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Abstract 
       The transition of a homogeneous system into a heterogeneous one may occur spontaneously in a labile region 

of supersaturations; in the metastable region of supersaturations it is realized as an energy barrier-determined 

process. The limit that separates  the labile region from the metastable one  is the boundary supersaturation 

s
m
>>s

cr
,  where s

cr
 is the critical supersaturation. The Ω-potential thermodynamic formalism, Ω = F - G, where F 

and G are the Helmholtz and the Gibbs free energies, respectively, allows a straightforward derivation of the 

formula of Tohmfor and Volmer (1938) for a nucleus formation on an ion. For the case of charged liquid drops, 

expressions for the capillary pressure, the vapor pressure,  the work of formation of  equilibrium drops from vapors, 

and the drop surface tension, are obtained as well. The stability conditions for the charged equilibrium drops are 

also examined.  

 الخلاصة
  التبا   الزا اي حظ ا   ا الثابتا  المنطقا الزا اي را    ا  التبا   المتغيا   المنطقا را   تناار  داي دثايل ائقا  اانظاام   إلا انتقال النظام المتجاان   

,الث اريا الال اا    ألتبااليئ هاا  التباا   الزا ااي الثا            اا  هاا    المتغياا   المنطقا ي دفصاا  الثااي الاا  لئطادا عمئ ا  اثيحااي  ل داا  
cr

s       ) ياا  
),

cr
s>>

m
s    الثا  ه  طاد  هئمهولتز وطاد  جيا   زا ي  ال ه   يود التب    الثابت G,F   يا G  -F  =Ώ         الكا ئا                                

  

ولاا تثاوال المباثون  الا  دطا اا الساا    إلا  بالنسا  النوويا  عئا  الاحاو   لئت كي ا ( 1938اقوم بالساما  لظهاتقاا الم اها   ا   ا غ  اوهمفاوم وراولم  
 المتوامناا لئقطاا اا  الثابتاا حااتا ا تثصااالها  ف اا و   القطاا  المتوامناا   اا  ال شااار واااوا   ااط  راا  الطااغش الباال ي وبااغش ال شااار رااا  هاال  القطاا اا 

    ادطا  فثو  ه   المبثون 

1.  Introduction       
The theory of phase formation in supersaturated systems is developed by Gibbs [Gibbs 

,19961]. The transition of a homogeneous system into a heterogeneous one may occur 

spontaneously (in a labile region); in a metastable (fluctuational) region, it takes place as an 

energy barrier-determined process. In the latter case, using the well-known Volmer’s procedure 

[Rothman,Lichter, Nevitte .R,.N 2005, Volmer M.1939], a critical supersaturation s
cr

 can be 

determined. A boundary supersaturation s
m

 should represent the limit between the  metastable 

and labile regions and, as a rule, s
m

>>s
cr

. The water nucleation on ions, e.g., in the cloud Wilson 

chamber [Wilson. 1954], seems to be a special case when s
m

 and s
cr

 are relatively close to each 

other.  

Despite of the statement, e.g., in [Münster. A 1990, Ter Haar. D,  Wergeland .H 1967], 

that the Ω-potential expressed as  

  
                                       (1) 

 

(F is the Helmholtz free energy, µ
i
 and

 
N

i
 are the chemical potential and mass of the i-th 

component, respectively) is irrelevant for thermodynamics, this extensive thermodynamic 

function, rather than the Gibbs free energy G, seems to be the most convenient for presenting the 

results of Gibbs’ theory of capillarity  ( [Landau. & Lifshitz, 1980; Rusanov & Kuni, 1984]). The 
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metastable state of the capillary system includes the nucleus of the new phase. It is a small but 

macroscopic particle, which is in unstable equilibrium with its surroundings. At constant total 

volume V, temperature T  and chemical potentials µ
i
,
 

  would have a meaning of a 

reversible work, and this provides a straightforward approach to the determination of the work W 

of formation of a nucleus in supersaturated systems.  

 

2.Work of Drop Formation    
The Ω-potential of the homogeneous gas phase g containing an ion with charge e and  

radius a is    

  
                                        (2) 

 

where p stands for pressure while the electrostatic part of Ω
I
, i.e., the free energy Ω

e
, is 

calculated by       where r is the radial distance from the ion  

and the dielectric constant of the vapors ε = 1.  

When a liquid drop l is formed around the ion,  

  

  

                                  (3) 

 

with  ,  , where R is the radius of the spherical liquid drop and σ is the  

 

surface tension at the drop/gas interface. The free energy Ω
e
 is calculated again by 

  

 with   for r>R and E=e/εr
2

for r<R (ε is the dielectric constant of the liquid        drop).  

Thus the work of formation of a drop will be  

 

  
                                  (4) 

 

with ∆ 

 

 

 

 

3.    Capillary Pressure of the Drop 
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By making use of , one obtains for the capillary pressure of the drop  

 

.  
                                               (5) 

 

Eq. (5) is a generalization of the Laplace formula for the capillary pressure   

 

                                                               (6) 

 

Eq. (6) follows from Eq. (5) when e=0.  It is known that the above procedure determines the 

radius of the dividing surface between the bulk liquid and the gas phase, for which Laplace’s law 

in the form of Eq. (6) is valid; it holds for the surface of tension [Gibbs ,  1961, Stern, 2007]. The 

expression (5) exhibits an extremum at  

 

  
                                                         (7) 

 

4.    Work of Formation of Equilibrium Drops from Vapors 
The capillary pressure is the pressure difference between two bulk phases in equilibrium 

[Gibbs , 1961]. If Eq. (5) is inserted in Eq. (4), an expression for the work of formation W of an 

equilibrium drop is readily obtained  

 

  
                                              (8) 

 

At e=0, Eq. (8) gives the well-known Gibbs’ result [Gibbs .J.W 19961]  

 

  
                                                          (9) 

5.   Gibbs-Thomson Equation 

Eq (5) determines the difference in the pressures within and outside the equilibrium drop, p
l

 

and and p
g

, respectively. Obviously,  at constant temperature and chemical potentials, both 

pressures are constant. These  pressures can be calculated separately provided that the starting 

equation is [Landau. L.D. , Lifshitz. E.M. 1980, Toshev. B.V., . Disp. J1997]  

 

                                             (10) 

 

Therefore,  

                                                          (11) 

 

(vj(j=l,g ) are molar volumes). As usual v
l 

« v
g

 and v
g

 =RT/Pg; R is the gas constant, k is the 
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Boltzmann constant, vl
0  is the molecular volume, and, by integrating Eq. (11), using   

Pl-P∞
l  =P+Pg-P∞

g(with Eq. (5) for ∆P), and neglecting vl
0 (P

g-P∞
g), one obtains 

 

  
                           (12) 

 

 The dependence of the vapor pressure on R (at R∞→, Pg
 P∞

 l ) exhibits an extremum at R=R
m
. 

The other charecterics of the Tohmfor and Volmer charged drops are as follow [Tohmfor 

&Volmer 1938; Schustr ,Finkelstein , 2006]: T=265K, σ =77 dyn/cm, s
m
= 4.63, e=4.8.10

-10

 

CGSE, R
m
= 6.5.10

-8

 cm, s
cr

 = 4.1 (experimental), 3.2 (theoretical); at s
cr

 = 3.2, R
st
= 4.8.10

-8

 cm 

and R
un

= 10.2.10
-8

 cm). The radius R
m

 is determined by the condition (7). The radius R
0
 is 

determined at  s = 1. Then,  from Eq. (5) at ∆P=0, and together with Eq. (7), it follows that  

 

.  

                                                (13) 

6.  Stability Conditions 
At s<s

m
, two equilibrium drops of different size should exist: a smaller one with a radius R

st
 , 

and a bigger one with a radius R
un

; R
un

> R
st
.  By using  Eqs. (4) and (5), one readily obtains  

  

           (14) 

 

This implies 

eq
R 












2

2

 > 0 when R< R
m

. Thus,  at s< s
m

 the equilibrium drop with  radius 

R
st
 is in stable equilibrium with its surroundings (minimum of the Ω - potential).   

For the other equilibrium drop with R
un

 > R
st
, 0

2

2














eq
R

  Therefore, this drop is in 

unstable equilibrium with its surroundings (maximum of the Ω - potential).  

At s≥sm, the condensation does not follow the fluctuational mechanism and nuclei of the 

new phase do not exist at all. Let us consider the special case of s = s
m

. It is easily established 

that the first and the second derivatives of Ω at R = R
m

 are both zero. The third derivative is  

  
                                              (15) 

 

On the other hand,  

 

  
                          (16) 
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i.e., the nonequilibrium drops with R < R
m

 will grow spontaneously, because )()( mRR   The 

same is valid for the nonequilibrium drops with R > R
m 

since in this case . )()( mRR   
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