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Abstract  
The nonlinearity and time varying characteristics of an Induction Motor ( IM ) make it very difficult to be 

controlled. although  PID controller are widely used in this field but the complex mathematical model of ( 

IM ) makes the design procedure of any PID controller very tedious ,in  which the time varying behavior of 

( IM ) reduces the accuracy of any PID controller used. The use of Fuzzy Logic Controllers ( FLC ) in such 

control problem is widely used too, since Fuzzy Logic does not need any mathematical model and only 

uses linguistic rules that are based on human expert . However, still checking the parameters of ( FLC ) is a 

hard task  for such  a system specially the center and width of the used member ship functions. 

In this paper a Hybrid Genetic Based ( FLC ) is introduce to control the ( IM ). The  Parameters  

measurements of ( IM ) has been carried out using Genetic Algorithm ( GA ) based technique in which only 

transient speed measurement is required for an easy, fast and effective identification of all the require 

machine parameters under the required operative condition as shown in the given results. 
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 الخلاصة
الصفات اللاخطية  االتغيرةتات لةال ال التدةةدي  لةح الت تلةات ال جية   ليةةا ستطية  الهةيطت  سطراةا  ة    ةة ا 

ج الة  ت لاساةا ل غةا( لهةغد   لثجةت  لةح  ةلم التيةاا  PIDلالتغم ال ان التهيطتات الغفاضةطي  الغاااطية  الغساية ي    
حالةة  الهةةيطت  سطةة  الت تلةةات ال جيةة  الةةح  ةةلم ال الةة  لدةةتج نتةةد ج اضاضةةح ا ثةةم اتةةا ييةطاةةا خيةةاا غرةةت ةرةة  لةةح 

 السغائج غرت يقيق .
لثجت  لح  لم ال اات اناا ا لةغتة  سطة  نتةد ج اضاضةح لطتس داة   بضلم ايغد ا  اهيطتات التسطق التض 

    ل ق  ستطية   ة ، الاساا لةغت  سط  قدانرل ليدض  ااخد    ال الد ت  ال شتض  ، الال اخغياا اةاالات التهيطتات
 ابااخص يال  الةضدض  لالم التهيطتات.الةغت  سط    ل  ااخغياا 

لح  لا ال  ث ،اهيطت اض ب اةغت  سط  خداازاي  اليرسات لم ايغد ااه لطهيطت  سط  الت تك ال جح ،حرث لةم قيةا  
، يةةاط  ايةةتضة  الةالةة  الةة  التيهةةطت ضقةة اةةةاالات الت ةةتك ال جةةح لايةةغد ا  الدداازايةة  اليرسيةة  لاةةح لسقةةا قيايةةات الهةةتس  لطت 

 ا لا اا يتثل اؤضغه لح السغائج التدةدي  لح  لا ال  ث.
1. Introduction 

For many years PID controllers have been used for the control of (IM) process. 

Tuning of PID controllers is needed to obtain the satisfactory performance. There are 

many methods for tuning PID gains namely Ziegler-Nichols (ZN), Cohen and Coon 

(CC), Internal Model Control (IMC) and Performance criteria optimization. Ziegler-

Nichols tuning is one of the most widely used method to tune the PID controllers. In all 

these methods the precise mathematical model for ( IM ) is needed and the design 

procedure is complicated [Leonard 1997, Shaw 1999, Cincirone 2005] . 

The adaptive learning algorithm of Universal Learning Network (ULN) represents 

the modeling and control of nonlinear black box systems with large time delay [Zurada 

1996]. The main difficulty in control is due to the disturbances and parameter 

uncertainties. The fuzzy set theory is particularly useful for application in control with 
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uncertainties [Cincirone 2003]. In recent years, there have been several applications of 

Genetic Algorithm to control of dynamical systems. Genetic Algorithm (GA) [Reznik 

1997] is a parallel, global search technique based on the concept of natural selection. This 

technique has the capability to solve nonlinear and complex optimization problems. 

The main issue in the evolutionary design of fuzzy systems using GA is their 

genotype representation. The rules are encoded into the chromosome while fixing the 

membership function [Trentin 2006]. Each membership function is represented by several 

critical points and GA is used to evolve the membership function using all the possible 

rules [Crockett 2006, Abu-Rub 2006]. Since in a fuzzy system the membership function 

and rule set are co-dependent, they should be designed or evolved at the same time. 

Homaifar [Devaraj 2005] proposed that GA is used to tune the membership function and 

evolve the rule set at the same time. 

There are some drawbacks in doing so: first, the computational efficiency 

associated with fuzzy logic is lost using a high number of rules [Astrom 2001, Gen 2000] 

and second, the robustness decreases with the increasing number of rules. In most 

applications, not all the possible rules need to be used; only a portion of the rules are 

needed. In this paper, a method for optimal design of a fuzzy logic controller using 

genetic algorithm is proposed that can evolve the rule set and the membership function 

simultaneously. 

To obtain good performance from a vector controlled induction motor (IM) drive 

[Leonard 1997] it is very important to have an accurate knowledge of the electrical and 

mechanical parameters of the machine under all operating conditions. However, in reality 

the motor parameters are only approximately known from manufacturer’s data and 

standard tests. The use of optimization techniques for machines parameters estimation 

has been investigated in the literature; for example the Levenburg-Marquardt method 

[Shaw 1999], Least-Square strategy [Shaw 1999]-[Zurada 1996], and Genetic Algorithms 

(GA) [Cincirone 2003]-[Reznik 1997] [Trentin 2006]. 

2. System Description and Model Development. 
The genetic algorithm [Abu-Rub 2006]-[Astrom 2001] uses the principles of 

natural selection and genetics from natural biological systems, in a computer algorithm, 

to simulate evolution. Essentially the GA is an optimization technique that performs a 

parallel, stochastic, but direct search that evaluates more than one area of the search space 

and can discover more than one solution to a problem. A “fitness function” measures the 

fitness of an individual (possible solution) to survive in a population of individuals. 

The genetic algorithm will seek the solution that minimizes the fitness function, 

generating at each step a new generation of solutions using the operations of mutation 

and crossover and selecting the best individuals for the population at the following step. 

At initialization a specified number of individuals and generations are chosen with the 

first population of individuals being generated randomly. The individuals are then tested 

and a fitness value is associated to each of them. Through the genetic operation of 

selection the individuals with the higher fitness value will have a higher probability to be 

selected in the population at the following step. Once the selection procedure has 

terminated, the genetic operations of mutation and crossover are used to create the new 

generation of individuals starting from the selected individuals. 

Once the new generation is created, each individual is again tested and the whole 

procedure is iterated. The algorithm will update the best individual at each generation. 
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The search procedure will terminate when a fixed termination criteria (maximum number 

of generations or a target error) is fulfilled. Using a GA procedure off-line, the electrical 

and mechanical parameters of the IM are estimated [Trentin 2006] and recorded against 

the d-axis motor current, id, which is used to define the different drive operative 

conditions. The improved vector control therefore implements the accurate machine 

parameters with values varying as a function of the drive operating conditions. A similar 

GA routine has been used for the system control optimization. The parameters of torque 

current, flux current and speed controllers are coded into a string. Each of these strings 

represents an individual; a possible solution for the optimization problem. 

During the optimization the program will recursively run a Simulink simulation of 

the experimental drive under test and evaluate each of the individuals in the current 

population. Using the simulation results, a fitness value will be associated to all the 

individuals. The search procedure will then continue and will terminate when the fixed 

maximum number of generations is reached. The final output of the procedure will be an 

optimum set of parameters with minimized fitness function. The evaluation of the fitness 

function (FF) in this work is made by weighting the transient overshoot value (OS), the 

rise time (tr) and the steady state error (ess) relative to the output voltage DC component 

in the dq reference frame: 

FF=Ko*OS + Kr*tr + Ks*ess                                                                 (1) 

The gains, Ko Kr and Ks, can be chosen according to the importance given to the 

optimization of each of the three performance factors for the final system response based 

on the target application. The algorithm will try to minimize (1). The control parameters 

were found for a range of operating conditions (id values) of the IM. The result was 

therefore a set of parameters for the controllers, each one chosen for the level of 

saturation of the IM. Through a curve fitting technique the parameters of each controller 

can be described and implemented with a function which selects the optimized control 

action for the current operating condition. 

3 Identification of IM parameters. 
The unknown electrical parameters of the IM are the rotor resistor (RR), the 

magnetizing inductance (Lm) the leakage inductance of the stator (L1) and rotor (L2).  

The stator resistor (RS) is assumed to be known because it is easy to measure. The 

unknown mechanical parameters are the rotating system inertia (J), the friction (B) and 

the viscosity of the oil (υ) which cools the IM. To reduce the number of unknown 

mechanical parameter a particular experimental test was carry out on the motor. This test 

consists in accelerating the IM up to a certain speed, disconnecting the supply and leaving 

the IM to naturally decelerate. From this test it was possible to estimate the relation 

between the mechanical parameters, so effectively only one parameter is unknown. 

Fig.1 shows the block diagram of the vector control scheme used to control the 

IM. A standard αβ model in the stator reference frame was used in the motor simulation. 

A measurement of the speed transient was taken running the motor using the vector 

control with the parameters supplied by the IM manufacturer and the first guess control 

parameters given in Table1. Using a GA routine [Trentin 2006] it was possible to 

estimate the IM parameters as a function of the flux producing current, id. 
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Table I: Motor characteristics and Control Parameters 

Type AC induction  Sample time 250[µsec] 

Cooling Oil  “speed of current loop” 250[µsec] 

Rated speed 0-15000 [rpm]  “speed of speed loop” 0.01[sec] 

Continues torque 1350 [Nm]  Integral part of current. PI 53 

Continues Power 410 [kW]  Proportional part of current PI 0.083 

Stator resistor RS 0.003475 [Ω]  Integral part of speed PI 6 

Rotor resistor RR 0.0034 [Ω]  Proportional part of speed PI 5 

Magnetizing Inductor Lm 0.96 [mH]  Id_ref (range) 40-310[A] 

Stator leakage inductor L1 35 [µ]  Iq_ref (range) 20-50[A] 

Rotor leakage inductor L2 26 [µ]  Speed reference (range) 80-200[rpm] 

 

Figure 2 shown the behaviour of the magnetizing inductance, Lm, and the rotor 

flux as a function of the demanded flux producing current, id-ref. The parameters of the 

motor selected by the GA are shown in table II for an id_ref of 270A. 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Block diagram of the vector control used to estimated the parameter of the induction machine 

Fig. 2: Value of Lm (a) and rotor flux (b) in function of Id_ref found by the GA 
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Table II: Motor parameters optimized by the GA at the beginning of the saturation region 

Inertia J 1.1 [kgm2] 

Friction B 1.07e-3 [Nms] 

Viscosity υ 6.42e-6 [kgs2] 

Rotor resistor 0.00366 [Ω] 

Magnetizing inductance Lm 0.96 [mH] 

Stator leakage L1 30 [µ] 

Rotor leakage L2 50 [µ] 

4 Identification of the control parameter for all saturated conditions 
During the optimization test the IM was controlled with a traditional rotor flux-

based vector control algorithm using approximate parameters values. Once the accurate 

parameters of the IM have been derived using the GA in different operating conditions 

(as a function of the d-axis motor current, id), it is possible to increase the complexity of 

the vector control algorithm [Crockett 2006] based on the rotor flux control to further 

improve the control performance. Furthermore, using another offline GA routine, it was 

possible to further optimize the controller design. Because the values found from the GA 

routine are still estimations of the real parameters, the control presented in this paper does 

not take into account any feed forward compensation. The removal of the feed forward 

terms is meant to reduce the number of parameter to be used in the control to assist the 

GA in reaching an optimized solution. 

Figure 3 shows the block diagram for the system simulation used by GA to find 

the optimum parameters for the current control loop. The model of the IM is the same as 

for the previous simulations. The electrical and mechanical parameters presented do not 

have a large variability as Id_ref changes and therefore are assumed to be constant. A GA 

search has been run for different values of Id_ref  giving a set of optimized parameters 

for the PI controllers (proportional and integral gains) which can then be used under 

different operating conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Block diagram of the control used for the optimization of the current PI  
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With similar simulation models and using the same principles, the GA routine has been 

used to optimize the parameters of the PI controller of the speed and flux control loops. 

Figure 4 shows the result of the GA search for the control parameters which have a 

relevant variation as the magnetizing inductance varies: (a) the value of the proportional 

part of the PI of the current loop and (b) the value of the integral part of the PI of the 

speed loop in function of the id_ref. 

 

 

 

 

 

 

 

 

 

 

5 The Control system 

 

 

 

Figure 5 show the complete block diagram of the vector control scheme for the 

control of the IM which has been implemented on the laboratory based test rig. In this 

control scheme there are four PI controllers for the speed, flux and the two currents on the 

dq reference frame. The rotor time constant necessary to implement the rotor flux control 

is not constant, so this variable has been tabulated from previous experimental and 

simulation tests in the same way as the PI controller parameters. The saturation level for 

the current controllers is a function of the maximum current limit of the inverter and 

therefore the maximum value of iq is a function of id. The saturation of the control output 

voltage on the d axisis a function of the DC link voltage while on the q axis is function of 

the DC link voltage and the control output voltage on the d axis Ed_ref [Crockett 2006]. 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 4: Proportional part and Integral part of the PI found by the GA 

 

Fig. 5: Block diagram of the vector control scheme 
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6. Genetic Algorithm Implementation. 
When designing a Fuzzy Logic Controller using Genetic Algorithms [14], the 

following issues are to be addressed 

6.1 Representation 
The representation strategy is how to encode the variables into the chromosome. The 

representation of rules used in this paper has three sections: rule selection, representation 

for the input variables and the representation for the output variables. The rule selection 

bit may be zero or one. one represent the selection of the rule. Depending on the ranges of 

the input variables and output variable, number of bits has been chosen for representing 

each rule of the rule set. The input variables of the pH process are error and the rate of 

change of error and output variable is base flow rate are consider for fuzzy variables. Five 

membership functions are allotted for each input and output variables. The input variables 

are represented by IP1 and IP2 and the output variable is represented by OP. 

 

 

 

 

 

 

 
 

 

 

 

 

 

Triangular membership function is used in this paper. Each membership function is 

represented by five membership points with overlap between each membership function 

as shown in figure 2. A total of 13 membership points (P1 to P13) are required for 

representing each input variable as a fuzzy set. In those thirteen points, first and last 

points (P1 and P13) are fixed. The remaining eleven membership points are evolved 

between the dynamic ranges such that P2 has [P3, P13], P3 has [P1, P13], P4 has [P2, 

P3], P5 has [P6, P10], P6 has [P4, P7], P7 has [P5, P13], P8 has [P9, P13], P9 has [P5, 

P10], P10 has [P7 P13] ,P11 has [P12 P13] and P12 has [P8 P13]. With the above 

representation a typical chromosome will look like the following: 
100                001                    011 

IP1                  IP2                    OP 
 

                      110   010        011   111   100          011   111         100   011   111       100   100   

001 

                           P1      P2           P3      P4       P5             P6       P7              P8     P9       P10         P11     

P12     P13 

 

Fig. 6. Fuzzy Space. 
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                              MF1                      MF2                          MF3                         MF4                           

MF5 

6.2 Fitness Function 

The next important consideration is the choice of fitness function. Evaluation of the 

individual is accomplished by calculating the objective function value for the problem 

using the parameter set. The result of the objective function calculation is used to 

calculate the fitness function of the individuals. The Integral Square Error, settling time 

and over shoot are taken as performance indices and the objective function is given by 

minimize 

(7) 

The minimization objective function given by (12) is transformed to fitness function as 
 

(8) 
 

Where k is a constant. In the denominator a value of 1 is added with f in order to avoid 

division by zero. 

7. Simulation Results  
The GA-based algorithm is applied to find the optimal parameters of the Fuzzy 

controller. The objective function in this pH process is minimization of error. The 

optimization variables are represented as binary numbers in GA population. The initial 

population is randomly generated between the variables lower and upper limits. 

Tournament selection is applied to select the members of the new population. The 

performance of GA for various values of cross-over and mutation probabilities in the 

ranges 0.6-1.0 and 0.001-0.1, was evaluated. The Descriptions of the IM variables with 

corresponding symbols and its values are given in Table.1.The best results of the 

proposed GA are obtained with the following control parameters. Number of generations 

= 30, Population size = 20, Crossover probability = 0.8, Mutation probability = 0.08. The 

GA took 20s to complete the 30 generations. After 30 generations, it is found that all the 

individuals have reached almost the same fitness value. This shows that GA has reached 

the optimal solution. Fig.3 shows the convergence of proposed GA algorithm. It is 

observed that the variation of the fitness during the GA run for the best case and shows 

the generation of optimal variables. It can be seen that the fitness value increases rapidly 

in the first 5 generations of the GA. Then the value increases slowly, and settles down 

near the optimum value with most of the individuals in the population reaching that point. 

The optimal membership functions of error, rate of change of error and the feed flow rate 

are shown in Fig.7 and Fig.8 respectively. First, the GA is used to optimize the square-

wave tracking performance of the inner loop of the isd current, measured by means of the 

IAE (Integral Absolute Error) of isd with respect to its reference isd*. This operation 

requires less than one minute, due to the very short transients of the current. Fig. 9 (a) 

shows the 'sd current response of the randomly generated controllers in the first iterations 

(first row) and after GA convergence (second row). The second optimization task regards 

the flux controller. In this case the objective is to minimize the weighted sum of two 

terms. The first one is the tracking IAE of the flux with respect to its reference for a 

square wave of period T= 0.5s. The second term integrates the absolute difference 

between the control action filtered by a first-order linear filter with time constant T=0.02 

s, and the unfiltered actual action isd (t) itself. This term, hereafter called smoothness 
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index (SI), is intended to penalize controllers with an excessively oscillatory control 

action which may cause stresses for the IM producing vibrations, and extra losses. As 

shown in table II, the SI is multiplied by a factor β introduced for normalization 

purposed. The effects of the GA optimizations are visible in fig.9(b), which provide the 

details of the steady-state flux behavior. Even through ripples are very small since the 

beginning of the optimization, the nervousness of the flux influences the isd response (as 

shown in fig. 9(c), first row). The results of the automated optimization are illustrated in 

Fig.10, which reports the isq current (a) at the beginning and (b) at the end of the GA 

evolution. The last optimization step regards the speed response. In this case, the setpoint 

is a square wave with period T=1.4 s and amplitude equal to the rated speed. After 0.5s 

from every change of the reference signal, a step change of load torque (from 0 to 70% of 

motor rated torque) is applied. In order to evaluate also the overall disturbance rejection. 

Fig. 10 (b) first row shows the final speed response of the optimized control system and 

Fig. 10 (c) first row reports the isq response during the same experiment. To give a 

detailed idea of the progress of GA search, Fig. 11 (a) shows the evolution of the fitness 

function and the proportional gain of the speed controller (the trends of the other 

parameters are similar, and thus omitted for brevity) in a typical GA run. The effects of 

non persistent elitism are clearly visible in these figures (notice the discontinuities in the 

thick line representing the elitist individual). It is worth noting that the optimization 

algorithm converges in a very short time in spite of the noisy experimental fitness 

measurements. To provide a quantitative comparison with other available design 

strategies, Fig. 11(b) and (c) compare the result of a cascaded control system obtained 

with the GA with a one designed with the IM model and adopting standard controller 

synthesis techniques. In particular, the gains of the current controllers have been selected 

so as to achieve a first order closed loop response with time constant equal to τis= 11.2ms, 

and the speed loop has been approximated with a first order system having time constant 

(i.e equal to the sum of all the delays found in the speed control loop, namely the current 

control τis, the speed low pass filter τfw, and the delays due to the digital implementation 

τsh ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.Convergence of proposed GA 
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Fig. 8. Optimal design of error 

Fig. 9. Comparison of signals at the beginning (first row of figures) and at the end (second row) of the GA evolution. 

Namely, figures show (a) isd current during the first inner-loop optimization, (b) rotor flux during the second loop 

optimization and (c) isd current during the flux control loop optimization. 
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Fig. 10. Comparison of the isq current (a) at the beginning and (b) at the end of the GA evolution. The figure  

(c) shows the speed oscillations occurring during isq tuning, which remain below the 400 of the rated speed. 

Fig. 11. The figures in the column (a) trace the trends of the fitness values (first row) and proportional gain 

(second row) associated to the generic (thin line) and elitist (thick line) individuals over evolution time. 

Moreover, subfigures in column (a) and (b) compare the speed and current responses obtained with GA (first 

row) and linear design (second row). 
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8- Conclusion 
This paper proposed an effective automatic design procedure for IM based on 

GAs. The proposed evolutionary algorithm exhibited a satisfactory behavior, with 

reduced computational requirements and repeatable and generally accurate results. As in 

the case of population-based GAs, a real-coded implementation of a GA in an interesting 

tradeoff between simplicity of the code, interpretability of the probability vectors and 

chromosomes, and accuracy of the final solutions. The optimized flux-based vector 

control for a high power induction motor drive thanks to the accurate knowledge of the 

machine parameters using a new effective and reliable parameter estimation method 

based only on speed transient measurements. 

The proposed method uses a Genetic Algorithms heuristic optimization. The same 

Genetic Algorithms routine is also used to optimize the control loops required for the 

vector control of the IM. Having proved the reliability of this technique and showing 

excellent agreement between the simulation and experimental results, it was possible to 

improve the vector control scheme by using a rotor flux estimator, which gives 

significant benefits especially during the field weakening. The proposed a Genetic 

Algorithm for obtaining the optimal design of the Fuzzy controller. In the proposed 

approach, the development of rule base and the formation of the membership function are 

evolved simultaneously. The performance of the algorithm in obtaining the optimal 

values of Fuzzy controller parameters has been analyzed in IM through computer 

simulation. The simulation result shows the proposed GA is able to optimize the Fuzzy 

controller satisfactorily and show the better performance compared to fuzzy logic control 

and Internal Model Control. 

 

References 
Abu-Rub H., Schmirgel, H. Holtz: J.  (2006). “Sensorless control of induction motor for 

maximum steady-state torque and fast dynamic at field weakening” IEEE IAS Tampa 

Astrom K.J. and Hagglund, T. (2001). “The future of PID control”, Control Engineering 

Practice, pp.1163– 1175. 

Cincirone M., Pucci, M. Cincirone, G. Capolino: G. A. (2005)“Constrained Minimization for 

Parameter Estimation of Induction Motor in Saturated and Unsaturated Conditions”, 

IEEE Trans. on Ind. Electronics, vol. 52, No. 5, October 2005, pp. 1391-1401 

Cincirone M., Pucci, M. Cincirone, G. Capolino: G.A. (2003). “A New Experimental 

Application of Lest-Squares Techniques for the Estimation of the Parameter of the 

Induction Motor”, IEEE Trans. on Ind. Applications, vol. 39, No. 5, September 2003, pp. 

1247-1255. 

Crockett, K , Bandar, Z. Fowdar, J, O'Shea, (2006). On Producing Balanced Fuzzy Decision 

Tree Classifiers", IEEE World Congress in Computational Intelligence 2006, Vancouver, 

Canada. IEEE, pp 8415- 8421 



 2009:  (17لمجلد )ا /( 4العدد ) /ة يقيالصرفة والتطب مجلة جامعة بابل / العلوم

 1645 

Devaraj D. and Yegnanarayana, B.  (2005). “Genetic Algorithm-Based Optimal Power Flow 

for Security Enhancement”, IEE Proceedings on Generation, Transmission and 

Distribution, 152(6) pp. 899 – 905 

Gen M. and Cheng, R. (2000). “Genetic Algorithms and Engineering Optimization”, New 

York: Wiley. 

Leonard W. (1997).  “Control of Electrical Drives”, Springer. 

Reznik L., (1997). "Fuzzy Controllers", Victoria University of Technology, Melbourne, 

Australia Newnes. 

Shaw S.R., Leeb: S.B. (1999). "Identification of Induction Motor Parameters from Transient 

Stator Current Measurement", IEEE Trans. on Ind. Electronics, vol. 46, No. 1, February, 

pp. 139-149 

Trentin A., Zanchetta, P.  Wheeler, P. Clare, J. Wood, R. Katsis: D.  (2006). “A New Method 

for Induction Motors Parameter Estimation Using Genetic Algorithms and Transient 

Speed measurements” IEEE IAS. Tampa 

Zurada J.M., (1996). "Introduction to Artificial Neural Systems", Jaico Publishing House, 
nd2 edition. India. 

 


