . Otherwise, 

         ∫  ∫ ( ((       ))   ((       )))        

   

   

   

   

                                                   (  ) 

using Lemma 5, to get some integer              , and     
 is in    , and satisfy 

(28) and (29) when          . Let   ((       )) =     
 ((       )) (       )  

     when         using  (28) to get (32) when (       )  [         ]    
[         ]  Then , if (       )     , using (28) and (33), we get 

|∫  ∫ ( ((       ))   ((       )))        

  

   

  

   

|

 |∫  ∫ ( ((       ))   ((       )))        

   

   

   

   

|

 |∫  ∫ (    
 ((       ))   ((       )))        

  

   

  

   

|

              
Hence, (32) holds for (       )  [       ]    [       ]. Also, by (36) and (33), 

  ∫  ∫ ( ((       ))   ((       )))        

   

   

   

   

      

which combined with (28) and (29) give 

     ∫  ∫ ( ((       ))   ((       )))        

   

   

   

   

      

Thus the proof of (34) is complete. 

Then using (32) and definition of   to prove (2) 
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