
Journal of Babylon University/Pure and Applied Sciences/ No.(9)/ Vol.(24): 2016 

1342 
 

Applications of Variational Iteration Method for 
Solving A Class of Volterra Integral Equations 

 
Mohammed S. Mechee  Adil M. Al Ramahi    Raad M. Kadum   

Department of Math., Faculty of Computer Science and Math., Kufa University 

mohammeds.abed@uokufa.edu.iq  
Abstract 
In this paper, one type of Volterra integral equations (VIEs) is classified as nth-order VIE of fourth-

kind. This class of nth-order, fourth-kind VIE usually occurs in many fields of physics and engineering. 

A new iteration technique is proposed to solve a class of  Volterra integral equations. The nth-order 

VIE of fourth-kind is converted to nth-order ordinary differential equation (ODE). The ODE is solved 

by using variational iteration method (VIM). It shows that the variational iteration method (VIM) is 

efficient and powerful integrator for dealing with this class of integral equations. Some examples are 

solved to illustrate the effectiveness and simplicity of the proposed method.The comparison of the 

results using VIM with analytical solutions reveals that VIM is very effective, convenient and quite 

accurate to both linear and nonlinear problems. 
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 الخلاصة
ذات النوع الرابع. يظير  ىذا الصنف من معادلات  nصنفت احدى معادلات فولتيرا التكاممية كمعادلة رتبة  ,في ىذا البحث

ية. فولتيرا التكاممية في تطبيقات الحقول المختمفة لمفيزياء واليندسة. فقد فرضت التقنية التكرارية الجديدة  لحل صنف المعادلات التكامم
, عندئذ تحل المعادلة  nاعتيادية ذات الرتبة الى معادلة تفاضمية  nحيث تحول معادلات فولتيرا التكاممية ذات النوع الرابع والرتبة 

. التفاضمية باستخدام طريقة التغاير التكرارية.  أظيرت طريقة التغاير التكرارية كاداة كفوءة وفعالة لمعالجة صنف المعادلات التكاممية
ريقة التغاير التكرارية مع الحمول التحميمة أختيرت عدة امثمة لأظيار فعالية وبساطة ىذه الطريقة . أظيرت المقارنات لمنتائج العددية لط

 لممسائل المقارنة بان الطريقة ذات فعالية ملائمة ودقيقة لممسائل الخطية وغير الخطية.
                 اعتياديو. تفاضميةمعادلات , و n: معادلات تكاممية, معادلة فولتيرا التكاممية, رتبة الكممات المفتاحية

                         

1 Introduction 
      Some of mathematical formulation of physical phenomena contains integral 

equations. The nonlinear Volterra-Fredholm integral equation, which is special type 

of integral equations, arises in many physical applications and biological models. The 

analytical and approximated methods of solutions of the integral equations have an 

important role in the fields of engineering and applied science. Due to some of these 

integral equations cannot be solved explicitly, it is often necessary to resort to 

approximated or numerical techniques. Several  of new methods, for solving Volterra 

integral equations have been developed in recent years 

   In recent years, Some of different basic functions such as orthonormal bases and 

wavelets have been used to estimate the solutions of nonlinear Volterra-Fredholm 

integral equations, (Mirzaee and Hoseini (2013)). In survey to the integrators for 

solving the Volterra integral equations such as a Taylor method, transform method, 

the method of variation, the collocation method, numerical technique, the direct 

quadrature method, HPM method, Adomian decomposition method and homotopy  

perturbation method. In this paper, one type of Volterra integral equations (VIEs) is 

classified as nth-order VIE of fourth-kind. A new iteration technique is proposed to 

solve a class of integral equations. VIE is converted to nth-order ordinary differential 

equations (ODE) and then is solved using variational iteration method (VIM). 
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2 Preliminary 

   In this section we have introduced the background and some definitions which are 

used in this paper. 

 

2.1 Background and Classification of VIE 

   In mathematics, the integral equation is an equation in which an unknown function 

appears under one or more integral signs naturally, such an equation there can occur 

other terms as well. The Fredholm Volterra integral equation is a special type of 

integral equations. They are divided into three groups referred to as the first-, second- 

and third-kind. 

A linear Fredholm integral equation of the first-kind is 

(1) 
      ∫                      

 

 

 
 

a linear Fredholm integral equation of the second-kind is 

 

(2) 
            ∫                      

 

 

 
 

 

and the linear Fredholm integral equation of third-kind is 

 

(3) 
               ∫                      

 

 

 
 

 

where u; g and the kernel k is a given function and u is an unknown function to be 

solved. Volterra integral equations of first-, second- and third-kind are defined 

precisely as above except that b = x is the variable upper limit of integration. Here, we 

give some new definitions for a class of linear integral equations. 

 

Definition 2.1. Volterra integral equation of fourth-kind has the following form: 

(4) 
          ∫                      

 

 

 
 

Definition 2.2. Order of VIE 

   We define the order in Volterra integral equation (4) as VIE of order n. 

 

Theorem 2.1. The Volterra integral equation of order n in  (4) can be converted to the 

following ordinary differential equation 

 

                                     
with initial conditions 

         
for i = 0,1,… ,n-1. 

Proof: using Lipshitze theorem. In recent years, the approximated methods have been 

applied to wide classes of VIEs problems in many fields of mathematics, physics and 

engineering. Such methods approximated the solutions for some types of VIEs. The 

purpose of this paper is to develop the theory of the direct method for the Voltera 

integral equations. The nth-order VIE of fourth-kind is converted to nth-order ODEs 

and then, solved using the the VIM method. The new results based on the VIM are 
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compared with the exact solutions; the results show that the method is highly 

accurate. 

 

2.2 A Quasi-Linear nth-Order Ordinary Differential Equation(ODE). 

Generally, we define qusi-linear nth-order ODEs, It is frequently found in many 

physical problems such as electromagnetic waves, thin film flow and gravity can be 

written in the following form 

(5)        (                                     )       

with initial conditions, 

           
for i = 0,1,… ,n. 

 

where,          →   

 

and 

                                    
 

                                              
 

      
    

    
     

   
 

when the ODE (5) in n dimension space, then we can simplify to  

(6)        (                                   )  

using the following assumption,               

         

{
  
 

  
 
       

      
 
 
 

      
 }

  
 

  
 

       

               

                ,                     

{
  
 

  
 

                   

                   
 
 
 

                   

 }
  
 

  
 

 

with the initial conditions 

           

for i = 0,1,2,…, n 

where 

    [  
    

    
      

    ] 

Most researchers, scientists and engineers used to solve (5) or (6) numerically solve 

by converting the n- th order differential equation to a system of first order equations 

nth times the dimensions (Faires and Burden (2003)). However, Mechee et al. (2013) 

& You& Chen (2013) solved (5) or (6) directly when n=3. Sometimes some 

researchers can solve this equation analytically. However, it is more efficient if the 

equation can be solved using variational iteration methods (He (1997), Odibat & 

Momani (2006), Shatalov (2011)& Struwe (2008)). 
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3 The Analysis of the Method 
In this section, we will introduce the analysis of variational iteration 

method(VIM). 

 

3.1 Variational Iteration Method 

The main idea of VIM is to approximate the solution of differential equation by 

using an iteration formula in the form of a correctional functional which involves 

Lagrange multiplier. By applying variational theory, Lagrange multiplier can be 

determined. The iteration is initiated by a simple function such as a linear function. To 

illustrate the main concept of this method consider the following system of 

differential equations: 

(7)             

 

where T is a differential operator that acts on a sufficiently smooth function u defined 

on such an interval I ⊆R. The given function g is also defined in I. Initially, split T 

into its  linear and nonlinear part, namely 

(8)                         

where L and N are linear and nonlinear differential operator respectively. A 

correctional functional for equation (8) is then defined iteratively as 

(9) 
              ∫                        

 

 

    
 

Where  (t, s) is Lagrange multiplier,    is the nth approximate solution, and    is 

the 

restricted variations so that     . By choosing such a simple initial function    , 

iterations  performes until it converges to a fixed point, under a condition where 

              
When this condition is reached, then we obtain 

(10) 
∫                        

 

 

      
 

which is equivalent to the condition 

(11)                         

This means that      (t) can be considered as an approximated solution for equation. 

(12) 
              ∫                   

 

 

    
 

We will study the general approximated method for solving nth-order VIE of fourth- 

kind by using VIM. Firstly, we consider the following nth-order VIE of fourth-kind: 

(13) 
          ∫                           

 

 

 
 

with the initial conditions 

 

(14)           

 

for i = 0,1,2,… ,n 

The steps of the approximated method of the problem (13) are : 

1. Differentiate equation (13) (n+1)th times, to the following (n+1)th-order ODE: 
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(15)                        (      )          

         with the initial conditions 

 

(16)           

 

        for i = 0,1, 2,…,n 

        where f is a given function.  

 

  2. We will solve the (n+1)th-order ODE (15) with initial condition in (16) using          

theVIM.  

This algorithm is for solving any nth-order VIE of type IV (13) with initial       

conditions(14). 

 

4 Implementation(Problems Tested) 

Problem 1 (Volterra integral equation of fourth-kind) The Volterra integral equation 

(17) 
       ∫                

 

 

 

 

 

With initial conditions, 

       
The exact solution: 

         
The VIE (17) is equivalent to following ODE 

                       
The general correct functional is as following: 

              ∫                              
 

 

    

Hence, the correct functional for this ODE is as following: 

              ∫                   
 

 

   

 

Yields the following stationary condition: 

          
So, the functional correct has the following form: 

(18) 
              ∫                  

 

 

   

 

Consider the initial condition has the form 

        

 

 

Hence, using the formula (18) we get the approximation terms: 
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Then, we get  

          
  

 
 

  

  
 

  

  
 

  

  
        

   

  
 

 

Problem 2 (Volterra integral equation of first-order, fourth-kind) 

The Volterra integral equation 

(19) 
         ∫                      

 

 

 

with initial conditions, 

             
The exact solution: 

         
The VIE (19) is equivalent to following ODE 

                        
The general correct functional is as following: 

              ∫                              
 

 

    

Hence, the correct functional for this ODE is as following: 

              ∫                    
 

 

   

 

Yields the following stationary condition: 

           
So, the correct functional has the following form: 

(20) 

 

 

              ∫                   
 

 

   

 

Consider the initial condition has the form 

 

          

 

 

Hence, using the formula (20) we get the approximation terms: 

          
  

 
 

          
  

 
 

  

  
 

          
  

 
 

  

  
 

  

  
 

          
  

 
 

  

  
 

  

  
 

  

  
 

Then, we get  
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Problem 3 (Volterra integral equation of fourth-kind, first-order) 

The Volterra integral equation 

 

(21) 

 

 

         ∫                      
 

 

 

 

 

             with initial conditions, 

             
 

Problem 4 (Volterra integral equation of  fourth-kind) 

The Volterra integral equation 

(23) 
                

  

 
 ∫                

 

 

 
 

with initial conditions, 

                         
Exact solution: 

                
The VIE (23) is equivalent to following ODE 

                             
 

Hence, the correct functional for this ODE is as following: 

              ∫                             
 

 

   

 

Yields the following stationary condition: 

          

            

              
So, the correct functional has the following form: 

(24) 

 

 
              ∫                             

 

 

   

 

Consider the initial condition has the form        

          
 

Hence, using the formula (24) we get the approximation terms: 

          
  

  
 

          
  

  
 

  

  
 

          
  

  
 

  

  
 

  

  
 

          
  

  
 

  

  
 

  

  
 

  

  
 

Then, we get  
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Problem 5 (Volterra integral equation of fourth-order) 

The Volterra integral equation 

 

 
         ∫                                     

 

 

 
 

with initial conditions, 

                              
Exact solution: 

        
The VIE (25) is equivalent to following ODE 

                        
 

Hence, the correct functional for this ODE is as the following: 

              ∫                          
 

 

   

Yields the following stationary condition: 

                                                                          

            

             

                         
So, the correct functional has the following form: 

(26) 

 

 

              ∫       (                 )
 

 

   

 

Consider the initial condition has the form 

          

 

 

Hence, using the formula (26) we get the approximation terms: 

          
  

  
 

          
  

  
 

  

  
 

          
  

  
 

  

  
 

  

  
 

Then, we get  

          
  

  
 

  

  
 

  

  
 

  

  
        

  

  
 

Problem 6 (Volterra integro equation of third-order) 

The Volterra integral equation 

(27) 
     

 

  
∫       (                  )          

 

 

  
 

 
with initial conditions, 

                                               

Exact solution:                      

The VIE (27) is equivalent to following ODE 
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Hence, the correct functional for this ODE is as following: 

 

              ∫                                           
 

 

        

Yields the following stationary condition: 

          

            

             

              
So, the correct functional has the following form: 

(28) 

 

 

              ∫       (                    )
 

 

   

 

Consider the initial condition has the form 

          

 

 

Hence, using the formula (28) we get the approximation terms: 

          
  

  
 

          
  

  
 

  

  
 

          
  

  
 

  

  
 

  

  
 

Then, we get  
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Figure 1: Comparisons on approximated solutions versus exact solutions for (1) 

first iteration and (2) sixth iteration using variational iteration method in 

Problems (a) 1 , (b) 2 and (c) 3 
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Figure 2: Comparisons on approximated solutions versus exact solutions for (1) 

first iteration and (2) sixth iteration using variational iteration method in 

Problems (a) 4 , (b) 5 and (c) 6 
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5 Discussion and Conclusion 
Computing a solution for VIEs directly by using classical methods can be 

difficult. 

The proposed direct method technique in this paper requires less computational 

work in addition to great features such as fast and effective computation. We compare 

the approximated solution for VIM with exact solutions. This comparison is intended 

to establish the validity of the method. From the approximated results of the method, 

we observe that the method is applicable for a class of VIEs and has  good agreement 

with the exact solutions. The new method is efficient and provides encouraging 

results. In this paper, a new type of VIEs is classified as Type IV. This class of VIEs 

of type IV usually occurs in many fields of physics and engineering. VIE of type IV is 

converted to the nth-order ODE. The nth-order ODE is then solved by using VIM. 

Hence, we can conclude that VIM can be used analytically as an efficient method 

with less complicity time for solving the type IV of VIEs. 
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