2007:(14) مجلة جامعة بابل / العلوم / العدد (3) / المجلد

On Feebly –closed mappings in bitopological spaces

Zahir Dobeas AL-Nafie

Udie Subri

Dept. of Math. College of education, Babylon university

Abstract

This search discusses the α -set and feebly –closed sets in bitopological space, and these concepts define the feebly-closed function , semi-closed function and pre-closed function also we defines an α -closed function and study the relation between these concepts.

Introduction

let S be a subset of a bitopological spaces (X,t_1,t_2) , we denote the closure of S and the interior of S with respect to t_1 , t_2 by $cl_{t1}(S)$, $int_{t1}(S)$ and $cl_{t2}(S)$, $int_{t2}(S)$ respectively.

[O.Njastad,1965] introduced the concept of α -set in a topological space (X,t). A subset S of (X,t) is called an α -set if $S\subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(S)))$. the notion of semi open set , per -open set were introduced by [N.Levine, 1963].a subset A is said to be Feebly-open set [S.N.Maheshwari and U.D.Tapi,1978] in (X,t) if there exist an open set U such that $U\subseteq A\subseteq \operatorname{scl}(U)$, the complement of Feebly-open set is called Feebly closed set.

In this search , we shall define the α -set and Feebly -open set in bitopological space (X,t_1,t_2) . A subset S of a bitopological (X,t_1,t_2) is said to be α -set if S is α -set with respect to t_1 or t_2 , that is if $S \subseteq in_{ti}(cl_{ti}(in_{ti}(S)))$, i=1 or 2, we shall define a Feebly open set in a bitopological space (X,t_1,t_2) if there exist a open set U with respect to U such that $U \subseteq A \subseteq scl_{ti}(U)$, i=1 or 2, the complement of Feebly- open set is called Feebly- closed set .

Feebly closed and α-closed mapping

The concept of α -closed and Feebly- closed mapping have been introduced by [Mashhour A.S. , etral,1983] and [Maheshwari S.N. and Tapi U.D.,1978] respectively.

Definition (2-1) [Greenwood S.G. and Reilly I.L., 1986]

Let (X, t) and (Y,σ) are two topological spaces , a function $f: (X, t) \rightarrow (Y,\sigma)$ is said to be:

- 1- Feebly –closed if the image of each closed set in X is Feebly- closed in Y.
- 2- α -closed if the image of each closed set in X is α -closed set in Y.

Lemma: (2-2) Greenwood S.G. and Reilly I.L., 1986

Let A be a subset of (X, t) then sint(cl(A))=cl(int(cl(A)).

Proposition(2-3) Greenwood S.G. and Reilly I.L., 1986

Let (X, t) be a topological spaces, a subset A of (X,t) is Feebly closedif and only if A is α -closed set.

Definition (2-4)[Greenwood S.G. and Reilly I.L., 1986]

Let (X, t) and (Y, σ) are two topological spaces, a function $f: (X, t) \rightarrow (Y, \sigma)$ is said to

1- semi-closed if the image of each closed set in X is semi-closed set in Y.

2- pre-closed if the image of each closed set in X is pre-closed in Y.

Proposition (2-5)[Greenwood S.G. and Reilly I.L., 1986]

Let (X,t) and (Y,σ) are two topological spaces , a function $f:(X,t) \rightarrow (Y,\sigma)$ is α -closed if and only if it is semi-closed and pre-closed .

Feebly-closed and α -closed mapping in bitopological space. Definition(3-1)

Let (X,t_1,t_2) and (Y,σ_1,σ_2) are two bitopological spaces , a function $f\colon (X,t_1,t_2)\to (Y,\sigma_1,\sigma_2)$ said to be:

1- Feebly- closed if the induced maps $f: (X,t_1) \rightarrow (Y,\sigma_1)$ or $f: (X,t_2) \rightarrow (Y,\sigma_2)$ is Feebly-closed.

2- α -closed the induced maps f: $(X,t_1) \rightarrow (Y,\sigma_1)$ or f: $(X,t_2) \rightarrow (Y,\sigma_2)$ is α - closed.

Proposition (3-2):

Let (X,t_1,t_2) be a bitopological space and A be a subset of X then $sint_{ti}(A)=cl_{ti}(int_{ti}(A)), i=1 or 2.$

Proof: since we have $cl_{ti}(int_{ti}(cl_{ti}(A)))$ is semi open set with respect to ti and $cl_{ti}(int_{ti}(cl_{ti}(A))) = cl_{ti}(int_{ti}(cl_{ti}(int_{ti}(A))))$ and $cl_{ti}(int_{ti}(cl_{ti}(A))) \subseteq cl_{ti}(A)$ then $cl_{ti}(int_{ti}(cl_{ti}(A))) \subset sint_{ti}(cl_{ti}(A)) \dots (1)$.

Now if V is any ti-semi-open set contained in $cl_{ti}(A)$ then $U \subseteq cl_{ti}(int_{ti}(V)) \subseteq cl_{ti}(int_{ti}(cl_{ti}(A)))$ and hence $sint_{ti}(cl_{ti}(A)) \subseteq cl_{ti}(int_{ti}(cl_{ti}(A)) \dots (2)$. By (1) and (2) we get the result.

Proposition(3-3)

Let (X,t_1,t_2) be a bitopological space a subset A of X is Feebly- closed set in X if and only if A is α -closed.

Proof:

It follows from the definition of an α -set and α -closed set in bitopological space . That a subset A of (X,t_1,t_2) is α -closed set if and only if $cl_{ti}(int_{ti}(cl_{ti}(A)) \subseteq A$, i=1 or 2, since $cl_{ti}(int_{ti}(cl_{ti}(A)) \subseteq A$ if and only if $sint_{ti}(cl_{ti}(A)) \subseteq A$ by lemma (2-2) in bitopological space the result exist.

Definition(3-4)

Let (X,t_1,t_2) and (Y,σ_1,σ_2) are two bitopological spaces , a function $f: (X,t_1,t_2) \to (Y,\sigma_1,\sigma_2)$ said to be:

1- semi-closed if the induced maps $f: (X,t_1) \rightarrow (Y,\sigma_1)$ or $f: (X,t_2) \rightarrow (Y,\sigma_2)$ is semi-closed.

2- pre -closed the induced maps f: $(X,t_1) \rightarrow (Y,\sigma_1)$ or f: $(X,t_2) \rightarrow (Y,\sigma_2)$ is pre- closed.

Proposition (3-5):

closed.

Let (X,t_1,t_2) and (Y,σ_1,σ_2) are two bitopological spaces , a function

f: $(X,t_1,t_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is α -closed if and only if it is semi-closed and pre-closed.

Proof: since $f: (X,t_1) \rightarrow (Y,\sigma_1)$ is α -closed if and only if it is semi-closed and pre-closed [theorem (3), I.l.Reilly and M.R.VamanaMurthy], similarly $f: (X,t_2) \rightarrow (Y,\sigma_2)$ Is α -closed if and only if it is semi-closed and pre-closed [theorem (3), I.l.Reilly and

M.R.VamanaMurthy] and hence the result. This example show that if $f: (X,t_1,t_2) \to (X,\sigma_1,\sigma_2)$ is pre closed then f not to be α -

Example (3-6): let $X=\{1,2,3\}$ and defined t_1 to be the discrete topology and $t_2=\{X,\emptyset,\{1\},\{3\},\{1,3\}\}$, $\sigma_1=\{X,\emptyset,\{1\},\{3\},\{1,3\}\}\}$ and σ_2 be the discrete topology. Define $f: (X,t_1) \rightarrow (Y,\sigma_1)$ by f(1)=f(2)=f(3)=1 then f is pre closed but not α -closed since $\{1\}$ is pre closed in (Y,σ_1) but not α -closed in (X,t_1) and define $f: (X,t_2) \rightarrow (Y,\sigma_2)$ by f(1)=f(2)=f(3)=1 then f is pre closed but not α -closed since $\{1\}$ is pre closed in (Y,σ_2) but not α -closed in (X,t_2) .

$$2007$$
 : (14) المجلد (3) مجلة جامعة باپل / العلوم / العدد

This example show that if $f: (X,t_1,t_2) \to (X,\sigma_1,\sigma_2)$ is semi-closed then f not to be α -closed.

Example(**3-7**)

let $X=\{1,2,3\}$ and defined t_1 and t_2 to be the discrete topologies and σ_1 and σ_2 be the indiscrete topology. Define $f: (X,t_1) \rightarrow (Y,\sigma_1)$ by f(1)=f(2)=f(3)=1 then f is semi closed but not α -closed and $f: (X,t_2) \rightarrow (Y,\sigma_2)$ defined by f(1)=f(2)=f(3)=1 then f is semi closed but not α -closed since $\{1\}$ is

Conclusion

From this paper we can conclude that the type of a bitopological space (X,t_1,t_2) is depend on the type of a topological space (X,t_1) and (X,t_2) since the subset of these topologies will induce the subset of (X,t_1,t_2) and because these subset is the same in (X,t_1,t_2) , hence any definition and proposition which is true in (X,t_1) and (X,t_2) will be true in (X,t_1,t_2) in this search.

References

Greenwood S.G. and Reilly I.L.(1986), "semi-pre-open sets". Indian J.Pure, Math. 17: 1101-1105.

Maheshwari S.N. and Tapi U.D.(1978). Note on some application on feebly open sets , Madhya Bharatij . Univ. Saugar.16:635-642.

Mashhour A.S., Hasanien I.A. and Eldeeb S.N.(1983). α-continuous and α-open mapping. Acta . Math., Hung .41:13-18.

Levine N. (1963). Semi-open sets and semi-continuity in topological spaces. Math. Mthly . 70: 36-41.

Najastad O.(1965). On some classes of nearly open sets . pa. J. Math. 15: 61-70.

Reilly I.I. and VamanaMurthy M.R. (1985). Adecomposition of continuity . Acta, Math. Hung. 45: 27-32.