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Abstract

In this paper, one type of Volterra integral equations (VIES) is classified as nth-order VIE of fourth-
kind. This class of nth-order, fourth-kind VIE usually occurs in many fields of physics and engineering.
A new iteration technique is proposed to solve a class of Volterra integral equations. The nth-order
VIE of fourth-kind is converted to nth-order ordinary differential equation (ODE). The ODE is solved
by using variational iteration method (VIM). It shows that the variational iteration method (VIM) is
efficient and powerful integrator for dealing with this class of integral equations. Some examples are
solved to illustrate the effectiveness and simplicity of the proposed method.The comparison of the
results using VIM with analytical solutions reveals that VIM is very effective, convenient and quite
accurate to both linear and nonlinear problems.
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1 Introduction
Some of mathematical formulation of physical phenomena contains integral

equations. The nonlinear Volterra-Fredholm integral equation, which is special type
of integral equations, arises in many physical applications and biological models. The
analytical and approximated methods of solutions of the integral equations have an
important role in the fields of engineering and applied science. Due to some of these
integral equations cannot be solved explicitly, it is often necessary to resort to
approximated or numerical techniques. Several of new methods, for solving Volterra
integral equations have been developed in recent years

In recent years, Some of different basic functions such as orthonormal bases and
wavelets have been used to estimate the solutions of nonlinear Volterra-Fredholm
integral equations, (Mirzaee and Hoseini (2013)). In survey to the integrators for
solving the Volterra integral equations such as a Taylor method, transform method,
the method of variation, the collocation method, numerical technique, the direct
quadrature method, HPM method, Adomian decomposition method and homotopy
perturbation method. In this paper, one type of Volterra integral equations (VIES) is
classified as nth-order VIE of fourth-kind. A new iteration technique is proposed to
solve a class of integral equations. VIE is converted to nth-order ordinary differential
equations (ODE) and then is solved using variational iteration method (VIM).
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2 Preliminary
In this section we have introduced the background and some definitions which are
used in this paper.

2.1 Background and Classification of VIE

In mathematics, the integral equation is an equation in which an unknown function
appears under one or more integral signs naturally, such an equation there can occur
other terms as well. The Fredholm Volterra integral equation is a special type of
integral equations. They are divided into three groups referred to as the first-, second-
and third-kind.
A linear Fredholm integral equation of the first-kind is

b 1)
y(x) = Af k(x,)u(t)dt , t>0

a linear Fredholm integral equationaof the second-kind is

b )
u"(x) =yx) + Af k(x,t)u(t)dt , t>0
a

and the linear Fredholm integral equation of third-kind is

(©)

b
u(x)glx) =yx) + Af k(x,t)u(t)dt , t>0

where u; g and the kernel k is a given function and u is an unknown function to be
solved. Volterra integral equations of first-, second- and third-kind are defined
precisely as above except that b = x is the variable upper limit of integration. Here, we
give some new definitions for a class of linear integral equations.

Definition 2.1. Volterra integral equation of fourth-kind has the following form:

b
u(x) =y(x) + f (x—t)™u(t)dt , t>0

Definition 2.2. Order of VIE
We define the order in Volterra integral equation (4) as VIE of order n.

(4)

Theorem 2.1. The Volterra integral equation of order n in (4) can be converted to the
following ordinary differential equation

u® D (x) = fFOD (%) + nlu(x) = F(x,u(x))
with initial conditions
ut(x) = o

fori=0,1,... ,n-1.

Proof: using Lipshitze theorem. In recent years, the approximated methods have been
applied to wide classes of VIEs problems in many fields of mathematics, physics and
engineering. Such methods approximated the solutions for some types of VIEs. The
purpose of this paper is to develop the theory of the direct method for the Voltera
integral equations. The nth-order VIE of fourth-kind is converted to nth-order ODEs
and then, solved using the the VIM method. The new results based on the VIM are
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compared with the exact solutions; the results show that the method is highly
accurate.

2.2 A Quasi-Linear nth-Order Ordinary Differential Equation(ODE).

Generally, we define qusi-linear nth-order ODEs, It is frequently found in many
physical problems such as electromagnetic waves, thin film flow and gravity can be
written in the following form

y'(x) = f(x,y(x),y’(x),y”(x),y”’(x), ...,y"_l(x));x > X, (5)
with initial conditions,
y'(xo) =a'
fori=0,1,... ,n.
where, f:R * A"—Q"

and
y(x) = [y1 (%), y2 (%), 3 (), oy ()]

f(X,y) = [fl (X,y),fz (xly)'f3 (x'y)' fn (x,y)]
al = [ab,ab, al, ...al]

when the ODE (5) in n dimension space, then we can simplify to

2(x) = g(2(x),z' (), 2" (@), 2" (%), .., 2" (x)) ©)
using the following assumption,
(3’1 (X)w (fl(ZI,ZZi vy Zy, ZT’l+1)W
3’2 (x) fZ(ZI,ZZi "-'ZTU ZTL+1)
200 ={ . : g(x) =3 .
Yn (x) fn (Zl,ZZ' e Zpy Zn+1)
\ x / \ 0 J

with the initial conditions

z(xo) = a”!
fori=01,2,..., n
where

—i [ 0 i i
at= [al,az,a3, ...,an,xo]

Most researchers, scientists and engineers used to solve (5) or (6) numerically solve
by converting the n- th order differential equation to a system of first order equations
nth times the dimensions (Faires and Burden (2003)). However, Mechee et al. (2013)
& You& Chen (2013) solved (5) or (6) directly when n=3. Sometimes some
researchers can solve this equation analytically. However, it is more efficient if the
equation can be solved using variational iteration methods (He (1997), Odibat &
Momani (2006), Shatalov (2011)& Struwe (2008)).
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3 The Analysis of the Method
In this section, we will introduce the analysis of variational iteration
method(VIM).

3.1 Variational Iteration Method

The main idea of VIM is to approximate the solution of differential equation by
using an iteration formula in the form of a correctional functional which involves
Lagrange multiplier. By applying variational theory, Lagrange multiplier can be
determined. The iteration is initiated by a simple function such as a linear function. To
illustrate the main concept of this method consider the following system of
differential equations:

Tu(t) = g(t) (7)

where T is a differential operator that acts on a sufficiently smooth function u defined
on such an interval 1 €R. The given function g is also defined in I. Initially, split T
into its linear and nonlinear part, namely

Tu(t) = Lu(t) + Nu(t) = g(t) (8)

where L and N are linear and nonlinear differential operator respectively. A
correctional functional for equation (8) is then defined iteratively as

9)

1
U1 () = un(®) + f At s)(Lu(s) + Nu(s) — g(s))ds

Where, A(t, s) is Lagrange multiplier, u,, is the nth approximate solution, and u,, is
the

restricted variations so that u,, = 0. By choosing such a simple initial function wu,,
iterations performes until it converges to a fixed point, under a condition where

un+1(t) = un(t)
When this condition is reached, then we obtain

1
J A(t,s)(Lu(s) + Nu(s) —g(s))ds =0
0
which is equivalent to the condition
Tu(t) = Lu(t) + Nu(t) = g(t) (11)
This means that u,,,.; (t) can be considered as an approximated solution for equation.
* (12)
Yusr () = 3a(3) + | 2(L(O) + Nu() - g©)ds
0

We will study the general approximated method for solving nth-order VIE of fourth-
kind by using VIM. Firstly, we consider the following nth-order VIE of fourth-kind:

u(x) = f(x) + fx(x — O f(t,u()dt , t>0 (13)
0

with the initial conditions

(10)

ui(O) =i (14)

fori=0,1.2,...,n
The steps of the approximated method of the problem (13) are :
1. Differentiate equation (13) (n+1)th times, to the following (n+1)th-order ODE:
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u@ D (x) = FOD () + nl f(x, u(x)), x@O (15)
with the initial conditions

u'(0) = & (16)

fori=0,1,2,...n
where f is a given function.

2. We will solve the (n+1)th-order ODE (15) with initial condition in (16) using
theVIM.

This algorithm is for solving any nth-order VIE of type IV (13) with initial
conditions(14).

4 Implementation(Problems Tested)
Problem 1 (Volterra integral equation of fourth-kind) The Volterra integral equation
¥ (17)
y(t)=1—j y(tdt, 0<t<1
0

With initial conditions,

y(0)=1
The exact solution:

y@)=e™"
The VIE (17) is equivalent to following ODE
y®)+y(t)=0 0<t<1
The general correct functional is as following:
1
Fusr(©) = (0 + | AEHLOWE) +NOA(s) - g)ds
0

Hence, the correct functional for this ODE is as following:

Yasa(®) = YD) + j A6 $)(5'(S) + y(s)) ds
0

Yields the following stationary condition:
At s) = -1
So, the functional correct has the following form:

i (18)
Ysr (O = () — f (= D' +y(©) ds
0

Consider the initial condition has the form
yo(x) =1
Hence, using the formula (18) we get the approximation terms:
yi(x) =1-x
x2
y2(x) =1—-x+ >
x? x3

Y3(x)=1—X+7—§
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x® x3 x*
— ] x4y
Ya(x) R TR
Then, we get
x2 x3 x* x° x"
] e T (12
W) =1=x+Z—grtpg-grt -+ (D'

Problem 2 (Volterra integral equation of first-order, fourth-kind)
The Volterra integral equation

y(t)=1—x+fx(x—t)y(t)dt, 0<t<1
0

y(0)=y'(0) =1

(19)
with initial conditions,

The exact solution:
y)=e™"
The VIE (19) is equivalent to following ODE
y'@®)—y)=0, 0<t<1
The general correct functional is as following:

1
Yaa (©) = () + | AEHAORE) +NOW(s) - g)ds
0
Hence, the correct functional for this ODE is as following:

Y (6) = yu(0) + f A6, $)("(s) — y(s)) ds
0

Yields the following stationary condition:
A(t,s)=x—t
So, the correct functional has the following form:

1 (20)
Yaea (O = Y () — f (= D" (© +y(O) ds
0

Consider the initial condition has the form

Yo(x) =1—x
Hence, using the formula (20) we get the approximation terms:
2

x
J’1(x)=1_x+7

2 x3
Yz(X)=1—X+7—§
2 x3 X4
=1— Z 4
y3(%) R TR
B 2 x3 x4- xS
y4(x)—1—x+7—§+ﬁ—§
Then, we get
x2 X3 x4— XS xn
—1_ Tt (12—
() =1-x+—o -t g+t (D75
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Problem 3 (Volterra integral equation of fourth-kind, first-order)
The Volterra integral equation

y(t) = 2x - 4fx(x —ty®)dt, 0<t<1 (21)

0

with initial conditions,
y(0)=y'(0)=0

Problem 4 (Volterra integral equation of fourth-kind)

The Volterra integral equation
4

X X
ﬂ0=2x—M”+M“mZ+jy@Mao<ts1
0

(23)

with initial conditions,
y(0)=0,y'(0) =2,y"(0) = -6
Exact solution:
y(x) = x3 — 3x% + 2x"
The VIE (23) is equivalent to following ODE
y"'(@)—y"(t)—-18t+ 6 =0, 0<t<1

Hence, the correct functional for this ODE is as following:

Yasa(®) = YD) + f A, )" (©) — y" (©) — 18t + 6) dt
0

Yields the following stationary condition:
Alt,s) = -1

1+2A(ts)=0

"1-2"(t,s) =0
So, the correct functional has the following form:

1 (24)
Yrr(® =300 = [ (€= 926" © ~y"©) - 18+ 6) ds
0

Consider the initial condition has the form
Yo(x) =1—x

Hence, using the formula (24) we get the approximation terms:
2

x
y1(x) =1-x+—

2!
x2 x3
YZ(?C)=1—X+§—§
xZ x3 x4
y3(x) = 1_X+E_§+Z
xZ x3 x4 x5
y4(x)=1—x+i—§+z—§
Then, we get
2 x3 x4- x5 nxn
yn(x)—1—x+§—§+z—§+---+(—1) ]
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Problem 5 (Volterra integral equation of fourth-order)
The Volterra integral equation

X

y(x) = 4x3 + f (t—x)y(t)dt, 0<t<1 (25)
0
with initial conditions,

y(0) =y'(0) =y"(0) =0,y""(0) =6
Exact solution:

y@) =t>
The VIE (25) is equivalent to following ODE
y®(@) -y ) =6t, 0<t<l1

Hence, the correct functional for this ODE is as the following:

1
Y1 () = ¥ (6) + ] A(t,s)(yP(s) —y"(s) — 6s)ds
0
Yields the following stationary condition:

Alt,s) = -1
1+2(t,s)=0
1-2"(t,s) =0

"A(t,s) =—-1

So, the correct functional has the following form:

! (26)
Fsr(© = (0 = | €= P(D() = y"(5) - 65) ds
0
Consider the initial condition has the form
Yo(x) =1—x
Hence, using the formula (26) we get the approximation terms:
2
X
y1(x) =1-x+ ST
x? x3
y2(x) = l=x+o7=3r
x? x3 x*
yg(x) = 1—X+E—§+Z
Then, we get
2 x3 X4 x5 xn
Y(x) =1 —X+§—§+Z—§+---+(—1)"H
Problem 6 (Volterra integro equation of third-order)
The Volterra integral equation
(27)

1 3
y(t) = EJ t—x)3(* ) —y"@®) +y'®))dt, 0<t<1
Y70

with initial conditions,

y(0) =y'(0) = y"(0) = y"'(0) = y""(0) = y"""(0) = 0
Exact solution: y(t) = x® — 10x*
The VIE (27) is equivalent to following ODE

y© ) —y® ) + y?W(t) —360t2 + 720t —480 =0, 0<t<1
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Hence, the correct functional for this ODE is as following:

Yre1(®) = 7 (O + [ A, ) O (s) — y©(s) + y@(s) — 3605 + 7205 —

480) ds
Yields the following stationary condition:

At s) = -1
1+2(ts)=0
1-2"(t,s)=0
"A(t,s) = -1

So, the correct functional has the following form:

1 28
Yn+1(t) = ya(6) = f (t = )° (y@(©) = y"(©) +y'(®)) ds )
0

Consider the initial condition has the form
Yo(x) =1-—x

Hence, using the formula (28) we get the approximation terms:
2

x
yl(x)=1—x+a
2 3

X X
y2(x) = l=—x+o7—-37
x? x3 x*
y3(X)=1—X+E—§+Z
Then, we get
x% x3 x* x5 x™
- — — — — — — — DK — n—
() =1—x+op—grt g+ + (D"

Varational Iteration method

Exact
—_— = ¥IM

T T T T T =
-3 -2 -1 a 1 2 3
» values
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Varational Iteration method Varational Tteration method
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Figure 1: Comparisons on approximated solutions versus exact solutions for (1)
first iteration and (2) sixth iteration using variational iteration method in
Problems (a) 1, (b) 2and (c) 3
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Varational Iteration method Varational Iteration method
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Figure 2: Comparisons on approximated solutions versus exact solutions for (1)
first iteration and (2) sixth iteration using variational iteration method in
Problems (a) 4, (b) 5and (c) 6
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5 Discussion and Conclusion

Computing a solution for VIEs directly by using classical methods can be
difficult.

The proposed direct method technique in this paper requires less computational
work in addition to great features such as fast and effective computation. We compare
the approximated solution for VIM with exact solutions. This comparison is intended
to establish the validity of the method. From the approximated results of the method,
we observe that the method is applicable for a class of VIEs and has good agreement
with the exact solutions. The new method is efficient and provides encouraging
results. In this paper, a new type of VIEs is classified as Type IV. This class of VIEs
of type IV usually occurs in many fields of physics and engineering. VIE of type IV is
converted to the nth-order ODE. The nth-order ODE is then solved by using VIM.
Hence, we can conclude that VIM can be used analytically as an efficient method
with less complicity time for solving the type IV of VIEs.
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