Various Resolvable Space in Ideal Topological Spaces

Luay Abd. Al. Hani Al-Swidi Mathematics Department, College of Education For Pure sciences, University of Babylon

drluayha11@yahoo.com

ahawraa25@yahoo.com

Abstract

In this research, we introduce a new definitions of resolvable spaces of the depended on the idea: Weakly-I-dense, I-dense, \mathbb{T}^* -dense and dense. The definitions are: \mathbb{WI} -resolvable space, e-resolvable space, \mathbb{WI} -I-resolvable space, \mathbb{WI} -T-resolvable space, \mathbb{WI} -T-resolvable space, \mathbb{I} -T-resolvable space, \mathbb{I} -T-resolvable space. We prove various results in the field resolvable space.

Keywords: dense, resolvability, Hausdorff and Ψ -operator.

الخلاصة

في هذا البحث ,نقدم تعاريف جديدة من الفضاءات القابلة للحل والمعتمدة على فكرة كثافة-*T-كثافة ,ا -كثافة,ضعيفة -ا-كثيفة وهذه التعريفات هي : WI-الفضاء القابل للحل, E-الفضاء القابل للحل , I-WI الفضاء القابل للحل, *T-الفضاء القابل للحل,T-WI الفضاء القابل للحل,*T-ا الفضاء القابل للحل,T-االفضاء القابل للحل,T-۳ الفضاء القابل للحل على النتائج المختلفة في حقل الفضاء القابل للحل ,هاوسدورف, Y – العاملة .

1. Introduction and Preliminaries

In (Hewitt, 1943) introduced the result: If there exists two disjoint union dense subsets, then this means that \mathbb{Z} is resolvable space. Chattopadhyay(1992) have been studied the resolvability, irresolvability space and properties of maximal spaces. Furthermore, the prove of density topology is resolvable such as: Dontchev *et al.*, (1999). In 1966,Kuratowski define an ideal I on topological space (\mathbb{Z},\mathbb{T}) is a nonempty collection of subsets of \mathbb{Z} which satisfies:

- 1. If $D \in \mathfrak{J}$ and $G \subseteq D$ implies $G \in \mathfrak{J}$.
- 2. If $D \in \mathfrak{I}$ and $G \in \mathfrak{I}$ implies $D \bigcup G \in \mathfrak{I}$.

Moreover, a σ -ideal on a topological space (\mathbb{Z}, \mathbb{T}) is an ideal which satisfies (1),(2) the following condition:

3.If $\{D_i: i=1,2,3,...\} \subseteq \mathfrak{Y}$, then $\bigcup \{D_i=1,2,3,...\} \in \mathfrak{Y}$ (countable additively), for further information see(Kuratowski,1966).

For a space $(\mathbb{Z}, \mathbb{T}, \mathbb{J})$ and a subset $D \subseteq \mathbb{Z}, D^*(\mathbb{J}) = \{z \in \mathbb{Z}: W \cap D \notin \mathbb{J} \text{ for every } W \in \mathbb{T}(z)\}$ is called the local function of D with respect to \mathbb{J} and \mathbb{T} (Kuratowski,1933). A Kuratowski closure operator cl*(.) for a topology $\mathbb{T}^*(\mathbb{J},\mathbb{T})$ called the *-topology, finer than \mathbb{T} , is defined by cl*(D)=DUD*. $D \subseteq \mathbb{Z}$ is called *-closed (Jankovic and Hamlett,1990) if cl*(D)=D, and D is called *-open (i.e., $D \in \mathbb{T}^*$) if \mathbb{Z} -D is *-closed. Obviously, D is *-open if and only if int*(D)=D. Let $(\mathbb{Z},\mathbb{J},\mathbb{T})$ be an ideal space and let $\mathbb{P} \subseteq \mathbb{Z}$. Then $(\mathbb{P},\mathbb{T}_{\mathbb{P}},\mathbb{J}_{\mathbb{P}})$ is an ideal space, where $\mathbb{T}_{\mathbb{P}} = \{Q \cap \mathbb{P}: Q \in \mathbb{T}\}$ and $I_{\mathbb{P}} = \{\mathbb{J} \cap \mathbb{P}: I \in \mathbb{J}: I \subseteq \mathbb{P}\}$. A subset D of an ideal space $(\mathbb{Z},\mathbb{T},\mathbb{J})$ is called dense (*-dense (\mathbb{J} -

dense (Dontchev, ,1999))), if $cl(D) = \mathbb{Z}, (resp. cl^*(D) = \mathbb{Z}, (D^* = \mathbb{Z}))$. For an ideal space $(\mathbb{Z}, \mathbb{T}, \mathbb{J}), \mathbb{J}$ is codense (Devi, Sivaraj and Chelvam, 2005) if $\pi \cap \mathbb{J} = \Phi$. A subset D of an ideal space $(\mathbb{Z}, \mathbb{T}, \mathbb{J})$ is said to be \mathbb{J} -open(Jankovic and Hamlett, 1992)(pre- \mathbb{J} open(Dontchev, 1996), if $D \subseteq int(D^*)$, (resp. $D \subseteq intcl^*(D)$). A subset D of a space (\mathbb{Z},\mathbb{T}) is said to be preopen (Mashhour, Abd El-Monsef and El-Deeb, 1982) if D \subset intcl(D). A set $D \subset \mathbb{Z}$ is said to be scattered(Jankovic and Hamlett, 1990) if D contains no nonempty dense-in-itself subset. An ideal space $(\mathbb{Z}, \mathbb{T}, \mathbb{J})$ is called Hausdorff (Hausdorff, 1957), if for each two points $z \neq p$, there exist open sets U and V containing z and p respectively, such that $U \cap V = \Phi$.T. Natkaniec (Natkaniec, 1986) used the idea of ideals to define another operator known as Ψ -operator. The definition of $\Psi \mathfrak{r}(D)$ for a subset D of Ξ is as follows: $\Psi \mathfrak{r}(D) = \Xi - (\Xi - D)^*$. Equivalently $\Psi \mathfrak{r}(D) = \bigcup \{ M \in \mathbb{T} : M \cdot D \in \mathbb{J} \}$. It is obvious that $\Psi \mathfrak{r}(D)$ for any D is a member of \mathbb{T} .(Hatir, Keskin and Noiri,2005 for an ideal space $(\mathbb{Z}, \mathbb{T}, \mathbb{J})$ and let $D \subset \mathfrak{P} \subset \mathbb{Z}$. Then $cl_{\mathfrak{P}}^{*}(D)=cl^{*}(D) \cap \mathfrak{P}$. (Devi, Sivaraj and Chelvam, 2005) for an ideal space $(\mathfrak{Z}, \mathfrak{T}, \mathfrak{J})$ and $D \subset \mathbb{Z}$. If $D \subset D^*$, then $D^*=cl(D^*)=cl^*(D)$. In this paper, we define and formulate a new definitions: **WI**-resolvable space and its generalizations, we investigate various results in the filed of resolvable space.

2- Weakly-J-Dense Sets and Generalizations.

In this section, we are using formula M^{**} to define a new type of closure operators and denoted to be $cl^e(M)=M\bigcup M^{**}$, for any $M\subseteq \mathbb{Z}$. This enable us to define a new types of dense.

Definition 2.1:Let $(\mathbb{Z}, \mathbb{T}, \mathbb{J})$ be an ideal space and $M \subseteq \mathbb{Z}$. Then M is called.

- 1. Weakly- \mathfrak{I} -dense ,if $(M^*)^* = \mathfrak{Z}$.
- 2. Emaciated-dense, if $cl^{e}(M)=\mathbb{Z}$.
- 3. \mathfrak{I} -codense, if \mathbb{Z} -M is \mathbb{I} -dense.
- 4. ∰𝔅-codense, if 𝗦-M is weakly-𝔅-dense.

Definition 2.2 : An ideal topological space $(\mathbb{Z}, \mathbb{T}, \mathfrak{J})$ is called thick if $M \subset M^*$ for every $M \subseteq \mathbb{Z}$.

Remark 2.3: Every weakly- \mathfrak{Y} -dense is \mathfrak{Y} -dense and \mathfrak{T}^* -dense and hence dense.

This tells us that: If M is weakly-*I*-dense ,then M is emaciated-dense which leads to:

Lemma 2.4: Let($\mathfrak{Z}, \mathfrak{T}, \mathfrak{J}$) be an ideal space and $M \subset \mathfrak{Z}$, then $M^{**}=cl^{e}(M)$ if $M \subset M^{**}$.

Proof: Since $M^{**} \subset cl^e(M)$ and $M \subset M^{**}$, then $M^{**}=cl^e(M)$.

Remark 2.5:Let $(\not{\mathbb{Z}}, \mathfrak{T}, \mathfrak{I})$ be an ideal topological space. Then the following statement is hold: If M is emaciated-dense, then M is weakly- \mathfrak{I} -dense.

Proof: Get it from Lemma 2.4.

Remark 2.6:Let $(\not{\mathbb{Z}}, \mathfrak{T}, \mathfrak{F})$ be an ideal topolgical space and \mathfrak{F} is codense. Then the following statement is hold: If M is \mathfrak{F} -dense, then M is weakly- \mathfrak{F} -dense.

Proof: Let $z \in \mathbb{Z}$ and if possible $z \notin M^{**}$, then there exists $U_z \in \mathbb{T}(z)$ such that $U_z \cap M^* \in \mathbb{J}$. Since $M^* = \mathbb{Z}$, then $U_z \cap M^* = U_z \cap \mathbb{Z} = U_z \in \mathbb{J}$ which contradiction. Hence $z \in M^{**}$. Therefore M is weakly- \mathbb{J} -dense in \mathbb{Z} .

This an immediate consequence of Definition 2.2.

Theorem 2.7: Let $(\not{\exists}, \mathfrak{T}, \not{\exists})$ be a thick and an ideal topological space. Then the following statements are holds.

- 1. If M is \mathbb{T}^* -dense ,then M is \mathbb{J} -dense.
- 2. If M is dense, then M is \mathbb{T}^* -dense.

Example 2.8 :(1) Let $\not\equiv$ {a,b,c,d} , $\not\equiv$ { Φ , {a,c}, {b,d}, Z} , $\not\exists$ ={ Φ , {a}, {c}, {a,c} }.Let M={b,c}

Then $M^*=\{b,d\}$, $cl^*(M) \neq \mathbb{Z}$ and $cl(M)=\mathbb{Z}$. Thus M is dense but not \mathbb{T}^* -dense.

(2) Let $\mathbb{Z} = \{a, b, c\}$, $\mathbb{T} = \{\Phi, \{a\}, \{a, b\}, Z\}$, $\mathbb{J} = \{\Phi, \{a\}\}$. Let $M = \{a, b\}$.

Then $M^*=\{b,c\}$ and $cl^*(M)=\mathbb{Z}$. Thus M is \mathbb{T}^* -dense but not \mathbb{J} -dense.

(3) Let $\mathbb{Z}=\{a,b,c\}$, $\mathbb{T}=\{\Phi,\{a\},\{a,b\},Z\}$, $\mathbb{J}=\{\Phi,\{a,b\}\}$.Let $M=\{a,c\}$.

Then $M^* = \mathbb{Z}$, $M^{**} = \{a, c\} \neq \mathbb{Z}$. Thus M is \mathfrak{I} -dense but not weakly- \mathfrak{I} -dense.

Note that 1. M is \mathfrak{I} -codense, if and only if $\Psi(M) = \Phi$.

2. M is \mathfrak{WI} -codense, if and only if $\Psi(\Psi(M))=\Phi$.

We focus on the properties of the local function regarding to the formula M^{**} in the following theorem.

Theorem 2.9: Let (\mathbb{Z}, \mathbb{T}) be a topological space with \mathbb{J}_1 and \mathbb{J}_2 are ideals on \mathbb{Z} and let M subset of \mathbb{Z} . Then

- 1. If $\mathfrak{Y}_1 \subseteq \mathfrak{Y}_2$, then $M^{**}(\mathfrak{Y}_2) \subseteq M^{**}(\mathfrak{Y}_1)$.
- 2. For every $I \in \mathfrak{I}$, then $(M \bigcup I)^{**}=M^{**}=(M-I)^{**}$.
- 3. If $\mathbb{T} \subset \sigma$, then $M^{**}(\mathfrak{I}, \sigma) \subset M^{**}(\mathfrak{I}, \mathbb{T})$.

Proof: (1) Clear.

Proof: (2) Clearly from [(Jankovic and Hamlett, 1990), Theorem 2.3(h)].

Corollary 2.10:

- Let 𝔅₁ and 𝔅₂ being ideals on 𝔅 such that 𝔅₁⊆𝔅₂.If M is weakly-𝔅₂-dense, then M is weakly-𝔅₁-dense.
- 2. Let \mathfrak{I}_1 and \mathfrak{I}_2 being ideals on \mathbb{Z} such that $\mathfrak{I}_1 \subseteq \mathfrak{I}_2$. If M is emaciated-dense with respect to \mathfrak{I}_2 , then M is emaciated-dense with respect to \mathfrak{I}_1 .

Proof: Get it from Theorem 2.9.

Corollary 2.11:

- 1. Let $(\mathbb{Z}, \mathbb{T}, \mathbb{J})$ and $(\mathbb{Z}, \sigma, \mathbb{J})$ be two topological spaces with $\mathbb{T} \subset \sigma$. If M is σ -weakly- \mathbb{J} -dense, then M is \mathbb{T} -weakly- \mathbb{J} -dense.
- 2. Let $(\mathbb{Z}, \mathbb{T}, \mathbb{J})$ and $(\mathbb{Z}, \sigma, \mathbb{J})$ be two topological spaces with $\mathbb{T} \subset \sigma$. If M is emaciated-dense with respect to σ , then M is emaciated-dense with respect to \mathbb{T} .

Proof: Get it from Theorem 2.9.

Lemma 2.12:

- 1. Let $(\mathbb{Z}, \mathbb{T}, \mathbb{J})$ be an ideal topological space and $M \subset \mathfrak{Y} \subset \mathbb{Z}$, then $(M_{\mathfrak{Y}}^*)_{\mathfrak{Y}}^* = (M_{\mathfrak{Z}}^*)_{\mathfrak{Z}}^* \cap \mathfrak{Y}$ and $\mathfrak{Y} \in \mathbb{T}$.
- If M be weakly-𝔅-dense subsets of 𝔅 and U is open subset of 𝔅, then U⊆(U∩ M)**.

Proof.1. Let $(M_{\mathfrak{Y}}^*)_{\mathfrak{Y}}^* = (M_{\mathfrak{Z}}^* \cap \mathfrak{Y})_{\mathfrak{Y}}^* = (M_{\mathfrak{Z}}^* \cap \mathfrak{Y})_{\mathfrak{Z}}^* \cap \mathfrak{Y} \subset (M_{\mathfrak{Z}}^*)_{\mathfrak{Z}}^* \cap \mathfrak{Y}$.Hence $(M_{\mathfrak{Y}}^*)_{\mathfrak{Y}}^* \subset (M_{\mathfrak{Z}}^*)_{\mathfrak{Z}}^* \cap \mathfrak{Y}$(1).

Now let $a \in (Mz^*)z^* \cap \mathfrak{P}$, then $a \in (Mz^*)z^*$ and $a \in \mathfrak{P}$, then $U \cap Mz^* \notin \mathfrak{I}$ for every $U \in \mathfrak{T}(a)$ and $a \in \mathfrak{P}$. Since $\mathfrak{I}_{\mathfrak{P}} \subset \mathfrak{I}$, then $U \cap Mz^* \notin \mathfrak{I}_{\mathfrak{P}}$, for every $U \in \mathfrak{T}(a)$ and $a \in \mathfrak{P} \in \mathfrak{T}$, then $a \in U \cap \mathfrak{P} \in \mathfrak{T}(a)$, we have $U \cap \mathfrak{P} \cap Mz^* \notin \mathfrak{I}_{\mathfrak{P}}$, for every $U \cap \mathfrak{P} \in \mathfrak{T}_{\mathfrak{P}}(a)$. Hence $a \in (M\mathfrak{P}^*)\mathfrak{P}^*$. Therefore $(Mz^*)z^* \cap \mathfrak{P} \subset (M\mathfrak{P}^*)\mathfrak{P}^* \rightarrow (2)$. From (1) and (2), it follows that $(M\mathfrak{P}^*)\mathfrak{P}^* = (Mz^*)z^* \cap \mathfrak{P}$.

2. Let $z \in U$ and if possible $z \notin (U \cap M)^{**}$, then there exists $V \in \mathbb{T}(z)$ such that $V \cap (U \cap M)^* \in \mathbb{J}$. Since $U \cap M^* \subset (U \cap M)^*$, then $V \cap U \cap M^* \subset V \cap (U \cap M)^*$, then $V \cap U \cap M^* \in \mathbb{J}$ which contradiction with $z \in M^{**}$. Therefore $U \subseteq (U \cap M)^{**}$.

Proposition 2.13: Let $(\mathfrak{Z}, \mathfrak{T}, \mathfrak{I})$ be an ideal topological space. If $\mathfrak{Y} \subset \mathfrak{Z}$ and $(M_{\mathfrak{Z}}^*)_{\mathfrak{Z}}^* = \mathfrak{Z}$, then $(M_{\mathfrak{I}}_{\mathfrak{P}}^*)_{\mathfrak{P}}^* = \mathfrak{P}$ where $M_{\mathfrak{I}} = M \cap \mathfrak{P}$.

Proof: The proof is clear using Lemma 2.12.

Lemma 2.14:

- 1. If M be emaciated-dense subsets of $\not\equiv$ and U is open subset of $\not\equiv$, then U \subseteq $cl^{e}(U \cap M)$.
- 2. let $(\mathcal{Z}, \mathbb{T}, \mathfrak{I})$ be an ideal topological space and $M \subseteq \mathfrak{P} \subseteq \mathcal{Z}$, then $cl^{e}\mathfrak{P}(M) = cl^{e}\mathfrak{Z}(M)$ $\bigcap \mathfrak{P}$ and $\mathfrak{P} \in \mathbb{T}$.

Proof: Clear.

Proposition 2.15: Let $(\mathbb{Z}, \mathbb{T}, \mathbb{J})$ be an ideal topological space. If \mathfrak{Y} is open subsets of \mathbb{Z} and $cl^{e_{\mathbb{Z}}}(M) = \mathbb{Z}$, then $cl^{e_{\mathbb{P}}}(M_{1}) = \mathfrak{Y}$ where $M_{1} = M \cap \mathfrak{Y}$.

Proof: The proof is clear using Lemma 2.14.

Lemma 2.16:

- 1. If M be \mathbb{T}^* -dense subsets of \mathbb{Z} and U is \mathbb{T}^* -open subset of \mathbb{Z} , then $U \subseteq cl^*(U \cap M)$.
- 2. If M be \mathbb{T} -dense subsets of \mathbb{Z} and U is open subset of \mathbb{Z} , then $U \subseteq (U \cap M)^*$.

Proof: Clear.

Proposition 2.17:

- 1. Let $(\mathbb{Z}, \mathbb{T}, \mathbb{J})$ be an ideal topological space. If \mathfrak{Y} is open subset of \mathbb{Z} and $M_{\mathbb{Z}}^* = \mathbb{Z}$, then $M_{1\mathfrak{Y}}^* = \mathfrak{Y}$ where $M_1 = M \cap \mathfrak{Y}$.
- 2. Let $(\mathbb{Z}, \mathbb{T}, \mathbb{J})$ be an ideal topological space. If \mathfrak{Y} is \mathbb{T}^* -open subset of \mathbb{Z} and $cl_{\mathbb{Z}^*}(M) = \mathbb{Z}$, then $cl_{\mathfrak{Y}^*}(M_1) = \mathfrak{Y}$ where $M_1 = M \cap \mathfrak{Y}$.
- Let (Z, 𝔅,𝔅) be an ideal topological space. If 𝔅 is open subset of Z and clz(M)=Z, then Cl𝔅(M₁)=𝔅, where M₁=M∩𝔅.

Proof.Get it from Lemma 2.16.

Definition 2.18: A function $\mathfrak{f}:(\mathfrak{Z},\mathfrak{T},\mathfrak{I})\to(\mathfrak{D},\sigma,\mathfrak{I})$ is called:

- 1. \mathfrak{Y} - \mathfrak{I} -map, if $\mathfrak{f}(M^{**}) \subseteq (\mathfrak{f}(M))^{**}$.
- 2. \mathfrak{E} - \mathfrak{I} -map, if $\mathfrak{f}(cl^e(M)) \subseteq cl^e(\mathfrak{f}(M))$.
- 3. \mathfrak{W}_0 - \mathfrak{J} -map, if $\mathfrak{f}(M^*) \subseteq (\mathfrak{f}(M))^*$.

This tells us that: \mathfrak{W}_{\circ} -I-map $\rightarrow \mathfrak{W}$ -I-map and \mathfrak{W} -I-map $\rightarrow \mathfrak{E}$ -I-map.

Theorem 2.19: Let $\mathfrak{f}:(\mathfrak{Z},\mathfrak{T},\mathfrak{I})\to(\mathfrak{Y},\sigma,\mathfrak{I})$ be a \mathfrak{W} - \mathfrak{I} -map and bijection. If M is weakly- \mathfrak{I} -dense in \mathfrak{Z} , then $\mathfrak{f}(M)$ is weakly- \mathfrak{I} -dense in \mathfrak{Y} .

Proof: Suppose that M is weakly- \mathfrak{I} -dense in \mathfrak{Z} , then $M^{**}=\mathfrak{Z}$, implies that $\mathfrak{Y}=\mathfrak{I}(\mathfrak{Z})=\mathfrak{I}(M^{**})\subseteq(\mathfrak{I}(M))^{**}$ because \mathfrak{I} is \mathfrak{Y} - \mathfrak{I} -map and bijection. Thus $\mathfrak{Y}=(\mathfrak{I}(M))^{**}$. Hence $\mathfrak{I}(M)$ is weakly- \mathfrak{I} -dense in \mathfrak{Y} .

Corollary 2.20: Let $\mathfrak{f}:(\mathfrak{Z},\mathfrak{T},\mathfrak{I})\to(\mathfrak{Y},\sigma,\mathfrak{I})$ be a \mathfrak{W}_{\circ} - \mathfrak{I} -map and bijection. If M is weakly- \mathfrak{I} -dense in \mathfrak{Z} , then $\mathfrak{f}(M)$ is weakly- \mathfrak{I} -dense in \mathfrak{Y} .

Proof: Clear.

Corollary 2.21: Let $\mathfrak{f}:(\mathfrak{Z},\mathfrak{T},\mathfrak{I})\to(\mathfrak{Y},\sigma,\mathfrak{I})$ be a \mathfrak{W} - \mathfrak{I} -map and bijection. If M is weakly- \mathfrak{I} -dense in \mathfrak{Z} , then $\mathfrak{f}(M)$ is emaciated-dense in \mathfrak{Y} .

Proof: Get it from Theorem 2.19.

Theorem 2.22: Let $\mathfrak{f}:(\mathfrak{Z},\mathfrak{T},\mathfrak{I})\to(\mathfrak{Y},\sigma)$ be a \mathfrak{W}_{\circ} - \mathfrak{I} -map and bijection. If M is \mathfrak{I} -dense in \mathfrak{Z} , then $\mathfrak{f}(M)$ is \mathfrak{I} -dense in \mathfrak{Y} .

Proof: Proof resemble proof Theorem 2.19.

Theorem 2.23: Let $f:(\mathbb{Z},\mathbb{T},\mathbb{J})\to(\mathbb{P},\sigma,\mathbb{J})$ be a \mathfrak{E} - \mathfrak{I} -map and bijection. If M is emaciated-dense in \mathbb{Z} , then f(M) is emaciated-dense in \mathbb{P} .

Proof: Suppose that M is emaciated-dense in \mathbb{Z} , then $cl^e(M) = \mathbb{Z}$ implies that $\mathfrak{P} = \mathfrak{f}(\mathbb{Z}) = \mathfrak{f}(cl^e(M)) \subseteq cl^e(\mathfrak{f}(M))$ because \mathfrak{f} is \mathfrak{E} - \mathfrak{I} -map and bijection. Thus $\mathfrak{P} = cl^e(\mathfrak{f}(M))$. Hence $\mathfrak{f}(M)$ is emaciated-dense in \mathfrak{P} .

Corollary 2.24: Let $\mathfrak{f}:(\mathfrak{Z},\mathfrak{T},\mathfrak{I})\to(\mathfrak{Y},\sigma,\mathfrak{I})$ be a \mathfrak{W} - \mathfrak{I} -map and bijection. If M is emaciated-dense in \mathfrak{Z} , then $\mathfrak{f}(M)$ is emaciated-dense in \mathfrak{Y} .

3- ₩J-Resolvability and Generalizations.

In this section, we offer a new definitions of resolvable spaces in terms of formula M** and indicate its properties and relationships.

Definition 3.1: An ideal topological space $(\mathbb{Z}, \mathbb{T}, \mathbb{J})$ is called

- 1. \mathfrak{WI} -resolvable, if \mathbb{Z} is the disjoint union of two weakly- \mathbb{J} -dense subsets.
- 2. e-resolvable, if \mathbb{Z} is the disjoint union of two emaciated-dense subsets.
- 3. \mathfrak{WI} -I-resolvable, if $\not\equiv$ is the disjoint union of two weakly-I-dense and I-dense subsets.
- 4. \mathfrak{WI} - \mathfrak{T}^* -resolvable, if \mathfrak{Z} is the disjoint union of two weakly- \mathfrak{I} -dense and \mathfrak{T}^* -dense subsets.
- 5. $\mathfrak{WI-}\mathbb{T}$ -resolvable, if \mathfrak{Z} is the disjoint union of two weakly- \mathfrak{I} -dense and \mathbb{T} -dense subsets.
- 6. \mathfrak{I} - \mathfrak{T}^* -resolvable, if \mathfrak{Z} is the disjoint union of two \mathfrak{I} -dense and \mathfrak{T}^* -dense subsets.
- 7. \mathfrak{I} - \mathfrak{T} -resolvable, if \mathfrak{Z} is the disjoint of two \mathfrak{I} -dense and \mathfrak{T} -dense subsets.
- 8. \mathbb{T}^* - \mathbb{T} -resolvable, if \mathbb{Z} is the disjoint union of two \mathbb{T}^* -dense and \mathbb{T} -dense subsets.

Theorem 3.2:Let $(\mathbb{Z}, \mathbb{T}, \mathbb{J})$ be an ideal topological space. The following statements are holds.

- 1. Every \mathfrak{WI} -resolvable space is \mathfrak{WI} - \mathfrak{I} -resolvable space.
- 2. Every \mathfrak{WI} - \mathfrak{I} -resolvable space is \mathfrak{WI} - \mathfrak{T}^* -resolvable space.
- 3. Every \mathfrak{WI} - \mathfrak{T}^* -resolvable space is \mathfrak{WI} - \mathfrak{T} -resolvable space.
- 4. Every ₩𝔄-𝔃-resolvable space is 𝔅-𝔃-resolvable space.
- 5. Every \mathfrak{I} - \mathfrak{T} *-resolvable space is \mathfrak{I} - \mathfrak{T} -resolvable space
- 6. Every \mathfrak{I} - \mathfrak{T} -resolvable space is \mathfrak{T}^* - \mathfrak{T} -resolvable space.
- 7. Every \mathfrak{WI} -resolvable space is e-resolvable space.

Proof.Get it from Remark 2.3.

This direct consequence of Remark 2.6.

Proposition 3.3: Let $(\mathbb{Z}, \mathbb{T}, \mathbb{J})$ be an ideal topological space and \mathbb{J} is codense.

If Z is \mathfrak{WI} -I-resolvable space, then \mathfrak{Z} is \mathfrak{WI} -resolvable space.

This direct consequence of Remark 2.6 and Theorem 2.7.

Proposition 3.4:Let $(\mathbb{Z}, \mathbb{T}, \mathbb{J})$ be a thick and an ideal topological space and \mathbb{J} is codense. Then the following statements are holds.

(1) If \mathbb{Z} is \mathbb{J} - \mathbb{T}^* -resolvable space, then \mathbb{Z} is \mathbb{W} \mathbb{J} - \mathbb{J} -resolvable space.

(2) If \mathbb{Z} is \mathbb{I} - \mathbb{T} -resolvable space, then \mathbb{Z} is \mathbb{WI} - \mathbb{T}^* -resolvable space.

(3) If \mathbb{Z} is \mathbb{T}^* - \mathbb{T} -resolvable space, then \mathbb{Z} is \mathfrak{WI} - \mathbb{T} -resolvable space.

This an immediate consequence of Theorem 2.7.

Proposition 3.5: Let $(\not \equiv, \mathfrak{T}, \not \exists)$ be a thick and an ideal topological space. Then the following statements are hold.

(1) If \mathbb{Z} is \mathfrak{WI} - \mathbb{T} -resolvable space, then \mathbb{Z} is \mathfrak{WI} - \mathbb{T}^* -resolvable space.

(2) If \mathbb{Z} is \mathfrak{WI} - \mathbb{T}^* -resolvable space, then \mathbb{Z} is \mathfrak{WI} - \mathbb{I} -resolvable space.

(3) If $\not\equiv$ is \mathbf{T}^* - \mathbf{T} -resolvable space, then $\not\equiv$ is \mathcal{J} - \mathbf{T} -resolvable space.

(4) If \mathbb{Z} is \mathbb{J} - \mathbb{T} -resolvable space, then \mathbb{Z} is \mathbb{J} - \mathbb{T}^* -resolvable space.

Example 3.6:Let $\mathbb{Z} = \{a,b,c,d\}$, $\mathbb{T} = \{\Phi,\{a,c\},\{a,c,d\},Z\}$, $\mathbb{J} = \{\Phi,\{c\},\{a,c\}\}$.Let $M = \{a,b\}$ and $G = \{c,d\}$.Then $cl(G) = \mathbb{Z}$ and $M^* = \mathbb{Z}$.Now $G \cap \{a,c\} = \{c\} \in \mathbb{J}$,then $a,c \notin G^*, G \cap \{Z\} = \{c,d\} \in \mathbb{J}$,then $b \notin G^*$ and $G \cap \{a,c,d\} = \{c,d\} \notin \mathbb{J}$,then $d \in G^*$.Thus $G^* = \{b,d\} \neq \mathbb{Z}$ and $cl^*(G) \neq \mathbb{Z}$.Therefore \mathbb{Z} is \mathbb{J} - \mathbb{T} -resolvable but not \mathbb{J} - \mathbb{T}^* -resolvable.

Question: (1) We claim \mathfrak{WI} - \mathfrak{I} -resolvability does not imply \mathfrak{WI} -resolvability,but we could we find an example.

(2) We claim e-resolvability does not imply \mathfrak{WI} -resolvability, but we could we find an example.

Remark 3.7: By the above definitions, we obtain the following applications.

 \star : Z is thick

Remark 3.8:

1. If \mathfrak{J}_1 and \mathfrak{J}_2 are ideals with $\mathfrak{J}_1 \subseteq \mathfrak{J}_2, \mathfrak{Z}$ is $\mathfrak{W}\mathfrak{J}_2$ -resolvable implies that \mathfrak{Z} is $\mathfrak{W}\mathfrak{J}_1$ -resolvable.

2. If \mathbb{T} and σ are topological spaces with $\mathbb{T}\subseteq\sigma,\mathbb{Z}$ is σ - \mathfrak{WI} -resolvable implies that \mathbb{Z} is \mathbb{T} - \mathfrak{WI} -resolvable.

Theorem 3.9: Let $(\mathbb{Z},\mathbb{T},\mathbb{J})$ be an ideal topological space .Then the following statements are hold: If \mathbb{Z} be a $\mathfrak{W}\mathfrak{I}$ -resolvable and \mathfrak{Y} is open subset of \mathbb{Z} . Then \mathfrak{Y} is $\mathfrak{W}\mathfrak{I}$ -resolvable subspace of \mathbb{Z} .

Proof: Assume that \mathbb{Z} is $\mathfrak{W}\mathfrak{I}$ -resolvable, then $\mathbb{M}\bigcup \mathbb{G}=\mathbb{Z}$ and $\mathbb{M}\cap\mathbb{G}=\Phi$, where $\mathbb{M}^{**}=\mathbb{Z}$ and $\mathbb{G}^{**}=\mathbb{Z}$. Note that $\mathfrak{Y}=(\mathfrak{Y}\cap\mathbb{M})\cup(\mathfrak{Y}\cap\mathbb{G})$ and $(\mathfrak{Y}\cap\mathbb{M})\cap(\mathfrak{Y}\cap\mathbb{G})=\Phi$. Put $\mathbb{M}_1=\mathbb{M}$ $\cap \mathfrak{Y}$ and $\mathbb{G}_1=\mathbb{G}\cap \mathfrak{Y}$, then $\mathbb{M}_1\cup\mathbb{G}_1=\mathfrak{Y}$ and $\mathbb{M}_1\cap\mathbb{G}_1=\Phi$. To prove($\mathbb{M}_1\mathfrak{Y}^*)\mathfrak{Y}^*=\mathfrak{Y}$ and $(\mathbb{G}_1\mathfrak{Y}^*)\mathfrak{Y}^*=\mathfrak{Y}$. So by Proposition 2.13, it follows that $(\mathbb{M}_1\mathfrak{Y}^*)\mathfrak{Y}^*=\mathfrak{Y}$ and $(\mathbb{G}_1\mathfrak{Y}^*)\mathfrak{Y}^*=\mathfrak{Y}$. Hence $(\mathfrak{Y},\mathbb{T}_p,\mathfrak{I}_p)$ is $\mathfrak{W}\mathfrak{I}$ -resolvable.

Theorem 3.10: Let $(\mathbb{Z}, \mathbb{T}, \mathbb{J})$ be an ideal topological space .Then the following statements are hold:

- 1. If \mathbb{Z} be a \mathfrak{WI} -I-resolvable and \mathfrak{V} is open subset of \mathbb{Z} . Then \mathfrak{V} is \mathfrak{WI} -I-resolvable subspace of \mathbb{Z} .
- 2. If \mathbb{Z} be a \mathfrak{WI} - \mathbb{C}^* -resolvable and \mathfrak{Y} is open subset of \mathbb{Z} . Then \mathfrak{Y} is \mathfrak{WI} - \mathbb{C}^* -resolvable subspace of \mathbb{Z} .
- 3. If \mathbb{Z} be a \mathfrak{WI} - \mathbb{T} -resolvable and \mathfrak{Y} is open subset of \mathbb{Z} . Then \mathfrak{Y} is \mathfrak{WI} - \mathbb{T} -resolvable subspace of \mathbb{Z} .
- 4. If \mathbb{Z} be a \mathbb{J} - \mathbb{T}^* -resolvable and \mathbb{P} is open subset of \mathbb{Z} . Then \mathbb{P} is \mathbb{J} - \mathbb{T}^* -resolvable subspace of \mathbb{Z} .
- 5. If \mathbb{Z} be a \mathbb{J} - \mathbb{T} -resolvable and \mathbb{P} is open subset of \mathbb{Z} . Then \mathbb{P} is \mathbb{J} - \mathbb{T} -resolvable subspace of \mathbb{Z} .
- 6. If \mathbb{Z} be a \mathbb{T}^* - \mathbb{T} -resolvable and \mathbb{P} is open subset of \mathbb{Z} . Then \mathbb{P} is \mathbb{T}^* - \mathbb{T} -resolvable subspace of \mathbb{Z} .
- 7. If \mathbb{Z} be a e-resolvable and \mathfrak{P} is open subset of \mathbb{Z} . Then \mathfrak{P} is e-resolvable subspace of \mathbb{Z} .

Proof:The same prove Theorem 3.9.

Definition 3.11: Let $(\mathbb{Z}, \mathbb{T}, \mathbb{J})$ be an ideal topological space and a subset M of \mathbb{Z} is called \mathfrak{WI} -open, if $M \subseteq int(M^{**})$.

Definition 3.12: An ideal topological space $(\mathbb{Z}, \mathbb{T}, \mathbb{J})$ is called

- 1. \mathfrak{WI} -Hausdorff, if for every $p \neq q$, $\exists \mathfrak{WI}$ -open sets K and L containing p and q singly, where $K \cap L = \Phi$.
- 2. \mathfrak{WI} - \mathfrak{I} -Hausdorff, if for every $p \neq q$, $\exists \mathfrak{WI}$ -open and \mathfrak{I} -open sets K and L containing p and q singly, where $K \cap L = \Phi$.
- 3. \mathfrak{WI} - \mathfrak{P}^* -Hausdorff, if for every $p \neq q$, $\exists \mathfrak{WI}$ -open and pre- \mathfrak{I} -open sets K and L containing p and q singly, where $K \cap L = \Phi$.
- 4. \mathfrak{WI} - \mathfrak{P} -Hausdorff, if for every $p \neq q$, $\exists \mathfrak{WI}$ -open and pre-open sets K and L containing p and q singly, where $K \cap L = \Phi$.
- 5. \mathfrak{I} - \mathfrak{P}^* -Hausdorff, if for every $p \neq q$, $\exists \mathfrak{I}$ -open and pre- \mathfrak{I} -open sets K and L containing p and q singly, everywhere $K \bigcap L = \Phi$.

6. \mathfrak{I} - \mathfrak{P} -Hausdorff, if for every $p \neq q$, $\exists \mathfrak{I}$ -open and pre-open sets K and L containing p and q individually, everywhere $K \cap L = \Phi$.

Theorem 3.13: Let $(\mathbb{Z}, \mathbb{T}, \mathbb{J})$ be an ideal topological space and the scattered sets of $(\mathbb{Z}, \mathbb{T}^*)$ are in \mathbb{J} . The following statement are holds: Every $\mathfrak{W}\mathfrak{J}$ -resolvable space is $\mathfrak{W}\mathfrak{J}$ -Hausdorff space.

Proof: Suppose that \mathbb{Z} is a \mathfrak{WI} -resolvable, then there exists M,G be disjoint weakly-I-dense subsets of \mathbb{Z} such that $M \bigcup G = \mathbb{Z}$. We get that M and B are \mathfrak{WI} -open. Let $z, p \in \mathbb{Z}$. We have to show that $(\mathbb{Z}, \mathbb{T}, \mathbb{J})$ is \mathfrak{WI} -Hausdorff. So by Theorem 2.9, it follows that $(M-\{p\})^{**}=M^{**}=(G \cup \{p\})^{**}$, then $(M-\{p\})^{**}=\mathbb{Z}=(G \cup \{p\})^{**}$. Thus $K=M-\{p\}$ and $L=G \cup \{p\}$ are disjoint \mathfrak{WI} -open sets having z and p individually.

Theorem 3.14: Let $(\mathbb{Z}, \mathbb{T}, \mathbb{J})$ be an ideal topological space and the scattered sets of $(\mathbb{Z}, \mathbb{T}^*)$ are in \mathbb{J} . The following statements are holds:

- 1. Every **WJ-J**-resolvable space is **WJ-J**-Hausdorff space.
- 2. Every 𝔐𝔅-𝔅*-resolvable space is 𝔐𝔅-𝔅*-Hausdorff space.
- 3. Every \mathfrak{WI} - \mathfrak{T} -resolvable space is \mathfrak{WI} - \mathfrak{P} -Hausdorff space.
- 4. Every 𝔅-𝔅*-resolvable space is 𝔅-𝔅*-Hausdorff space.
- 5. Every I-T-resolvable space is I-P-Hausdorff space.

Proof: The same prove Theorem 3.13.

Theorem 3.15: Let $\mathfrak{f}:(\mathfrak{Z},\mathfrak{T},\mathfrak{I})\to(\mathfrak{Y},\sigma)$ be \mathfrak{W} - \mathfrak{I} -map and bijection. If \mathfrak{Z} is $\mathfrak{W}\mathfrak{I}$ -resolvable, then \mathfrak{Y} is $\mathfrak{W}\mathfrak{I}$ -resolvable.

Proof: Suppose that \mathbb{Z} is $\mathfrak{W}\mathfrak{I}$ -resolvable, then there exists M and G subsets of \mathbb{Z} such that $M \bigcup G = \mathbb{Z}$ and $M \bigcap G = \Phi$, where $M^{**} = \mathbb{Z}$ and $G^{**} = \mathbb{Z}$. So by Theorem 2.19, we have f(M) and f(G) are weakly- \mathfrak{I} -dense in \mathfrak{P} . Hence \mathfrak{P} is \mathfrak{I} -resolvable.

Theorem 3.16: Let $\mathfrak{f}:(\mathfrak{Z},\mathfrak{T},\mathfrak{I})\to(\mathfrak{Y},\sigma,\mathfrak{I})$ be a \mathfrak{W} - \mathfrak{I} -map and bijection. If \mathfrak{Z} is $\mathfrak{W}\mathfrak{I}$ -resolvable, then \mathfrak{Y} is \mathfrak{I} -resolvable.

Proof: The same prove Theorem 3.15.

Corollary 3.17: Let $\mathfrak{f}:(\mathfrak{Z},\mathfrak{T},\mathfrak{I})\to(\mathfrak{Y},\sigma,\mathfrak{I})$ be a \mathfrak{W} - \mathfrak{I} -map and bijection. If \mathfrak{Z} is $\mathfrak{W}\mathfrak{I}$ -resolvable, then \mathfrak{Y} is e-resolvable.

Proof: Get it from Theorem 3.15.

Theorem 3.18: Let $\mathfrak{f}:(\mathfrak{Z},\mathfrak{T},\mathfrak{I})\to(\mathfrak{Y},\sigma)$ be a \mathfrak{E} - \mathfrak{I} -map and bijection. If \mathfrak{Z} is e-resolvable, then \mathfrak{Y} is e-resolvable.

Proof: Get it from Theorem 2.23.

Journal of Babylon University/Pure and Applied Sciences/ No.(9)/ Vol.(24): 2016

Here, we will characterize wI-resolvable spaces by means of Ψ -operator.

Theorem 3.19: Let $(\not{\exists}, \mathfrak{T}, \not{\exists})$ be $\not{\exists}$ -resolvable if and only if there exists M subset of $\not{\exists}$ such that Ψ (M)= Ψ (M^c)= Φ .

Proof: Necessity. Let $(\not{\exists}, \not{u}, \not{\exists})$ be $\not{\exists}$ -resolvable, then there exists M and G subsets of $\not{\exists}$ such that $M \bigcup G = \not{\exists}$ and $M \bigcap G = \Phi$ where $M^* = G^* = \not{\exists}$, $M^c = G$ and $G^c = M$. Since ($M^*)^c = \Phi$, then $(((M^c)^c)^*)^c = \Phi$, this implies $\Psi(M^c) = \Phi$ and since $(G^*)^c = \Phi$, then $((M^c)^*)^* = \Phi$, this implies $\Psi(M) = \Phi$.

Sufficiency. Let $M \subseteq \mathbb{Z}$ such that $\Psi(M) = \Psi(M^c) = \Phi$. Since $((M^c)^*)^c = \Phi$, then $G^* = \mathbb{Z}$. Since $(((M^c)^c)^*)^c = \Phi$, then $M^* = \mathbb{Z}, M \bigcup M^c = \mathbb{Z}$ and $M \bigcap M^c = \Phi$. Hence \mathbb{Z} is \mathbb{J} -resolvable.

Theorem 3.20: Let $(\not{\Xi}, \not{\mathbb{T}}, \not{\mathbb{J}})$ be $\mathfrak{W} \not{\mathbb{J}}$ -resolvable if and only if there exists M subset of $\not{\Xi}$ such that $\Psi(\Psi(M)) = \Psi(\Psi(M^c) = \Phi$.

Proof:The same prove Theorem 3.19.

Proposition 3.21: Let $(\not{\Xi}, \not{\Pi}, \not{J})$ be a $\mathfrak{W}\mathcal{J}$ -resolvable if and only if there exist weakly- \mathcal{J} -dense subset M of $\not{\Xi}$ with $\Psi(\Psi(M)) = \Phi$.

Proof: Necessity.By Theorem 3.20,then there exist $M \subseteq \mathbb{Z}$ such that $\Psi(\Psi(M)) = \Psi(\Psi(M^c)) = \Phi$, then $((((M^c)^c)^*)^*)^c = \Phi$, this implies $M^{**} = \mathbb{Z}$. Hence M is weakly- \mathbb{J} -dense.

Sufficiency. Let M is weakly- \mathfrak{I} -dense with $\Psi(\Psi(M))=\Phi$. Since $M^{**}=\mathbb{Z}$, then $((((M^c)^c)^*)^*)^c=\Phi$, which implies that $\Psi(\Psi(M^c))=\Phi$. So by theorem 3.20, it follows that \mathbb{Z} is \mathfrak{WI} -resolvable.

Lemma 3.22: Let $(\not{\mathbb{Z}}, \mathfrak{T}, \mathfrak{I})$ is \mathfrak{I} -resolvable if and only if there exists \mathfrak{I} -dense subset M of $\not{\mathbb{Z}}$ with $\Psi(M) = \Phi$.

Proof: Clear.

Theorem 3.23: Let $(\mathbb{Z}, \mathbb{T}, \mathbb{J})$ be an ideal space and $M \subseteq \mathbb{J}$, then M^c is weakly- \mathbb{J} -dense if and only if $\Psi(\Psi M) = \Phi$.

Proof: Let M^c is weakly- \mathfrak{V} -dense in \mathfrak{Z} iff $((M^c)^*)^* = \mathfrak{Z}$ iff $(((M^c)^*)^*)^c = \Phi$ iff $\Psi (\Psi(M)) = \Phi$.

Theorem 3.24: Let $(\mathbb{Z}, \mathbb{T}, \mathbb{J})$ is $\mathbb{J}-\mathbb{T}^*$ -resolvable, if and only if there exists a subset M of \mathbb{Z} such that $\Psi(M^c)=int^*(M)=\Phi$.

Proof: Necessity. Let $\not\equiv$ be a $\not\exists$ - \Tilde{T}^* -resolvable, then there exist M and G subsets of $\not\equiv$ such that $M \bigcup G = \not\equiv, M \cap G = \Phi$ where $M^* = \not\equiv cl^*(G)$, $M = G^c$ and $G = M^c$. Since $(cl^*(G))^c = \Phi$, implies that int*(M) = \Phi and since $M^* = \not\equiv$, then $\Psi(M^c) = \Phi$.

Sufficiency. Clear.

Definition 3.25:Let $(\mathbb{Z}, \mathbb{T}, \mathbb{J})$ be an ideal topological space,let M be any subset of \mathbb{Z} . The e-interior of M is denoted by $\operatorname{int}^{e}(M)$ and is of form $\operatorname{int}^{e}(M)=M \cap \Psi(\Psi(M))$.

Proposition 3.26: Let $(\mathbb{Z}, \mathbb{T}, \mathbb{J})$ be a $\mathfrak{W}\mathfrak{J}$ -resolvable, then there exists weakly- \mathfrak{J} -dense subset M of \mathbb{Z} such that $\operatorname{int}^{e}(M) = \Phi$.

Proof: By Proposition 3.21, we have $\operatorname{int}^{e}(M)=M \cap \Psi(\Psi(M))=\Phi$.

Theorem 3.27: Let $(\not{\Xi}, \mathfrak{T}, \mathfrak{I})$ be an ideal topological space. The following statements are equivalent.

- 1. $\not\equiv$ is $\not\exists$ -resolvable.
- 2. There exists \mathfrak{I} -dense subset M and G of \mathfrak{Z} such that $\Psi(M) = \Phi$.
- 3. There exists disjoint union subsets M and G of $\not\equiv$ such that $\Psi(M)=\Psi(G)=\Phi$.
- 4. There exists disjoint union \mathfrak{I} -codense subsets M and G of \mathfrak{Z} .

Proof:

(1)↔(2). Get it from Lemma 3.22.

(2) \rightarrow (3).By (2) there exist $M \subset \mathbb{Z}$ such that $M^* = \mathbb{Z}$ and $\Psi(M) = \Phi$, then $(((M^c)^c)^*)^c = \Phi = \Psi(M^c) = \Phi$, put $M^c = G$.thus, we get $\Psi(G) = \Phi$.

(3)→(4).Let M and G subsets of \mathbb{Z} such that $M \bigcup G = \mathbb{Z}$ and $M \bigcap G = \Phi$.By(3) Ψ (M)= Ψ (G)= Φ .So ((M^c)*)^c= Φ ,then (M^c)*= \mathbb{Z} . Thus M^c is \mathbb{J} -dense. Hence M is \mathbb{J} -codense. Similarity ,we get that G is \mathbb{J} -codense.

(4) \rightarrow (1). Since $M \bigcup G = \mathbb{Z}$ and $M \bigcap G = \Phi$, $M = G^c$ and $G = M^c$. By(4), we have $(M^c)^* = \mathbb{Z}$. Therefore $M^* = \mathbb{Z}$ and $G^* = \mathbb{Z}$ which means that \mathbb{Z} is \mathbb{J} -resolvable.

Theorem 3.28: Let $(\not{\Xi}, \mathfrak{T}, \mathfrak{I})$ be an ideal topological space. The following statements are equivalent.

- 1. *₹* is *₩*𝔅-resolvable.
- 2. There exists weakly- \mathfrak{J} -dense subsets M and G of $\not\equiv$ such that $\Psi(\Psi(M)) = \Phi$.
- 3. There exists disjoint union subsets M and G of $\not\equiv$ such that $\Psi(\Psi(M)) = \Psi(\Psi(G)) = \Phi$.
- 4. There exists disjoint union \mathfrak{WI} -codense subsets M and G of \mathbb{Z} .

Proof:

 $(1)\leftrightarrow(2)$. Get it from Proposition 3.21.

(2) \rightarrow (3). By (2) there exist $M \subset \mathbb{Z}$ such that $(M^*)^* = \mathbb{Z}$ and $\Psi(\Psi(M)) = \Psi(\Psi(M^c)) = \Phi$, put $M^c = G$.thus we get $\Psi(\Psi(G)) = \Phi$.

(3) \rightarrow (4). Let M and G subsets of $\not\equiv$ such that $M \bigcup G = \not\equiv$ and $M \cap G = \Phi$.By(3) $\Psi(\Psi(M)) = \Psi(\Psi(G)) = \Phi$, so $((M^c)^*)^c = \Phi$, then $(M^c)^* = \not\equiv$. Thus M^c is weakly- $\not\exists$ -dense. Hence M is \mathfrak{WI} -codense.Similarit we get that G is \mathfrak{WI} -codense. (4) \rightarrow (1). Since $M \bigcup G = \mathbb{Z}$ and $M \cap G = \Phi$, $M = G^c$ and $G = M^c$. Since M is \mathfrak{WI} -codense, then $(M^c)^{**} = \mathbb{Z}$. Therefore $M^{**} = \mathbb{Z}$ and $G^{**} = \mathbb{Z}$ which means that \mathbb{Z} is \mathfrak{WI} -resolvable.

References

- Chattopadhyay C. and U.K. Roy, σ -sets, irresolvable and resolvable space, Math. Slovaca, 42 (3) (1992), 371-378.
- Devi, V.R. ; D. Sivaraj, T.T. Chelvam, Codense and completely codense ideals, Acta Math. Hungar. 108 (2005) ,197–205.
- Dontchev J. and M. Ganster and D.Rose, Ideal resolvability, Topology and its . Applications, 93(1999), 1-16.
- Dontchev, J. On Hausdorff spaces via topological ideals and I-irresolute functions, Annals of the New York Academy of Sciences, Papers on General Topology and Applications, 767 (1995), 28-38.
- Dontchev, J. On pre-I-open sets and a decomposition of I-continuity, Banyan Math. J.,2(1996).
- Hatir, E.; A.Keskin, T.Noiri, A note on strong β -I-sets and strongly β -I-continuous functions, Acta Math.Hungar.108(2005), 87-94.
- Hausdorff, F. Set Theory, Chelsea, New York, 1957
- Hayashi, E. Topologies defined by local properties, Math. Ann. 156(1964) 205-215.
- Hewitt, E. A problem of set-theoretic topology, Duke Math. J., 10 (1943), 309–333.
- Jankovic D. and T.R. Hamlett, Compatible extensions of ideals, Bollettino U.M.I., 7 (1992), 453-465.
- Jankovic, D. T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97 (1990), 295–310.
- Kuratowski, K. Topologie I, Warszawa, 1933.
- Kuratowski, K. Topology, Vol.I, Academic press, New York, (1966).
- Mashhour, S. ; M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- Natkaniec, T. On I-continuity and I-semicontinuity points, Math. Solvaca, 36:3(1986), 297-312.