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Abstract

The most basic step in understanding gene regulated is performed by identifying the target genes
regulated by transcription factors (TFs) Proteins. Protein is produced by Transcription factors Proteins
that promote or repress transcription of other genes; they play a very important role in gene networking
and affecting for occurring the disease. The analysis of gene expression of time series underpins various
biological studies. This work has focused on the difference in transcriptional regulation between two
strains of mice. The mice were considered in two forms Wild type SOD1-G93A and Ntg mutations
(SOD1 is a transcription factor Protein that induces ALS). The data interest because the phenotype of the
two mutant strains differs. One of the strains succumbs to ALS far quicker than the other; we suggested a
model to infer Transcription Factor Proteins Activities and correlated with genes targeted. We build
Gaussian process with particular covariance function for reconstructing transcription factor activities
given gene expression profiles and a connectivity matrix, and we introduce a computational trick, based
on Singular Value Decomposition (SVD) to enable us to efficiently fit the Gaussian process in a reduce
"TF activity * space. Performing the basic step in understanding regulated genes is identifying these genes
by transcription factors. Gaussian processes offer an attractive trade-off between usability and efficiency
for the analysis of microarray time series. The Gaussian process framework with Coregionalization model
offer a natural way of handling biological replicates and correlated output and inferred the activity of
Transcription factors Proteins for four cases the genes alter its behavior, we proved the significates TF
using DAVID to analysis pathway.

Keywords: Transcription Factors Proteins, Gene expression, Gaussian Processing regression,
Coregionalization Model, Covariance Function, Singular Value Decomposition.
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1 Introduction

The regulatory Quantitative estimation relationship between genes and
transcription factors is a basic step to develop cellular processes models. This task,
however, is difficult for two reasons: levels of the transcription factor’s expression are
always noisy and low, as well as most transcription factors are post-transnationally
regulated. It is therefore, useful to infer the transcription factors Proteins activity from
their target genes expression levels.

In [Sanguinetti et al., 2006b] they proposed a probabilistic model where this
method was extended the linear regression model that proposed by [Lio et al., 2003] to
model the full probability distribution of each activity of transcription factor on each
gene, they used Markov chain model and the covariance structure of the transcription
factors, it is shared among genes, that is leading to a manageable parameter space and
useful information about the correlation of TFAs. They demonstrated their model on
two yeast data sets cell cycle data and metabolic cycle data set. Their model provided
new predictions where it light some aspects of the regulatory mechanism of the cell for
example the repress of the TF from negative gene-specific.

A probabilistic state space model has been developed by [Sanguinetti et al.,
2006Db] to allow inference of both concentrations of Transcription factor proteins and
their effect on the rates of the transcription of each target gene from microarray data,
where they use Expectation and Maximization method as vibrational inference
techniques to learn the model parameters and per- form posterior of protein constraints
and regulatory strengths with model the temporal structure of the data by using a
Markov chain. They applied their model on artificial data and on tow yeast datasets, the
exploit the natural sparsity of regulatory network considered the key feature of their
model, their model is dynamic and it can account for the temporal structure of data.
EMBER is model integrates high-throughput binding data (e.g. CHIP-seq or CHIP-
chip)with gene expression data (e.g. DNA microarray) was presented by [Mark et al.,
2012] that it is abbreviated (Expectation Maximization of Binding and Expression
pRofiles) it worked via an unsupervised machine learning algorithm for inferring the
gene targets of sets of TF binding sites. They demonstrated their model by applying it
on data for the TFs ERa and RARo and RARy in breast cancer MCF-7 cells.In
[Boulesteix and Strimmer, 2005] proposed a statistical approach based on partial least
squares (PLS) regression to infer the true TFAs from a combination of mRNA
expression and DNA-protein binding measurements. This method was also statistically
sound for small samples and allowed the detection of functional interactions among the
transcription factors via the notion of”meta”- transcription factors, [Sanguinetti et al.,
2005] Principal Component Analysis (PCA) is one of the most popular techniques of
dimensionality reduction for the high-dimensional datasets analysis. However, in its
standard form, it does not take into account any error measures associated with the data
points beyond a standard spherical noise. They proposed a new model-based approach
to PCA that takes into account the variances associated with each gene in each
experiment, they developed an efficient EM-algorithm to estimate the parameters of
theirs new model. The model provided significantly better results than standard PCA,
while remaining computationally reasonable. Most methods aim to infer a matrix of
activities of transcription factor Proteins (TFAS), which are supposed to sum up in a
single number the concentration of the transcription factor at a certain experimental
point and its binding affinity to its target genes. The methods used are modified forms
of regression. For example, [Gao et al., 2008] used multivariate regression plus
backward variable selection to identify active transcription factors; [Boulesteix and
Strimmer, 2005] estimate TFAs using partial least squares, [Liao et al., 2003] proposed
analysis of network component, a technique for dimension reduction which takes
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account of the connectivity information by imposing algebraic constraints on the
factors

The aim of our paper is specify the significantly differences genes that infect in
speed of ALS disease progression, Deduce the transcription factors' proteins activity
from data of the mRNA expression. Suggesting a model depended on [Neil et al.,
20064a] to infer Transcription Factor Proteins Activities and correlated with genes that
previously selected. Make approach focuses on inference of context specific networks
that including all genes targeted and a few interacting transcription factors Proteins.
Identification of a set of genes related with significant biological functions associated.
Design a covariance function for reconstructing activities of transcription factor given
profiles of gene expression and a connectivity matrix (binding data) between
transcription factors and genes.

All Methods that are used in this paper where we described MmGmaos function
from puma package [Richard et al., 2009] and Coregionalization model and Singular
Vector Decomposition in Section 2, A Gaussian process approach to model the gene
expression profiles, proposed model are discussed in Section 3. The utility of the
proposed method is illustrated by real case study in Section 4. We discussed the showed
results and conclusion in Section 5 and 6. Respectively.

2 Methods
2.1 Coregionalization model

The linear Coregionalzation model indicates to models the outputs are expressed as
combinations that the linear correlation of independent random functions. If these
functions are Gaussian processes, then the model result a Gaussian process with
covariance function has a positive semi definite [Emery and Maria 2012;Bohling, 2005;
Goovaerts, 1992;Goulard and Voltz, 1992].
Assuming D outputs {f;(x)}5-, withx € RP, each fis expressed as:

Q
fub) = ) g gl

Where a, 4scalar coefficients and the independent functions areu,(x) have zero mean
and covariance

(2-1)

[kq(x; x") ifqg=q’ (2-2)
0

cov[uq (), a’ (x’)] - Otherwise

Between any two functions f;(x) and f 4 (x) the cross covariance can then be written
as:
R (2-3)

Q Hq
covlfa( far )] = ) ) ahgaks Jeg(rx)

g=1i=1

Q
= Z bg‘d/kq(x, X’)
q=1

Where the functions ufz(x), withi =1,..,R; and ¢ =1..Q have mean = 0 and
covariancecov [ué(x),uf;, (x)' = kg, x")if i = i’] and q = q'. But

cov|f; (x),fq,(x’)] Is given by ((x, x")) 4 4 Thus the kernelK (x, x") can be written as
Q (2-4)
K(x,x') = Z Bykq(x,x")
q=1
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Where each B, € R?*P is called a Coregionalzation matrix. Therefore, the kernel can
be derived from LMC is a sum of the products of two covariance functions, one these
models the input dependence, independently of {f,;(x)}5_, (the covariance function
K, (x,x")) and one that models the dependence between the outputs, independently of
the input vector x (the Coregionalzation matrix B,) [Han and Micheline, 2006; Finazzi
et. al., 2011; Lopez-Kleine et. al., 2013].

2.2 Singular Value Decomposition

The Singular Value Decomposition (SVD) is usually a factorization of the
complicate as well as real matrix, basically, the SVD is RAVT of an m x n matrix where

A'is an m x n rectangle-shaped diagonal matrix together with non-negative real
numbers within the diagonal, R is real matrix that mx m,

V' the conjugate transpose associated with V, or just the actual transpose of V
when V is actually real) is an n x n real or complex unitary matrix. The diagonal items
A;jof X are usually referred to as the singular values associated with S. The m columns
of R and the n columns of V are called the actual left-singular vectors and right-singular
vectors of S, respectively.

The SVD is usually traditionally used technique to decompose a matrix directly
into several component matrices, revealing many of the beneficial in addition to useful
attributes of the original matrix. The decomposition of a matrix is often known as a
factorization. Essentially, the matrix is usually decomposed directly into a collection of
factors (often orthogonal or maybe independent) that are best determined by a few
requirements [Van et. al., 2010].

3 Data Set

We demonstrate our model by applying it to Mice model for Amyotrophic lateral
sclerosis (ALS) (Lou Gehrig's disease) “Amyotrophic lateral sclerosis is a severe
neurodegenerative disease, that adult-onset characterized by progressive premature loss
of lower and upper motor neurons” [Ana et. al., 2012; Julia, 2012]. where this data
generated by affymatrix GeneChip Operating System were analyzed by [Alice et. al., 2013;
Giovanni et al., 2013] that Amyotrophic lateral sclerosis is heterogeneous with high variability
in the progression speed even in cases with a defined genetic cause such as mutations of
superoxide dismutase 1 (SOD1).

3.1 Transcription Factors

Protein-DNA interactions play crucial roles in many key biological processes. One of these
processes is transcriptional regulation, in which transcription factors (TFs) bind to specific DNA
binding sequences to either activate or repress the expression of their regulated genes [Jiadong
et al., 2012]. The term transcription factor is used to refer to the specific transcriptional
activators and repressors that activate or repress the transcription of target genes via specific
binding to promoter regions [CHENG, 2007; Esther, 2006].

4 The Proposed System

This work highlights a set of key gene and molecular pathway indices of slow or
fast progression of disease in the two transgenic mouse models which may prove useful
in identifying potential disease modifiers responsible for the heterogeneity of human
ALS and which may indicate valid therapeutic targets in humans [Nardo et. al., 2013;
Julia, 2012]. The general steps of this work are explained as Block Diagram is showed
in figure (1) , In the beginning , we download the Data Sets, then analyzing these .cel
files to computing the Gene expressions, then following it standardizes the Data () that
is gene expression values for two strains by two changes by four reproduces where its
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dimensional (NuMgenes(PorbelD), numpginis) in standardize or normalize step we utilize
the statistical-t student as (1)

: o Y-Y (1)
Student’s t — statistic = —

Where Y mean of Y, S is standard deviation.

It is input with set of parameters to our model, In building step we mean building the
matrix of time series that contains the points of strains and mutations and replicates,
where the dimensionality of this matrix is (nummes Series, corgionalize-dim for two
strains and two mutations, Corgionalize_dim for TF_no) in this part the X is (64, 3) .

Finding the

Getting Getting TF relationship Applying

GEnes

Finding

Netneitoi protein between TF ~ some e
008686868 names from and gensz?i | igsérﬁﬁgc;ﬁz senes

MGI that Enco

Figure 1: Shows The preprocessing steps of Our Work.

1.1.1 Binding Matrix

We got on Transcription Factors for Mice model from the open source Mouse
Genome Informatics (MGI) that is resource of the international database for the
laboratory mouse, providing genomic, integrated genetic, and biological data to
facilitate the human health and disease study, and then we used the Encode Chip-Seq
significance Tool that is a Simple Web Tool to Identify Enriched ENCODE
Transcription Factors From a List of Genes or Transcripts via some steps and then built
the Binding Matrix that contains 1 if there is relationship between TF and genes else
0.These steps we mention as block Diagram as in figure(above), This data consists of
the expression profiles of 45038 genes measured at 4 equally spaced time points (4
stages to progress the ALS) and in each time it contains two strains in each strain
contains two mutations and with it’s role contains four replicates and then integrate it
with 69 transcription factors.

1.1.2 Model for Transcription Factor Activities

We are working with log expression levels in a matrix ¥ € R™T and we will
assume a linear (additive) model giving the relationship between the expression level of
the gene and the corresponding transcription factor activity, which are unobserved, but
we represent by a matrix F € R9*T. Our basic assumption is as follows. Transcription
factors are in time series, so they are likely to be temporally smooth. Further, we
assume that the transcription factors are potentially correlated with one another (to
account for transcription factors that operate in unison) [Hashimoto, 2014].
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1.1.3 Correlation between Transcription Factors

If there are q transcription factors then correlation between different transcription
factors is encoded in a covariance matrix, X which is g x g in dimensionality [Meng et.
al., 2011]. Temporal Smoothness Further we assume that the log of the transcription
factors activities is temporally smooth, and drawn from an underlying Gaussian process
with covariance K.
1.1.4 Intrinsic Coregionalzation Model,

We assume that the joint process across all g transcription factor activities and
across all time points is well represented by an intrinsic model of Coregionalzation
where the covariance is given by the Kronecker product of these terms.

K; =K, ®Z ()
This is known as an intrinsic Coregionalzation model see [Alvarez et al 2011] for a
machine learning orientated review of these methods. The matrix X is known as the
coregionalization matrix.
1.1.5 Relation to Gene Expressions
We now assume that the j®* gene's expression is given by the product of the
transcription factors that bind to that gene. Because we are working in log space, that
implies a log linear relationship. At the it" time point, the log of the jt™* gene's
expression y;;, is linearly related to the log of the transcription factor activities at the
corresponding time point f; .. This relationship is given by the binding information from
S. We then assume that there is some corrupting Gaussian noise to give us the final
observation.
Yij=Sf.i+ € ©)
Where the Gaussian noise is sampled
1.1.6 Gaussian Process Model of Gene Expression

We consider a vector operator which takes all the separate time series in Y and
stacks the time series to form a new vector n*T length vector y [Strippoli et. al., 2005].
A similar operation is applied to form a g*T length vector f. Using Kronecker products
we can now represent the relationship between y and f as follows:

y=[I®S]f +€ 4)
Standard properties of multivariate Gaussian distributions tell us that
y ~N(0,K) where K = K,®SEST + o?1 (5)

This results in a covariance function that is of size n by T where n is number of
genes and T is number of time points. However, we can get a drastic reduction in the
size of the covariance function by considering the singular value decomposition of S.
The matrix S is n by q matrix, where q is the number of transcription factors. It contains
a 1 if a given transcription factor binds to a given gene, and zero otherwise.

1 1 . (6)
L =-loglK| -5y K™y

In the worst case, because the vector y contains T*n points (T time points for each
of n genes) we are faced with O(Tn*) computational complexity. We are going to use a
rotation trick to help.
1.1.7 The Main Computational Trick
1.1.7.1 Rotating the Basis of a Multivariate Gaussian

For any multivariate Gaussian you can rotate the data set and compute a new
rotated covariance which is valid for the rotated data set. Mathematically this works by
first inserting RR" into the likelihood at three points as follows:
()

1 1
L = —510g|RTKR| _EyTRTRK_lRTRy + const
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The rules of determinants and a transformation of the data allows us to rewrite the
likelihood as

1 1 8
L= —ElogIRTKRI - EyT[RTK—lR]—ly + const ®

Where we have introduced the rotated data § = Ry . Geometrically what this says is that
if we want to maintain the same likelihood, then when we rotate our data set by R we
need to rotate either side of the covariance matrix by R, which makes perfect sense
when we recall the properties of the multivariate Gaussian.
1.1.7.2 A Kronecker Rotation

In this paragraph, we are using a particular structure of covariance which involves
a Kronecker product. The rotation we consider will be a Kronecker rotation. We are
going to try and take advantage of the fact that the matrix S is square meaning that
SxST is not full rank (it has rank of most g, but is size n x n, and we expect number of
transcription factors q to be less than number of genes n).
When ranks are involved, it is always a good idea to look at singular value
decompositions (SVDs). The SVD of S is given by:

S =QAVT 9)

Where VTV = I, A is a diagonal matrix of positive values, Q is a matrix of sizen X q :
it matches the dimensionality of S, but we have QTQ = I. Note that because it is not
square, Q is not in itself a rotation matrix. However it could be seen as the first q
columns of an n dimensional rotation matrix (assuming n is larger than g, i.e. there are
more genes than transcription factors).
If we call the n-g missing columns of this rotation matrix U then we have a valid
rotation matrix R= [QU] although this rotation matrix is only rotating across the n
dimensions of the genes, not the additional dimensions across time. In other words, we
are choosing K, to be unrotated. To represent this properly for our covariance we need
to set R = I®[QU]. This gives us a structure that when applied to a covariance of the
form K,®K,, it will rotate K,whilst leaving K; untouched.
When we apply this rotation matrix to K we have to consider two terms, the rotation
of K,®SZST , and the rotation of 6%1. Rotating the latter is easy, because it is just the
identity multiplied by a scalar so it remains unchanged

RTIo?R = Io? (10)
The former is slightly more involved, for that term we have
[I®QUTIK®SEST[I®RQU] = K,®QUTSESTQU (11)
Since S = QAVT then we have
QUTSZSTQU = [AVTZVA 0] (12)
0 0
This prompts us to split our vector ¥ into a n - q dimensional vector
Yu = UTy (13)
And an g dimensional vector
y4=Q"y (14)

The Gaussian likelihood can be written as

L = Ly+ Lg + const

Where

(15)

1 T 2
L,= —Elog|Kt®AV VA + o?l|
1
— Equ[Kt@AVTzVA + o2 1y,
And
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T(n—q) 1_ 7 (16)
L, = I logo? _EyuTyu
Firstly, we fit the noise variance a?on ¥, alone using L,,. Once this is done, fix the

value of a?in L, and optimize with respect to the other parameters.
oL, Tn—-q 1 17)

~To

do 202 * 2047w
o - T —@)a* + 313,
404 ’
T(Tl— q)alz = ygyu;
2 _ ST+
0" = T(n——q) YuYu
In this moment, we make the prediction equations where we are using Kronecker
product we can rewrite the Eq(5) as:

Yq~ N (0, K®@AVTIVA + o?1) (18)
Standard properties of multivariate Gaussian distributions tells us can split it into
Yeg=9+te€ (19)
Where g and € are also Gaussian distributions and can be represented by:
g~ N(0,K.RAVTIVA) (20)
e~ N (0,02%I) (21)
Now we can represent the matrix F of transcription factor activity as:
F = 1@AVT (22)
2 =WWT + diag(x) (23)
Where K is the kappa value from Coregionalization Matrix.
F ~ V(0,K,®%) (24)
Now we can find the conditional distribution of g for given y, by:
P(glyq)~ N(ug Cy) (25)
With a mean given by:
1y = [Ke®AVTEVA] K ®AVTIVA + 0?1]7 Yy, (26)
And the covariance given by:
C, = [Kut.@AVTEVA] (27)
— [Ke e ®AVTEIVA]T [K®AVTEVA + 6217 K, QAVTEVA
+ ¢?I]
The mean of the conditional distribution is:
pr = [Ke®EVA][K ®AVTIVA + o*1] 1y, (28)

And the covariance of the conditional distribution given by:
Cr = [Kp.®F] — [Ke e ®ZVA]T [K(®AVTEVA + 6217 Ko ®AVTE + 0%1]  (29)

Algorithm3-2: General Steps of our third work part
Inputs: Y the Data Set of Mice Models
S is Connectivity Matrix between gene; and TF;, where i=0,...,N, J=0,...,Q
Outputs: Inferred transcription Factors Activity
Stepl: Call prepossessing procedure.
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Step2: X « Call Building of matrix of times series.
Step3: M « Call the Gaussian Process Regression Model.
Stepd: M « Optimize(M) to estimate and optimize the hyper-parameters.
Step5: ur < computing the mean using Eq (28)
and ¢, « computing the covariance using Eq(29)
Step6: Call Rank procedure to rank the models depending on Likelihood values.
Step7: Plot the Model depending on Y, mean, and var.
Step8: Compute F (TFA) and select it that effect on the progressing of ALS disease.
Step9: Check the Transcription Factors Names with the selected genes from Second part
(Clustering Work), then we go to DAVID to analysis and proving these TF related with
ALS disease.

Algorithm3-3: Prepossessing Procedure
Inputs: Y the Data Set of Mice Models
S is Connectivity Matrix between gene; and TF;, where i=0,...,N, J=0,...,Q
Outputs: Yy, sigma®, V, Lambda, R
Stepl: Filling the missing value by instead it with 0 values.
Step2: Finding the overlapped genes between Y and S.
Step3: R, AVT « Singular Value Decomposition (SVD).
Step4: Compute Y, from Q and Y, from u as Eq (13) and Eq (14) respectively.
Step5: Compute sigma2 from Y, as (17).
Step6: Normalization Y, values as Eq(1)

Algorithm3-4: Building of matrix of times series

Inputs: Time series, No. of Transcription Factors Protein, No. of mutation, No. of
strains, and No. of replicates.
Outputs: X with its dimension.
Stepl:s_ m « asarray(]0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
\111,11,1,1,1,1,1,1,1,1,1,1,1,
\2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
\3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3])
Step2: x0, x1« make tow vector the theirs dimension asarray(meshgrid(flatten(t),
arange(q) ) )
Step3: x2, « vector( meshgrid(flatten(s_m),arange(q)) ).
Step4: X « concatenation horizontally the three vectors to make X
The three vectors are x0, x1,x2.

Measurement error is not the only source of noise for consideration. It is unlikely to be
identical expression profiles for time series, which leads to the underlying differences in
the expression of genes joint organization of genes regulated by the same transcription
factor database (s).

5 Results and Discussion

In this section we show and explain the results of the third party that constrains
about infer the Activity of Transcription Factors that consider the primary task in Our
System, we use the result of clustering work with the results of this work to infer the
activity of TF that binding infer with gene expression that discussed in the Second Part.
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protein concentrations and their effect on the transcription rates of each target gene from
microarray data.
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Figure 5-1: shows the Transcription Factors Protein are douwnloaded from MGI[1].

Then we went to ENCODE[2] to knowing and downloading the all relationship between
TF and gene expression, where the ENCODE considers important and simple Web tool
to identify Enriched encode TF protein from a list of Genes or Transcriptions We
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entered the Genes Symbols in it and then select mouse Organism to analyze. The results
after submit is shown in Figure 5-2. Where it contains example for some Transcription
Factors Proteins and the names of genes of selected proteins.
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n . ) _ .
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Ehow [10 | axiries Swarch: | | Copr || 3=
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Regnlatur_\' Element T].'pe Cenes Oibzerved Lu.ul Qovalme Lizsl
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Mol Eqf 20pet 74 115 B2 L7324 &
Iyogemin 225 154 1.914e-31 (¥
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ngﬁ;ﬁgmmﬁ‘d Y- 379 314 113554 EE
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pts. 5 #oova) 1o isz] Protein-coding s iz Dtabase: 17058
wmalyms. Idestifers mmat bo of Call Trea Ixfo CODE,
tha typosedohe bove Melipl ookt Aoihod Bfoem i (PRTOIDE)
T ——— ALR0T ATk (LY
==" maqusmL-mcu
link)
Enter Gens Symbeels: .
(ona par liza All Genes for Factor Selection
Example: HORAL
Copg - Ehnn'nnhia Egarch: | =11 |
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Figure 5-2: shows the relations between the Inputed genes with TF protein[2].

Then we made some codes to Compute (S) that called Connectivity Matrix has 1 if there
are relationship between TF and Gene or 0 otherwise. As
Table 1.
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Table 1: shows the Connectivity Matrix between TF Proteins and Genes, where 1
indicate there are binding else 0.

0 1 2 67 68 69
BHLHE40 | c-Jun c-Myb ZKSCAN | ZNF ZNF384
1
0 Atp6v0d |1 0 0 0 0 0
1
1 Golga7 0 0 0 . 0 1 0
2 Psph0 1 0 0 0 1 1
45035 | Zmiz2 1 0 0 0 1 1
45036 | Cltb 1 0 0 . 0 1 0
45037 | D17Wsu |1 0 0 .. 0 0 0
92e

5.1.1 Preprocessing Steps

5.1.1.1 Normalization step

After Computing Y Gene expression from Analysis Stage in (), W normalized these
expressions using the Normalization equation as was mentioned in Eq 1 where Y
Values become between -1 and 1

5.1.1.2 Checking the Zeros’ Values

We check and removed rows from the dataset gene expression (YY) were not bound by
any TF (S) and columns from Transcription Factors were not bound by any gene. The
result of this step was with changing the dimension of Y before this step is (45038, 64)
and dimension of S is (45038, 69), After applying that step the dimension of your and S
is (26875, 64) and (26875, 69) respectively.

5.1.1.3 Results Ranking Step

We Ranked the Y gene Expression before applying the SVD method where it depended
on the () method in 2013 and then Select top 1000 genes to model it as [Kalaitzis,
2013].

51.14 Resultof SVD
The input of the SVD method has been just S and the result it is three Singular Matrixes
R Lambda, V that have (1000, 1000) (69, 69) (69, 69) size respectively.

5.1.2 Prepare the data for processing in GP regression
We computed the Yq from Project data (Y) onto the principal subspace of S, (Q) that
was computed from R as the size of Yq is (1000 *69, 1) and found sigma2 by looking at
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the variance of Y, from U that was computed also from R. The values of Yq, Yu and
sigmaz2, the all Parameters and matrix are shown in Table 2.

Then we generated the matrix (X) of the Input associated with each Y, The TF and the
Time point that has a size (1000*69, 3) as Table 3:

Table 2: Parameters of Clustering Work.

Shape range
Y [1000,64] [-1,1]
S [1000,69] Oorl
R (1000,1000) [-.832,0.99]
\Y (69,69) [-.99, 0.957]
Q (1000,69) [-0.832, 0.538]
U (1000,931) [-0.244, 0.994]
Yq (4416, 1) [-1, 1]
Yu (4416, 1) [-0.707, 0.528]
Sigma2 (1, 0.0066

Table 3: The X matrix

Time Points Replicates Transcription Factors
Protien
0 30 0 0
1 30 0 0
2 30 0 0
3 30 0 0
4 60 0 0
5 60 0 0
4412 120 3 68
4413 120 3 68
4414 120 3 68
4415 120 3 68

5.1.3 Applying the GP regression

We used the RBF covariance function as kernel and Gaussian Likelihood. The
likelihood can be estimated efficiently using the sparsity of the covariance and recursion
relations.
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Figure 3: shows the activity of each TF protein for binding set of genes.

We note from Figure 3 the activity (p300)TF protein for example that is binding
with set of genes alters its behavior. Here we inferred the gene-specific transcription
activities for Mice models and we can determine which regulations significant for a
given experimental condition for two mutations for two strains. We checked the
consistency of our model on the mice model and used a connectivity matrix obtained
via the relationship between TF and genes that obtained from Encode Chip-Seq
significance Tool, this data consists of the expression profiles of 45038 genes measured
at 4 equally spaced time points (4 stages to progress the ALS) and in each time it
contains two strains in each strain contains two mutations and with its role contains four
replicates and then integrate it with 69 transcription factors .

2313



Journal of Babylon University/Pure and Applied Sciences/ No.(9)/ Vol.(24): 2016

6 Conclusion

1- Our proposed work explained the effectiveness of sharing information between
different model conditions and replicates when modelling gene expression time
series.

2- We suggested a new model depended on to infer Transcription Factor Activities
and correlated with genes that previously selected.

3- We suggested accurate methods to recognize what are the genes that is causing a
disease and what is its relationship with Transcription Factors using many
biology sources to prove that these genes really related with ALS Disease.

4- Analysis of gene pathway of a few specified clusters for a particular group may
lead toward identifying features underlying the differential speed of progression
of disease.

Acknowledgments

We would like to thanks Prof. Neil Lawrence, Dr. Paul Heath and SiTraN,
Sheffield University to theirs research visiting invitation, time, and supervision for my
research visiting. |1 would like to thank The Iragi ministry of higher Education and
Scientific research, Babylon University and Computer Science Department for funding
my visiting research at SiTraN, Sheffield University, UK.

7 References

Alice Brockington, Ke Ning, Paul R. Heath, m Elizabeth Wood, Neil Lawrence, et. Al,
2013,”Unravelling the enigma of selective vulnerability in neurodegeneration:
motor neurons resistant to degeneration in ALS show distinct gene expression
characteristics and decreased susceptibility to excitotoxi- city”, Acta Neuropathol
(2013) 125:95109

Alvarez, Mauricio a., Lorenzo Rosasco, and Neil D. Lawrence. 2011. “Kernels for
Vector-Valued Functions: A Review.” 1-37.

Anne-Laure Boulesteix and Korbinian Strimmer, 2005,”Predicting transcription factor
activities from combined analysis of microarray and ChlIP data: a partial least
squares approach”, BioMed Central.

Bohling, Geoff. 2005. “Kriging.” Kansas Geological Survey (October): 1-20.

Emery, Xavier and Maria Peléez. 2012. “Reducing the Number of Orthogonal Factors
in Linear Coregionalization Modelling.” Computers and Geosciences 46:149-56.

Finazzi, Francesco, E. Marian Scott, and Alessandro Fasso. 2011. “The Dynamic
Coregionalization Model in Air Quality Risk Assessment.” (August): 4537—42.

Gao, Pei, Antti Honkela, Magnus Rattray, and Neil D. Lawrence. 2008. “Gaussian
Process Modelling of Latent Chemical Species: Applications to Inferring
Transcription Factor Activities.” Bioinformatics 24 (16): 70-75.

Goovaerts, P. 1992. “Factorial Kriging Analysis: A Useful Tool for Exploring the
Structure of Mulitvariate Spatial Information.” Journal of Soil Science 43 (4):
597-6109.

Goulard, M. and M. Voltz. 1992. “Linear Coregionalization Model: Tools for
Estimation and Choice of Cross-Variogram Matrix.” Mathematical Geology 24
(3): 269-86.

H. M. Shahzad Asif, Matthew D. Rolfe, Jeff Green2, Neil D. Lawrence, Magnus Rattray
and Guido Sanguinetti, 2010,”TFInfer: a tool for probabilistic inference of
transcription  factor  activities, Vol. 26, pages 2635-2636, doi:
10.1093/Bioinformatics/btq469.

Han, Jiawei and Micheline Kamber. 2006,”Data Mining: Concepts and Techniques”.

2314



Journal of Babylon University/Pure and Applied Sciences/ No.(9)/ Vol.(24): 2016

Hashimoto, Tatsunori B. 2014. “Computation ldentification of Transcription Factor
Binding Using DNase-Seq”.

Julia Morton Caponiti, 2012,”Gene Expression in Motor Neurons with Differential
Susceptibility to Amyotrophic Lateral Sclerosis (ALS)”, PhD thesis.

Kalaitzis Alfredo, 2013. “Learning with Structured Covariance Matrices in Linear
Gaussian Models.” (February

Lopez-Kleine, Liliana, Luis Leal, and Camilo Lépez. 2013. “Biostatistical Approaches
for the Reconstruction of Gene Co-Expression Networks Based on Transcriptomic
Data.” Briefings in Functional Genomics 12 (5): 457-67.

Mark Maienschein-Cline, Jie Zhou, Kevin P. White, Roger Sciammas and Aaron R.
Dinner, 2012,”Discovering transcription factor regulatory targets using gene
expression and binding data”, Bioinformatics, Vol. 28 no. 2 2.

Meng, Jia, Jiangiu (Michelle) Zhang, Yidong Chen, and Yufei Huang. 2011. “Bayesian
Nonnegative Factor Analysis for Reconstructing Transcription Factor Mediated
Regulatory Networks.” Proteome Science 9 (Suppl 1): S9.

K Titsias, Antti Honkela, Neil D Lawrence and Magnus Rattray, 2012,”Identifying
targets of transcription factors from expression time series by Bayesian model
comparison”.

Nardo G1, lennaco R, Fusi N, Heath PR, Marino M, Trolese MC, Ferraiuolo L,
Lawrence N, Shaw PJ, Bendotti C., 2013,”Indices of fast and slow disease
progression in two mouse models of amyotrophic lateral sclerosis”, Brain.

Richard D Pearson, Xuejun Liu, Guido Sanguinetti, Marta Milo, Neil D Lawrence and
Magnus Rattray, 2009,”puma: a Bioconductor package for propagating
uncertainty in microarray analysis”, BMC Bioinformatics, 10:211.

Sanguinetti, Guido, Magnus Rattray, and Neil D. Lawrence. 2006a. “A Probabilistic
Dynamical Model for Quantitative Inference of the Regulatory Mechanism of
Transcription.” Bioinformatics 22 (14): 1753-59.

Sanguinetti, Guido, Marta Milo, Magnus Rattray, and Neil D. Lawrence. 2005.
“Accounting for Probe-Level Noise in Principal Component Analysis of
Microarray Data.” Bioinformatics 21 (19): 3748-54.

Sanguinetti, Guido, Neil D. Lawrence, and Magnus Rattray. 2006b. “Probabilistic
Inference of Transcription Factor Concentrations and Gene-Specific Regulatory
Activities.” Bioinformatics 22 (22): 2775-81.

Strippoli, Pierluigi et al. 2005. “Predictting Transcription Factor Activities from
Combined Analysis of Microarray and CHIP Data: A Partial Least Squares
Approach.” Theoretical

Van Barel, Marc, Yvette Vanberghen, and Paul Van Dooren. 2010. “Using
Semiseparable Matrices to Compute the SVD of a General Matrix
Product/quotient.” Journal of Computational and Applied Mathematics 234 (11):
3175-80.

[1] http://www.informatics.jax.org/

[2] http://encodeqt.simple-encode.org/

2315


http://www.informatics.jax.org/
http://encodeqt.simple-encode.org/

