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Abstract :

Study of gamma processes and functions as well as marginality shown
that genre functions can be classified by the subtopic of boundaries Install-
able. There are these joint study and fringe game integrations For the mind
function fo, we mention and record several criteria for functional similarity
functional sequence 9o =(z) and Fon = (z). Some necessary or essential
requirements details of the existence of relevant Euler constants have been
confirmed. Finally, we are we explain some of the various applications of this
topic through several examples about gamma, as well as Euler’s constants
with other specific.
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1. Introduction
and preliminaries

The 18th-century introduction of
the Euler-Mascheroni constants, y and
s, makes them among the most well-
known and practical mathematical
constants. An extended class of -Euler
constants is examined, Nevertheless, in
1997. Webster studied functions, of the
form I' that satisfy, the functional equa-
tion g=(z+1) g(z)f(z) (z>0), the Boher
- Mollerup theorem. is generalized to
paper. However, in 2001, M. Hooush-
mand proposed a new concept called
Marginal addition function, addition
function for every function It is define
on the sub set of R that contains all nat-
ural number. and shows that I'-Clerical
work can be considered its sub-subject.
Whether in newspapers[1]. He pro-
duced some related theories, such as the
main theorem of Bohr-Mollrup and we
hope to clarify some singularity con-
ditions for marginal addition functions
and Its relationship to functional equa-
tions This has been studied. We recall
that Miiller and Schleicher employed a
similar strategy in 2010 to reduce as-
sembly challenges by using a sequence
of functions of rational groups without

realizing it. In more recent times, ana-
lytical and functional groups.>

2. The derivative

of limit summation functions

In this section’ we will study. the de-
rivative of marginal addition functions,
as we will see These derivatives lead
to generalizations of Euler’s constant
[3].

Let g be differentiable over 24 .
sequence g, Wwith the base

(9)@ = (@@ =g = > g 2+ )
q=1

Let s define that. If the end of this
sequence is located at point z , mark
it with a symboll g,,.(z) signboard let’s
give

Examplel 1 lim,,_, (log )o,(0) = —y
Where v is Euler's constant. Suppse
g(z) =logzin this picture

95,(2) = (gon(2)

= g(2) —Zg’ (z+q)
qg=1

T

1 > !
= logn Ztq

q=1

as a result of
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9o (0} =(1g),; log =log n—z

qg= 1

SO

H,;r'"[ﬂ} = {ng }:rr{ﬂ}

= lim g, (0)

i l
= lim ('lgn —Z E)

q=1

= —}-"l

Inspired by the previous example,

lets define [4]:
Yalg.2) = —g, (2)

And

Yo (8) = —¥,(g9.0) = —g, (0).

Also

¥(g,z) : = lim y, (g,2).

Examplel.2 suppose g(z) =logz
display
y (+logz)=-+¥(z), (z>0) (1.2)

where V¥ is the gamma function.

Sol

n n

6@ =8~ Y g'(z+a) =logn—y —

q=1 g=1 +:}'

As a result of

y(+log.z) = log,(2)

n 1
= lim (Eﬂgn—z—-l-z
n—+oa — r_']r -
g=1 q

:lq[z+q))

lim | 1 il +i z

= 111 Dgﬂ,— —

n— o —q —q(z+q)
qg=1 qg=1

-3 (-7)
-7 q z+gq
q=1
Z(q+1 q—|—z+1)

a=1

1
= -+ "'I'I[:E:],
X

(z=0).

The point we should pay attention
to in the above calculations is that for
every, qEN

E_ 1 _ Z
g z+q qlz+gq)
Also
T (z+1)
‘I-'(z—|-l]——1_| Z+ D
_ (er @)’
zl' (2)

_ r'(z) +zl (z)
zI'(z)

= EE-F ¥(z).
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We’ve already seen that if g is
summable over Nand R(1) = 0 ther
for each every s € N

g:(s) =g(1) +(2) + -+ g(s)

And as a result

gs(s) _g(1) +9(2) +-+g(s)

According to this issue, let us pro-

vide the following definition.
Definitionl.1: If g is a function,
then the average sum of the limit of g

(g 1) = g,(2) < g,-(2) = —y(g):

1s as follows

1
—g.(z) z#0
=z
a3 (z) = (1.3)
lim 9:(2) z=10
=0 =

Lets define that. Note, that the
range of g~ is equal, to the range of
fo or equal to Dga’{0}

Theorem 1 If g:[1+»)—=R
has a derivative and, R(g,1) =0

then the sequence g, (z) also true

for (0 +,)and if g' ascending, then

gs(z) and g(z) in inequality

(0<z=1) (1.4)

To be true. Also, if g’ In decreasing, the trend of the above inequality is re-

versed. To In addition, g r(z) is the solution of the function equation [5].

ZHz)=g'(z) z(z - 1)
He is
Theorem 2

(z>1.) (1.5)

Suppose g’ be ascending (if so g’ rations the argument will be similarly pre-

sented) first, we show It lim,_., g'(z) = 0 and on [1, + o) he is getting off

We know that

R(g.1) = lim R,(g.1) = lim (g(n) — g(n + 1)) =0

As a result of

R(g.1) = lim R,_,(g.1) = lim (g(n — 1) — g(m))

So
]E‘l{ﬂ{ﬂ} —gn—1)) =0,

lim (g(n + 1) g¢yy) = 0.
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Now, according to the mean value theorem, the numbers
n<t,<n+1landn—1<s, <n available for this reason.

gn+1)—gn) =g'(t,). g —gh—1)=g'(s,)
From the previous relationships we conclude that

lim g'(s,) = lim g'(¢,) =0

— oo

But g’ because it’s up, so

gn-1=g(ls=gh =gt )=g'(n+1)
Now it follows from the pressure theory
!:EI:I':: g'(n) = 0.
Now, if 1 = z is a random number, then there are n suchn<z<n+ 1 and

as aresult g'(n) < g'(z) = g'(n+ 1) . using pressure theory again, the result is
obtained [6].

lim g'(z) = 0.

Z—too

To prove that 1s decreasing, we first show g'(z) = 0
Let 1 < z be constant and z < t random, we’ve got

g'(z) = !im g'(z) = !im g'(t).

Suppose that 1 < z; < z, according to the theorem, the average value of the
point z, < z < z, exists for this reason

g(z.)— g(z,)
Z.— I,

=g'(z)

Because g'(z) = 0sog(z;) < g(z;) therefore, g decreases on [1,+) itisa
lineage and hence to all g(z) < g(1),1 < zsupposethat 0 <z < 1and k € N in this
case g < g+ z < g + 1 applying the mean value theorem to the interval [q,q + 2]
,we obtain the point z, € (q,q + z) there is that

—R,(z) = glg+z) —gl(g) = g'{zq).z.
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As a result of

9a,(2) = 2g(n) + ) Ry(2)
g=1

= zg(n) = ) g'(z,)-2
g=1

=z (g{n}z g*{zq})
.=t

According to the assumption g’ on [1, +o0) ascending hence for every ,q € N
g@=g(z)=glz+q)=g'(g+1)

As aresult of
Z 9'(q) EZ g'(zy) < Z g'(z+q) = Z g (g+1).

—¥alg.1) = g (1)

= g(n) —Z g'g+1)
g=1

Eg{n}—Zg' (z+q)
g=1

= g(n) — Z g'(q)
g=1

Asaresultof n=1,2,...

Hglf: (z)

—Ynlg.1) = gy (2) = = gg.(2) = =y, (g.0) = —y,(g) (1.6)

On the other hand, because g’ on[l,+o) ascending, so it is convex to
g on[l,+) and as a result

gln+h)— g glln+1)+h)—gn+1)

I =sgln+1)—gn) = - (1.7
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Where 0 < h < 1 1s now as assumed ,  — o+ we will get[4].

g =—-R,(g1) =g'(n+1).
So
R(g'D=g'(M—g'n+1)=—g'(n+1)—R,(g1) 0. (1.8)
Now let’s show

9s.(2) — gy, (Z) =R, (1)+g'(n+1+2) (1.9)

We’ve got
9o.(2) —gqr, (2)

—gmY g@+D-gm+ D+ 9@+ =gm) ~gln+D+gm+1+2)
g=1

g=1

So
gz, (2 —gs(2)=—-R,(1)-g'n+1+z)

<—R,(1)—-g'n+1)<0,. (z=0)

That is, for every, 0 < z the function sequence 9o’ (2) he is getting off. Now
put z =0 in We get relation (1.9) and using relation (1.8) [3].

R,(g'1)=g'(n)—g'(n+1)
= —(R.(g) + g'(n+ 1))
= H"Tlrz-l{ﬂ} - Hg’l';_(ﬂ}

= —Yn+1(g) +1n(g)=0

That 1t

Rn(ng 1} = ~Vn +1 {_H]' + Tn(g} =0 {110}
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Specially
~Yns1(g) = —¥a(g) (1.11)

This can be easily proven
—te(g. D =g () —g'n+1)—y,(g) n=12.. (1.12)

From relation (1.11) we get the result

g —gn+1) =y (@=g'1)—g'n+1) —y,(g)

= —¥.(g.1)
Also

gW+gn+1)—ghn) -y (g =g (D-g'(n+1) —y,(g).
As a result of
gD+ R (1)~ ¥ny1(g) = 95(2) = g5 (2) — 12 (g). D<z=1 (1.13)
Now because g, (z) = i 9o, (z) it's the same thing, that's it g, — g,(2)
therefore for each.0 <z <1 g, (2) to g, (z) be the same. As aresult of
—yl(g.1}=g'(1)—y(g) = g, (2) = g, (2) = —y(f). D<z=1 (1.14)
Now consider that g, (z) on (0,1] it’s the same as using a relationship
952 — golz—1)=g'(z2) —g'(z+n)
This is the property that lim,_,, g’ (z) = 0 we conclude that
9:(z) =g'(2) + g (z - 1), (1<z=<?2)
Continuing the above method, we conclude that

gD =g @ +g'z-1)++g(z—5s5+1)+g,(z—5) (s<z=s5+1)

As a result of

[=]

0s@=y(g N+ ) g'z-))
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So g, (z)on (0,+o0) itis the same and the relation (1.6) holds for every
1 < z it was created

We can generalize the relationship (1.4) in the previous theorem as follows for
every 0 < z Under the conditions of theorem1.1 then be bullish, then[6].

L=]-1 lzl—-1

g —7g) + Z 9'E—)) = g (zh) Z g'(z—))

[g]-1

=g, (2)+ Z g'z—j)

[z]-1=

<—Y@+ ) gG@-) ©0<2. (115

‘ ”» . [Z]—l r 4
The “Q” proof for unequal faces (1.2), expression Ej:.;. g' (z—j) add
Now, in Theorem 1.1, replace the assumption R,(g.1) — 0 with the limit as-
sumption R, (d. 1) And circulate it [2].
A-everyone g, (z),0 < z convergent and divergent g’ be bullish, then

g (L) +R(1) —y(g) = g (2) = g (2) = —y(g). (0<z<1) (1.16)

B-if g’ so the lineage 1s
—¥(g) = g,-(2) = g,/ (2) = g" (1) + R(1) — y(g). (0<z=1) (1.17)

C- g, (z) in the function equation
Z(z)=R(1)+ g'(z2)+ Z(z — 1), (z>1) (1.18)

This as not true.
Proof: A- because g’ Ascending, so g is convex. as a result of [1].

g(11) — g(10) - g(12) — g(11) - g(13) — g(12) -
11-10 ~— 12-11 ~— 13-12 =

And so

g(10) —g(1) _g(12)-gU13) g4 -g15) _
10-11 - 12-13 14 — 15 -
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So
g(10) — g(12) = g(13) — g(14) = g(15) — g(16) ...
This means sequence

R.(g.1)=g(n) —gn+1)

It is a descent (and therefore a new descent). Because it is assumed R, (g,1)
so 1t 1s adjacent .R,,(g, 1) This is also true.
Now the function f with the rule

flz) =g(z) + R(1)z (1<z)

Let’s define that. In this case

f'(z)=g"(z) + R(1)
And

for(®) =2f ) + ) (@) - gz +q)
g=1

= z(g(n) + R(L)n)

+ [g(@) + R(1)q) — (g(z + q) + Rz + )]

q=1

= zg(m) + ) (9(@) — g(z + )
g=1
= g, (2).

So (instead of g ) in all assumptions of the theory theoreml.1 this is not true.
as a result of

—y(g. 1) =g,(2) = g,-z= —y(g) (0<z=1)

And This (according to the definition rule of g ) that it
g' (1) +R(1) —y(g) = g,(2) = go-(2) = —y(g) 0<z<1)
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Proof: B-if g so the lineage is - g" We cannot fully complete the proof of part
(A)to- g let’s repeat.
Proof C- Because g, (z) = g, (2) Therefore, in both cases (A) and (B)

g,(2) = g'(z)gy,(z—1) + R(1) (z = 1).

Example 3 : The function g: R — R : f with the rule g(z) =tan ~!z it is con-
sidered using.
Theoreml: show

.l e ,l
E{JT coth '[JT]' - 2} = ;m
= i;{ tan 1 (z+g) —tan ~* (gq))

< —(mcoth(m) — 1) (0D<z=1) (1.19)

b | =

Solve Because we want to use Theorem 1, so we must use all values , —y (g, 1)
Letus calculate —y(g) and g,~(2), g, (2)

9s@)=gn) = ) g'(z+0q)
g=1

m l
=t -1 —_ Z—"
dan n q=l.l+{z+q}_

as a result of

g,(2) = lim g, (z)

= i (t ) ﬁ)

q=1

T - 1
_5_;1+{z +q)°
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And

—y(g) = lim (—y,(g.0))

= lim g, (0)

m l
= lim (tan ‘1n—z ﬂ)
o 1+4°

q=1

T 1
=3~ E{JT coth(m) —1).

Notice that in the last line of the relationship above, from the relationship

1 2ze 1
cot himz) = —+ — - =
nmx Flz- +g-

We have used it
To calculate —y (g, 1) we first show

Yalg) —1nl(g. 1) =g'(1)—g'(n+1)
We’re got

¥nl(g) — 1n(g.1) = g, (1) — g, (0)

= g(n) - Z g'lg+1)—gln) + Z 9'(q)
g=1 g=1

=> (' @-g g+ 1.

g=1
=g'(D-g'(n+1).
lez ,g(z) =tan 71 (2) As aresult, if both parties
to the relationship (1.13) When n — oo, we take the limit, we will have [4].

Now consider that g'(z) =

1
y(g)—vy(g.1) =g'(1)= 3
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as a result of

—v(g.1) = g'"(1) —y(g)

=>4 Z—2(m coth(m) — 1). (1.23)
Finally,
90,(2) = 29 + D (9(q) - gz + )
g=1
=ztan “‘n+ Z{tan “1(g)—tan ~!(z+ 1))
g=1
So
gs(z) = lim g, _(2)
= %x + Z (tan ~2(g) —tan ~(z + q)) (1.24)
g=1
as a result of
_85(2)
Ga (z) = ~

T 1w
—_ — — -1 — -1
=3 + 2 re§=JI|:t3¢:|1 (g) —tan ~* (z + q)).

Now put these values in the relationship (1.4) and take that into account
g'(z) = # Descending, we will have

1 = 1 T N

3*3 R W™ 125D e e
3% %Z tan ~1(g) —tan 2 (z +q))
r 1 (o) — 1 1.25
EE—E{JTCC't (m) — 1)) (1.25)

If it 1s one of the aspects of the relationship (1.16), ;—T Removing and multi-
plying the sides by negative The relationship (1.10) is obtained,
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3. Relationship with Euler type constant.

shows in reference that there are some Euler-type constants for the function
g:[1+ ) —» R It was proven that they have certain properties. In this section
we show The theorem proven by Sander is a special case of Theorem 1.1 to
(z =0) He is. Before mentioning the theories involved, let us mention some

relevant issues [1].
Assume Definition g:[1+ o) — R Let the function be complete. Sequel

A, and B;,, Let us define as follows [6].

n n+1
An = Ap(G) = Z G(1) —f G(2), (1.26)

n+l

n+1
B, = B,(G) = Z G(i) —f Gz)dz (n=1). (127)

i=1

Sequel (B,)7 and (4,)7 dependent sequences are called F
IfG(z) = i then lim,, ., 4, = lim,,_.., B, = ¥ where Euler’s constant is Mach-

eron’s constant.
Suppose Proposition 1.1 g:[1,+o) — R function and let G be its primary

function. In this he face

Bl(g) =y(G)+ G(1). (1.29)

SO ¥ (G) This s also true if and only if B, (g) be the same and in this case we have

Booi(0) = ¥(6)+G(1) = ) 6'(g) = G(n) +6(1) (1.28)
g=1

Proof we’ve got
B,_1(g)= Z glgq) — f glz)dz
g=1 :

= G'gl— nG' d
QZ @- [ ¢ @
=Y 6@~ (60 - 6(D)

g=1

= 6 ()~ 60 + G (1), (130)
g=1
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On the other side

6oy (2)=G(n) = ) G'(z+¢)
g=1

as a result of

Y (G)+(G) = _G:r,r: (0)+ G(1)

=) 6'(g) - 6(n) +6(D)
g=1

From the two relationships (1.30) and (1.31), it can be concluded that relation-
ship (1.28) is correct. Now if who Both sides of equation (1.30) When n — e
we take the limit, we obtain equation (1.20) .We now show that Sander’s theorem
follows from Theorem 1

Theorem 3. G:[1,+1) —» R It is a strictly positive and decreasing function In
this case, the sequence is continuous (A,)7 Up Up and down precisely (B,)7
accurate proportions and Both sequences are identical. If lim,_ ., 5G(z) =0
Both sequences are identical.

Proof we show that this theorem is a consequence of Theorem 1 for Assump-
tion [1,+00) — R In the assumptions of the previous theorem, it is true, that is,is
continuous and strictly decreasing [5].

Andbe positive. Since is continuous, its prime functionis F inuse [1,+e0) He
1s. Signboard Let G be true in the assumptions of Theorem 1 which is sufficient for
this purpose Let us show that R(G,1) = 0 because f = G" According to the average
value theorem (actions done on) ¢y € (n,n + 1) for each numbern ¢, € (n,n + 1)
Available for that [6].

G(n) —Gn+ 1) =G"(c,) = glecy) (1.31)
Because limy_., g(t) so

lim (6(n) — G(n + 1)) = lim f(c,) = 0
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as a result of

R(G.1) = limR,(G.1)

= lim (G{n} +Z{G{a} —Glg +'l}])
. g=1

= Jiiml{c;{n} —G(n+ 1))+ G(1)

=G(1) =0.

(1.32)

Note that F is the basis function of g [1,+%) so

6(z) = f g(t)dt

As aresult G(1) = 0. In short, we
R(G,1) = 0 Hence G
in the assumptions Theorem 1.1 is cor-

have proven it

rect. Now it follows from Theorem 1.
that Gg_(z) For every 0 <z, this is
also true yn(G,z) for every this 0 < z
is especially true y,(G) = y,(G,0) this
is also true now Relationship (1.28)
with the truth that lime_.g(t) =0 It
shows that the relationship (1.29) is
correct [3]..

4. Conclusion

included in this research re-
port. Examine marginal additive func-
tions and their relationships. Addition-
ally, Eulers constants were examined.
By studying the theory and exam-
ples contained in the article. An expla-
nation of the connection and effec-
tive applications between deriva-
tives and Euler>s constants is given.
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