
)…RKR)’u†KX)’„X†)8‡„u„J)’RrT„J)’|cn„J))8)aau„J2=)1)8)a„X†„J2:@1)C);99B
Designing a Method for Synchronizing The

Producer-Consumer in Java
M. Al-Shuraifi

Department of Computer Science, University of Babylon

Abstract
The producer-consumer term refers to a programming concept in which the producer computes

some value and then place it in a shared object. The consumer reads the produced value and does
something with it. How do we make sure that the consumer doesn't consume the value until it has been
produced? Or, what happens if the producer and consumer work simultaneously? As synchronizing
them could be done inside operating systems, still difficult using programming languages. This paper
puts the mechanism for synchronizing both the producer and consumer in a programming language
taking in account that the pc used has only one cpu. Java has been used to get rid of that difficulty and
synchronize them as it is considered as the first concurrent object oriented language COOP.

 المقدمة
. يشير إلى مفهوم برمجي والذي فيه يقوم المنتج بحساب قيمة ما ومن ثم وضعها في كيان مشترك) المستهلك-المنتج(مصطلح

كيف نتأكد بأن المستهلك لا يستهلك . المستهلك يقرأ القيمة المنتجة من ذلك الكيان المشترك ومن ثم الأستفادة منها في أي عمل كان

؟ نظرا لأن تنفيذ)بصورة متزامنة(تجة؟ أو ماذا يحدث أذا عمل كل من المنتج والمستهلك معا في وقت واحدالقيمة حتى تكون من

هذا البحث يضع . باستخدام لغات البرمجةاعملية التزامن باستخدام نظم التشغيل أصبح أمرا اعتياديا، لازال أنجازها يعتبر صعب

جافا . ستهلك في لغة برمجية آخذين بالحسبان أستعمال معالج مركزي واحد في الحاسوبالميكانيكية لكيفية تزامن كل من المنتج والم

 . COOPقد أستعملت للتغلب على تلك الصعوبة وبرمجة تزامنهما لأنها تعتبر أول لغة برمجية موجهة كيانية تزامنية

Introduction
Implementing two processes or more at the same time is called a concurrent

processing. The process, here, means a running program. For example, a large file
could be downloading from the Web, while someone is typing a letter on the same
computer and at the same time. However, people who were using desktop computers
in the 1980s don't take this for granted! It can be remembered the days of having to
wait for documents to be printed before it could be getting on with anything else
[Charatan and Kans, 2002]. Most operating systems today provide some support for
doing several things at once, but support in popular languages was limited or
nonexistent prior to java.

At first sight it does seem rather extraordinary that a computer with only one
central processing unit (CPU) can perform more than one task at any one time. The
way it achieves this is by some form of time-slicing; in other words it does a little bit
of one task, then a little bit of the next and so on – and it does this so quickly it
appears that it is all happening at the same time. Each separate task performed by a
single program in known as a thread. Then the interpreter does all the work of making
these threads execute not simultaneously but concurrently (i.e. running in an
interwoven fashion, overlapped in time. The concurrent execution of these threads can
be made to appear as if it were simultaneous execution.) [Arnow and Weiss, 1998]

Going back to the problem this paper discusses and tries to solve it. To
exemplify the situation, let's consider the following pseudo code implementing a
concurrent buffer:
Class Buffer{
…
void put(object obj) { if ("buffer not full")…}
object get() { if ("buffer not empty")…}
 }

 ١٢٦٧

)…RKR)’u†KX)’„X†)8‡„u„J)’RrT„J)’|cn„J))8)aau„J2=)1)8)a„X†„J2:@1)C);99B

That was one of the main solutions considered in the past to get rid of the
problem. We see, it must make sure that no object is removed from an empty buffer
and that no object is inserted into a full buffer. The problem seems to have been
solved, but the fact is not. In a sequential setting, the burden of ensuring such
constraints resides with the buffer's user. Indeed the buffer is created and used by one
thread only, which is responsible for the state of the object. To facilitate usage, the
buffer's methods might return certain error codes in case of misuse. This approach is
not feasible in a concurrent setting. The buffer will be used concurrently by multiple
clients, leaving each of them no idea on the buffer's current state. The burden of
enforcing the synchronization constraints must ultimately lie with the buffer itself.
Unfortunately, mixing behavioral and synchronization code in class definitions
represents an obstacle to code inheritance in programming languages until coming of
java which made that possible.

This paper suggests that the producer signals when there is a new value to
consume and that the consumer waits until signaled by the producer. Furthermore, the
producer has to wait until the consumer has read the preceding value before writing in
a new value. This solution needs the synchronization feature which represents a
fundamental part in java as it is the first concurrency object oriented language COOL.
But before starting to talk about the proposed method, it is necessary to know how the
Producer-Consumer works in C++ and compare it with the proposed method.
Producer-Consumer in C++

Writing the synchronization code for a multi-threaded application traditionally
has been both difficult (due to the predominance of low-level APIs) and non-portable.

The portability problem arises because neither C nor C++ provide a standard
class library for synchronization. As a result, many operating systems provide their
own, proprietary APIs for synchronization. Many companies and individuals have
successfully tackled this problem by writing (and porting) a portability layer that
hides the proprietary APIs of the underlying operating system. Although these
portability-layer libraries solve the portability problem, they also tend to provide a
low-level API. As such, they do not simplify the writing of synchronization code.
[McHale, 2003]

The producer-consumer policy is a part of synchronization problem in C++. , the
put-style and get-style operations execute in mutual exclusion; this is to prevent the
buffer from becoming corrupted due to concurrent access. This policy can be denoted
as follows:

ProdCons[PutOp, GetOp, OtherOp]

OtherOp denotes any other (non put-style and non get-style) operations on the
buffer class. For example, perhaps there is an operation on the buffer that returns a
count of how many items are currently in the buffer. Such an operation might need to
run in mutual exclusion with the put-style and get-style operations to ensure its
correct operation. Consider the following (pseudocode) class:

class WidgetBuffer {
public:

... // constructor and destructor
void insert(Widget * item);
Widget * remove();

};

 ١٢٦٨

)…RKR)’u†KX)’„X†)8‡„u„J)’RrT„J)’|cn„J))8)aau„J2=)1)8)a„X†„J2:@1)C);99B

The ProdCons policy can be instantiated upon this class as follows:

ProdCons[{insert}, {remove}, {}]

Notice that the WidgetBuffer class has only put-style and get-style operations.
Because of this, the OtherOp parameter of the policy is instantiated upon an empty set
of operations names.
The subclass below introduces a new operation, called count():

class EnhancedWidgetBuffer: pubic WidgetBuffer {
 public:

... // constructor and destructor
int count();

};

The ProdCons policy can be instantiated upon this subclass as follows:

ProdCons[{insert}, {remove}, {count}]

A common variation of the producer-consumer policy is the bounded producer-
consumer policy. In this case, the buffer has a fixed size. This prevents the buffer
from growing infinitely large if one thread puts items into the buffer faster than the
other thread can get them. In this policy, if the producer thread tries to put an item
into an already-full buffer then it will be blocked until the buffer is non-full. This
policy is denoted as follows:

BoundedProdCons(int size)[PutOp, GetOp, OtherOp]

Notice that the size of the buffer is specified as a parameter to the name of the policy.
Such parameters are usually instantiated upon a corresponding parameter to the
constructor of the buffer. For example, consider the following (pseudo-code) class:

class BoundedWidgetBuffer {
 public:

// constructor and destructor
BoundedWidgetBuffer(int buf size);
˜BoundedWidgetBuffer();
void insert(Widget * item);
Widget * remove();

};

The BoundedProdCons policy can be instantiated upon this class as follows:

BoundedProdCons(buf_size)[{insert}, {remove},{}]

 ١٢٦٩

)…RKR)’u†KX)’„X†)8‡„u„J)’RrT„J)’|cn„J))8)aau„J2=)1)8)a„X†„J2:@1)C);99B
Threads

In Operating systems terms, a program that is running is known as a process. An
operating system can be running several processes for different users at any one time.
Not all of these need be active: they could be awaiting their share of processor time,
or they could be waiting for some information, such as user input.[Bishop, 1997]

Now, within a single process, the division into separately runnable subprocesses
can be made. In Java these are known as threads and a program with threads is called
multi-threaded. Each thread looks like it is running on its own. It can communicate
with other threads in the same process, though care must be taken when this is done
through changing the value of shared variables.

A thread runs independently of anything else happening in the computer.
Without threads an entire program can be held up by one cpu intensive task or one
infinite loop, intentional or otherwise. With threads the other tasks that don't get stuck
in the loop can continue processing without waiting for the stuck task to finish.
[Harold, 1997]

In the same way that the operating system shares time between processes, so it
must share time among threads. The fairest way to share is to give each thread a time
slice, at the end of which it is suspended and the next thread that is ready to run is
given a chance. A less attractive method is for a thread to run until it needs
information from elsewhere (another thread, or the user) and only then to relinquish
control of the processor. The problem with this approach is that a single thread can
hog the processor. By now, most systems are using the first approach.
Why use threads?
A simple answer is: Java applications that use threads are able to perform multiple
tasks at the same time. For example, a Java program may need to update a graphic on
the screen while at the same time accessing the network. Java threads also let us
program the way humans normally think. People are constantly performing multiple
tasks at any given time. Since people act in a concurrent world, it is much easier to
develop programs that behave like the real world.[Berg and Fritzinger, 1998]

Synchronization

Since a thread can change variables in a process that other threads can use, we
can see that we need some way of communicating information between threads.
Another way to look at this is a way to synchronize access to common or shared
information. Thread synchronization provides a mechanism prevents one thread from
changing a variable that another thread may be using. Most thread synchronization is
controlled through the use of function or method calls where the function uses some
sort of control to prevent other threads from accessing the information.[Berg and
Fritzinger, 1998]

Then the objective of synchronization is to ensure that, when several threads want
access to a single resource, only one thread can access it at any given time. Figure 1
shows this logic. [Horton, 2001]

 ١٢٧٠

)…RKR)’u†KX)’„X†)8‡„u„J)’RrT„J)’|cn„J))8)aau„J2=)1)8)a„X†„J2:@1)C);99B

Thread 1

run ()
{
 Obj1.method2()
}

Obj 1

synchronized
method 1()

synchronized
method 2()

method 3()

 Figure 1 shows the sequence of events in sy
multiple threads.

Thread 2

run()
{
Obj1.method3()
Obj1.method1()
Obj2.method1()

Obj 2

synchronized
method 1()

synchronized

NO! not while
method2() for

obj1 is executing

Ok. Method2()

not busy

ok method2
not busy

Always O

The proposed method

If there are two threads, one called t
consumer. The producer computes some value
it in a shared object. The consumer reads the p
it, that is, "consumes it." We want this act
condition is reached, and we want the produce
execute simultaneously. How do we make sure
value until it has been produced? The answer
is a new value to consume and that the consum
Furthermore, the producer has to wait until the
before writing in a new one. Thus the produce
that it has read the new value. This problem is
and it models many real-world computer applic

Signal-wait synchronization is accompli
object: wait() and notify(). When a thread is e
for some object, supposed to be obj, any o
synchronized method for obj is blocked. It d
blocking to occur. Synchronization actually ta
Ac it executes, a thread of execution "mov
methods in different objects.

When wait() is called from within a
suspended and the lock for the object is rel
allowed to make calls to synchronized methods

When notify() is called from within a sy
is one, that is suspended as a result of a wait()
resumes. This thread won't actually begin exe

١٢٧١
K

()
١

nchro

he pr
, that
roduc
ivity
r and
 that
is tha
er wa
 cons
r has
called
ation
shed
xecut
ther

oesn't
kes p
es" f

 sync
eased
 for t

nchro
call w
cutio
٢

٣

nization o

oducer a
 is, "prod
ed value
to repeat
 consume
the consu
t the prod
its until s

umer has
to wait fo
 the prod
s.
with two
ing inside
thread th
 need to
lace at th
rom obje

hronized
. That is
he object.
nized me
hile exec
n until th
٤

f
method 2()

method 3()

nd the other called the
uces it," and then places
and does something with
 until some terminating
r, whenever possible, to
mer doesn't consume the
ucer signals when there
ignaled by the producer.
read the preceding value
r the consumer to signal
ucer-consumer problem,

 methods inherited from
 a synchronized method
at attempts to call any
be the same method for
e object, not the thread.
ct to object by calling

 method, the thread is
, other threads are now

thod, one thread, if there
uting in the same object,
e thread calling notify()

)…RKR)’u†KX)’„X†)8‡„u„J)’RrT„J)’|cn„J))8)aau„J2=)1)8)a„X†„J2:@1)C);99B
has returned from its synchronized method and released the lock. The following
diagram shows the states that a thread can be in as a result of synchronization. Note
that a thread can be in one of three states: It can be waiting for the lock; it can be
waiting for a notify() from another thread; or it can be running, in which case it is
holding the lock.

 Already locked by notify() by
 Another thread another thread

 Unlock by another
 Thread
 Lock obtained
 By this thread wait() by this thread

 Unlock by this thread

Try to enter
Waiting for

Notify()

Running

Waiting for lock

 Figure (2) shows the use of "notify()" and "wait()" to synchronize
 the producer and consumer.

Class Producer extends Thread {
Producer(Buffer buf) {
Buffer = buf
}
Public void run(){
For(int i=0; i<10;i++){
Buffer.put(i);
}
}
Private Buffer buffer;
}

Class consumer extends Thread {
Consumer(Buffer buf) {
Buffer=buf;
}
Public void run(){
For(int i=0;i<10;i++){
Int value = buffer.get();
}
}
Private Buffer buffer;
}

All synchronization is done in the Buffer object. If the buffer wasn't synchronized, the
producer and consumer would just execute as fast as they could. The consumer might
get the same value several times from the buffer, or the producer might try to put a
new value in the buffer before the consumer read the old one.

 ١٢٧٢

)…RKR)’u†KX)’„X†)8‡„u„J)’RrT„J)’|cn„J))8)aau„J2=)1)8)a„X†„J2:@1)C);99B
public class Buffer {
private Boolean empty=true;
private int value;
public synchronized int get()
throws Exception {
while (empty) { wait(); }
empty=true;
;
Notify();
Return value;
}
public synchronized void put(int newValue)
throws Exception {
while (!empty) { wait(); }
value=newValue;
empty=false;
notify();
}
}

In the class Buffer, it could be seen that both put() and get() are synchronized.
Thus, if one thread is executing put(), the other thread will be blocked if it tries to
execute put() or get() for the same object. The mutual exclusion implied by
synchronized applies to all methods for a single object, not just simultaneous calls to
the same method.

Also, the boolean field empty has been used to keep track of whether the buffer
contains a produced item that hasn't yet been consumed or whether the buffer is
empty. The buffer is initially empty, with empty set to true. It is repeatedly checked
whether the buffer is empty. If it is, the loop terminates and proceed to put the new
value in value, set empty to false, and call notify(). The call to notify() wakes up the
consumer if it is waiting inside get(). If the buffer isn't empty, wait() is called to
suspend the producer. This thread remains blocked until some other thread-the
consumer in this case-calls notify() from within a synchronized method of the same
Buffer object. The wait() call, like the sleep() call, can throw an exception that we
need to catch.

The body of get() is almost the same as put(). We loop until the buffer isn't empty
in this case, setting empty to true once the loop exist. The call to notify() awakens the
producer if it is waiting inside the method.

Conclusion and practical results

It's clear from the two figures below, which show the practical results of
running the producer-consumer program, the synchronization in work both the
producer and consumer. In the first figure, the producer started its work before
consumer. It produces some value to be consumed by the consumer. No matter how
much it should produce as long as it is not empty.

 ١٢٧٣

)…RKR)’u†KX)’„X†)8‡„u„J)’RrT„J)’|cn„J))8)aau„J2=)1)8)a„X†„J2:@1)C);99B

Figure (3) shows the practical results of running the program (the producer
started before consumer.)

In the second figure below, although the consumer started to work before producer, it
had to wait until producing some value to be consumed.

Figure (4) shows another practical results of running the program (the consumer
started before producer.)

 ١٢٧٤

)…RKR)’u†KX)’„X†)8‡„u„J)’RrT„J)’|cn„J))8)aau„J2=)1)8)a„X†„J2:@1)C);99B
References
Arnow D. and Weiss G, 1998, Introduction to Programming Using Java, P.364.

Addison Wesley Longman, USA.
Berg D. and Fritzinger J., 1998, Advanced Techniques for Java Developers. P.233-
P.235, John Wiley & Sons, Inc. USA.
Bishop J, 1997, "Java Gently" programming principles explained. P.375-P.376.

Addison-Wesley, UK.
Charatan Q. and Kans A., 2002, Java In Two Semesters. P.546-P.555, McGraw-Hill

Education, UK.
Courtois T., 1998, Java Networking & Communications, P.71. Prentice Hall PTR,

USA.
Harold E., 1997, Java Developers Resource, P.448. Prentice Hall PTR, USA.
Horton I., 2001, Beginning Java 2, P.480-P482. Wrox, Canada.
Liang Y., 2000, Introduction to Java Programming with JBuilder3, P.586. Prentice

Hall, UK.
McHale C.,"Generic Synchronization Policies in C++", IONA Technologies, August

25, 2003.

 ١٢٧٥

