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Abstract

We introduce the mixed 1% modulus of smoothness of functions in £p(X), for p<1, for Peano
continuum X. Then we define a mixed rth modulus of smoothness of functions in Lp(X). Some
properties and direct theorems for these moduli of smoothness are proved.
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1. The first mixed modulus of smoothness
In our work we use X as a compact space unde the metric dy also we use Lp(X), p

< 1, the space of all functions f: X — R satisfying ||f]||lp = (fX |f|1")1’IO < oo . We
mean by the Peano continuum, any locally connected, compact metric space.

Let X and Y be two compact spaces under the matrices dy and dv respectively,
and if g areal function on X X Y, itmean in Lp(X x Y). Then we define a version
of mixed modulus of smoothness of first order as

011 (603 07), = Supddyx(giifz))ssaé g (2, wy) — igL :::23
- 2, 1

+ g(zz, Wz) llp

Let us collect some properties of the first mixed modulus of smoothness by the
following theorem, of easy direct proof.
Theorem 1.1. If g € Lp(X X Y), p < 1then
111 w;7(9,0, 0),=0
112, w1 (9,01, 02), is monotone function of (ay, o)
113, wy1 (f, 4404, 1201);9 <c(p) A4, w1/1 (f, o1 Uz)p
1.1.4.
2. rth order mixed modulus for measuring smoothness

In this section we will define the mixed rth modulus of smoothness and introduce
some theorems as applications of it.

If fis a real function on X X Y belongs to Lp(X X Y) define the mixed rth
modulus of smoothness, forr > 2 as

Wy - (f, 61, 52)p = SUPo<h,<s;
0<h, <5,

[0 () G0 (7 (oy = 5t ih) = F = Brike )
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In the following theorem let us collect some properties of our mixed modulus of
smoothness

Theorem 2.1. Let f € Lp(X ) p < 1, where X is a Peano cotinum metric space under
the metric d, then

211w, (f,0, 0), =0

212 wry (f, 61, 62)p =0

213 wry (f, 61, 82)p < wrr (f, 61 52)1)’
when 8, < §5,,6, < 5, -
2.1.4 wyy (f, 4161, 2261)p < c(p) A1 A2 wry (f,81,62)p -
215 wry (f, 61462, 4 + 42 )p < c(P)(@ryr (f, 61,41 )p + @rr (82, 42 )p)
proof: the proofs of 2.1.1 and 2.1.2, are direct. Now let us prove 2.1.3. Let § > 0, we
have h, < 168, , by a result from functional analysis there exists A, satisfy C; h, <
h, < C, hy Cy, C, are positive constants. Since X is a compact space, using a
version of Hilbert theorem we obtain that there exists a shortest arc I' connecting any
two points from
{t: 1 =0={X= 22+ ih,}_"
and h,=d (t;, t;+1),i=0,1,.....r and
hz=d (t;, t;+1). Since X is convex metric space we obtain that length ' = h, < C;, h;
< Cy 4,6, < Cin 6,.
Proof of 2.1.4. If 6, = §, = 0 the proof is trivial, so let us assume &; , §, > 0, and let
(1, y1) and (x; , y,)are two pointsin X X Y:dy (x1,X%;) < A3 6;and dy (y1,y2) <
Ay 6.
From analysis we can find metrices f, and fy on X and Y respectively equivalent to dy
and dy respectively. Because of the compactness of X and Y, from analysis there is an
arc I; connecting x;and y, , also there is an arc I, connecting x,and y,, and
fx (x1 , x,) isthe length of the are I}, and v (y; , y>) is the length of the are T',. Then
the length of I';= fy (x; ,x;) < cdy (X1, X2) < ¢ 44 64, also the length of T,= fy (v, ,
y2) SCdy (y1.,¥2) S ¢ 426,
Let ;= i, 1=0,1,2,3,.....,n, we can find a parametrization
Y, with zi =y, (¢;), and Y, with wi= ¢, (¥;), and
d( Py, €0), Y1 Bir1) < i (W, £1), ¥ (£141) < . The length of Iy
connecting z; and zj+1
=C (fi41 — £0)

=The length of TI; connecting x; and x,. dy((¥, %) .,
Yy ($iz1)) < cfy (W, €), Y (£i41)) < c the length of I, connecting w; and wi.;
=c (i1 — ?;) the length of T, connecting y, and y,.
Then
dx ((z;,2i+1) £ 61 and dy(wi , Wis1) < 8, for1=0,1,2,,n—-1.
If we assume 1,4, =cn, this leads to

IIf (x1,¥1) — f(X2,¥2) — f(X2,y1) + f(X2,¥2) ”p < Z W11, (f)dx(zi,zi+1 )'

dy, (Wi, Wis1)p < n* w(f, 8y, 82)p

w11 (f, 4 61,42 62)p < n’ w11 (f, 61, 82)p =C A A, w14 (f, 61, 82)p
where c is an absolute constant that may differ from each step to another.

61, 6, >0,whenx + TTh"e X,=1,2..
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Fx,y) = iz (Dt f (x= B2 iha,yy) -

Z Z D7 (= S i Doy 00, 1y )

belongs to Lp (X) ® l/)k + &, ® Lp (Y)
Therefore

If = Fllp < c) Z Zn( 7 £ (x= B2 + 1 f

(i)(—1)r i f (x— %‘Fth’Yq)

r

-§4

1

L

. h
(1) D Gy = S+ k)

i=1

U

1l
Juy

+ Y x), ¥; (y)
p

J
£

<) ) D on (180,82 Y0 %)
q=1 j=1
= c(p) wrr (f, 61, 62)p-
This completes the proof of 2.1.4.
Proof of 2.1.5 Using definition of w, - (f, 61, 41)p, We get
Wy (f, 81+ 81, A1 + A3 ), =sup
O<h;<6;+ 9,
0<h <A +4,

T
() o (reey % +ih) +f (X = Tzﬁihz,y))
i=0 p
< ¢(p) (wry (f,C1 81, Cod)p + 0y (f,C1 61, Codr)p + @rp (f,C1 82, Cody)p +
wrr (f, Cy 82, Cz)lz)p
Using (3) we obtain
wr,r (fr 61 + 62, /11 + /12 )p =< C(p) (wr,r (f' 61' Al)p + wr,r (f' 62' Az)p)-
Theorem 2.2. For any two positive aumbers §;,8, andany f € Lp(X X Y),p<1land
X and Y are two compact metric space we have
inf inf61>5'1, Wrr (f, 61, 52)p = Wrr () Slf Sz)p
5,>6
Proof: We must show thzat, ?f 81, and &, ,, are two decreasing sequences with limits
&, and &, respectively we have
Wrr (f, 81n, G2 )p CONVErges to w;. - (f, 81, 6)asn— o
Suppose there exists an € > 0 such that
wr,r (f: 51,n ) 52,11 )p > wr,r (f’ 51’ 52) tE
This implies that there exist

rhln +ihy, inY, W|th
dy(y

rh1 n

y — +]h1n)< 61n

and

rhz n

+ ihy, In X, with
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O (X =224 ihyn, X -T2 4 jhy ) < 8y
Therefore
\ r r—i rhl,n . T"hz,n .
Y (1) GO (£ oy TR i) + f (= 4 i)
i=0 P
> Wy (fr 61: Sz)p t € (1)

Since X and Y are compact spaces, we get the above two sequences in X and Y have
converging subsequences. This leads to h;,, — hioand h,, — ha,e, h1,0 € X and

h,,, € Y so

r

r . rh My . rh Ty .
> () o <f Ky "=+ ihn) +f (X= =5 +zhz,nk,y)>
i=0 p

Converges to
r

r » Thy ] Thy ]
YD) (f oy - S 4 ihg) +f (= S+ ihyey))
i=0
From (1) we have:

|25 (7)) 0 (f oy -

wr,r (f' 51) 52)p tE.
But hyn, — hy and by, < 61y, — 64,

p

rh

., h
20 iy o) + f (x— -

20 4 ihyey))|| 2
p

Also
hyn, — hy and hy,, < 8,,, — 6, Therefore

r Thio .

- [ fixy- 5 +ihyo ) +
wy(f,61,62) = Z(i)(_l)r t “h
n 2,0 .
= f(x= =2+ ihyy)
P

= Wy - (fr 61' 62)17 +E.
Which is a contradiction. Thus our result is satisfied.
We can strength the above result by the following example it mean the above result
not true in general.
Example 2.3. Define G: {0,1} x {0,1} — R, as
(1 (z,w)=(1,1)
G (z,w) _{0 (z,w) = (1,1)
It is clear that G is a continuous function
_(1 61, 6, =1
wT,T (fl 51! 52)19 - {0 ! z OW

If we choose §;, 8, =1, we get that the above result is not true.

3. A version of Jackson Theorem
A classical type theorem due to Jackson, for the approximation of functions f €
Lp[a, b] by polynomials says
En (A < ¢(p) @y, (f, 2)p 0 2p>0 ®)
where c(p) is a positive constant depends on p only, for p < 1,
En (fp = in fp €EP, Ilf —nll
P, is the space of polynomials of degree less than or equal to n, and
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wr (f,8) = sup A, £l
lh| <6
The inequality (2) was given in terms of the nth entropy number
8 ([a,b]) = ==,
which generalized using the compact metric space X.
In [Stephani, 1992] I. Stephani was proved
En (f) < w1 (f €, (X)),

where w, is the modulus of continuity of one variable for a function f € C (X), and E,
(F) is the error of the function f to some class @,, in

0, €SP, S....C€0, S ...
with union dense in C (X).
Now let us introduce the blending Jackson version theorem

Ema (Mp < ¢(p) i (f, 2, 3)
where f defined on X XY, and,
Emn (p=inf ||f - mn”p(XXY)
the infimun is taken on all pseudo polynomlals that have the form

P (x,7) = Z o; (' +Zﬁ,(y)><’
=0 j=
And o; and , §; are bounded function coefficients. Inequallty (3) was proved by Yu .
A. Brudnyi [Brudnyi,1992; Gonska, Jetter, 1985]. By [Hbing,1949] for w,,, and a
continuous function f, X = [a, b], y = [c,d]. And (3) also proved in [Gonska, 1985;
Jetter,1989; Cottin,1988; Cottin,1992] for blending Jackson theorem using
trigonometric pseudo polynomials and continuous function in C(X).
Let us define the blending space C(X)® M(Y) + M (X)® C(Y) = BL , with respect to
a suitable norm M(Y) and M (X) space of bounded functions equipped with the
uniform norm on the compact metric space X or Y. ® is the tensor product defined
byfi ® £, € C(X) ® M (Y), defined by
i®f; xy)=F9(y)
Let X be a compact metric space under the metric dy, with
Y1 €S P, Sl C Y, S ...., its nested subspaces and partition .
Em,n(f) = mf{”f - Pm,n”; Om, Ym}
inf ison all pseudo polynomials:
Pon (X,y) = X, A(x +X70Bi ()Y,

where A;, B; are bounded functions, is the degree of the approximation of f using the
blending space of pseudo polynomials as an approximation space.

B(M(X), M(Y),4,, 4,) = A, ® M(y)+M(X) ® 4,
If X is a compact space under the metric dx , a partition of unity
D1, Poyeennnnn @n 0n X , it mean ¢; € C(X),

n

0 < ¢;(t) <t Zq)j(t) =1, t €X, j is natural
j=1
with n greater than 2, to be controllable if the supports

supp (¢;) ={t € X: ¢, (£) # 0}

Have the property
€1.(supp (¢))) < €p—1 (X),j =1,2,....,n.[6]
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Theorem 3.1: If (X, ||.1|,) and (Y, [|.]l,) are compact quasi normed spaces for 0 < p
<1,andletfe Lp(X X Y), then

Em,n(ﬂp < il’lf51>51‘m x) Wrr (f' 61' 62)p (4)

82>62,m ()
Proof: Letm =1, assume &; > &1 (X), then

we can find x; € X, satisfy X € B (x4, §;). Also if n=1, assume &, > §, 1 (Y) then we
can fined
y, €y, satisfy Y € B (y,, ;). Then we map

T

Fap= Y (1) o (f - ram - 2 iny)

=1
€ Lp(X) ® P, + ®; ® Lp(Y). Therefore we have

C|DF Gy = T+ F= ) = B () GO (f Gy - T
ih) + f (x = tihy, ).
Therefore

If = F llzpxxyy < €(p) wrr (f, 61, 82)p-

Thus the inequality of our theorem is satisfied for m = n = 1, for any §; > 6;; (X)
And 6, > 6,4 (Y). Ifm=1andn > 1, wecanfind k < n,satisfy §;, (Y) =61 (V).
If kK =1, we can choose 6, > 6;,(Y), and apply the same lines of the case above.
Then k > 1, implies &, (Y) < &1k, (Y), sowe have &, (Y) < & <81k, ().
Using the entropy definition we can fined the points x; X, ....,xx € Y such that

c OBSZ (%)

j=1
Using the same lines used in [Cottin,1988 ] We can get a partition ;,1, ... ... Ui,
satisfying
supp (¥;) € Bs, (x;),i=1,2,...... k.
Then since &6, <&y, (Y), we can obtain (lpj)’i‘zl satisfy the condition of

controllability.
The map

r r

Py = Y (1) Gt f (x= Sbingy) - i PGS

i=0 j=1 i=0

rh,
fx- - thy,y;) ¥ (y),
belongs to Lp (X) ® ¢, + ®; ® Lp (Y), and BL (Lp (X),Lp (Y), ®4, ¥,,). We have
using the conditions of controllability that

T

I =Fll, <c@ ) I f (*%y)*ZC)(—l)r-f

j=1 i=1
r

£ B2 iny)+ > (1) 0t £ B iy

i=0

k
YO SC®) D 0nr (1,806 ¥y 1) = cP)ory (f61,8),
j=1
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Thus (4) satisfied when m = 1, and n > 1. Using the same lines above we can prove
the case when m > 1 and n = 1. It remain the case when m, n > 1. Let £ and k are two
naturals with £ <m,k <nand 6, (X) = 61, (X) and 8,4 (Y) = 81, (Y). When £ =
k = 1, we shall return to the case above . Let us assume k, £ > 1, we shall prove (4)
for 6; and 6,,  satisfying 61 , (X) < 6; < 81,-1(X) and
Oz (Y) < 8, < 8z, (Y). By entropy numbers definition, we can find x; x; ..., X,
and
Vi, Y2, -, Yk €Y, satisfying

X C Ug=1Bx, (61, Y € US_1 By, (62) (5)
As in the case above, the partition of unity (¢,), (1;) subordinate to the open cover in
(5) satisfying the condition of controllability because of §; < &1, , (X), 6, < Szk_,
(Y). Then define the
Theorem 3.4. Let X have the Peano property, and let P be a positive linear operator
from Lp(X) to Lp(X), satisfying P(f (x))= f(x), where f(x)is the identity function.
Then for any f € Lp(X), and § > 0 we have [|[P(f) — fll, < c(p) wrr (f, 61, 82)p
Proof: Since G satisfy Peano property, so for any two points with distance < §; or <
&,, we have

S O (= 2 in) 41 (v T iny )
i=0

rhy | . rhy, | .
((x,y—T1 + Lh),(X — =%+ ihy,y)
min{51, 52}

: d
= Wy (fr 51' 62)p Z 1+
i=0

Then
1P = fllp < c(p) wrr (f,61,62)p -
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