2007 : (14) مجلة جامعة بابل / العلوم / العدد (3) عدد العدم

On Partional Valued Characters of The Group Q2n Where n=2p and p is any prime number greater than 2

Nesir Rasool Mahamoed

Dept. of Math. College of Al - Kied University of Kufa

Abstract

In this paper, We have proved that each rational valued character of the quaternion group Q_{2n} where n=2p and p is any prime number greater than 2, can be written as a Z-linear combination of induced characters $\mathbf{1}_{c_i}^{Q_{2n}}$, C_1 runs over all cyclic subgroup of Q_{2n} .

الخلاصة

n=2p عندما يكون Q_{2n} عندما يكون Q_{2n

Introduction

Assuming Q_{2n} a quaternion group, Q a rational field and $x, y \in Q_{2n}$ then x is Q-conjugate to y if the cyclic group generated by x is conjugate in Q_{2n} the cyclic group generate by y. Denote this relation by $x \sim y$, clearly \sim is equivalence relation on Q_{2n} their equivalence classes are called the F-classes of Q_{2n} .

Let these be $1 = \Gamma 1, \Gamma 2, \dots \Gamma m$

Let $x_i \in \Gamma I$ be the representative of the class Γi and $C_i = \langle x_i \rangle$.

Due to Artin theorem asserts if G be a finite group and θ be a rational valued character of G;

Then
$$\theta = \sum_{i=1}^{m} a_i \ 1_{c_i}^G, ..., a_i \in Q$$
 ...(1)

So according to this theorem each valued character x of Q_{2n} can be written as:

$$x = \sum_{i=1}^{m} a_i \ 1_{c_i}^{G}, ..., a_i \in Q$$
 ...(2)

In the present research, we have proved that each rational valued character x of Q_{2n} , which is expressible as in (1) with $a_i \in Z$, where n=2p such that p is any prime number greater than 2.

$$x = \sum_{i=1}^{m} a_i \ 1_{c_i}^{Q_{2n}}, ..., a_i \in Z$$
 ...(3)

There is no doubt that the problem of constructing the rational valued characters table of Q_{2n} , where n=2p and p is any prime number greater than 2, would be rather

$$2007$$
 : (14) المجلد (3) مجلة جامعة باپل / العلوم / العدد

simplified if we knew that each rational valued characters of Q_{2n} can be written as a Z-linear combination of the induced characters $1_{c_i}^{Q_{2n}}$.

On the group $K(Q_{2n})$

Definition (1): For each positive integer n the general quaternion group of order 4n can be defined as follows:

$$Q_{2n} = \{ <\!\! x,\, y\!\!> : X^{2n} = y^4 = 1 \text{ , } y\!\!\times\!\!y^{\!-\!1} = x^{\!-\!1} \}$$

For more information see (Board et al., 1973; Curtise, 1988)

Definition (2): Let cf (G, Z) be the set of all Z-Valued class functions of G which are constant on Q-Classes. Let R(Q, Z), be the intersection of cf (G, Z) with R(G) the group of generalized characters of G. R(Q, G) is a finitely generated Z-module with bases Q-Characteristics of G.

$$x_i = \sum_{\text{QE Gal}((Q(X_1)/Q)}^{\text{m}} x_i^{\text{Q}}$$
, $x_i \in I_{\text{rr}}(c)$

Theorem (1): For a finite group, we have;

$$|K(G)| = \left(\frac{\prod_{i=1}^{m} n_i |N(C_i)|}{\phi(|C_i|)}\right)^{\frac{1}{2}}$$

For proof see (Kirdar, 1988)

Theorem (2): Let G be a finite group $\{C_i = \langle x_i \rangle, 1 \leq m\}$ be a full set of non-conjugate cyclic subgroups of G, and n_i be the number of conjugate cyclic subgroup of G contained in the Q-Class Γ i, then each rational valued character of G can be written as a Z-linear combination of $1_{C_n}^{C_n}$ if and only if:

$$\left(\prod_{\mathrm{i=l}}^{\mathrm{m}}\frac{n_{\mathrm{i}}}{\phi(\left|C_{\mathrm{i}}\right|)}\right)^{\frac{1}{2}}=\prod_{\mathrm{i=l}}^{\mathrm{m}}\frac{\left(\left|N(C_{\mathrm{i}})\right|\right)^{\frac{1}{2}}}{\left|C_{\mathrm{i}}\right|}$$

for proof see (Kirdar, 1988)

 $\begin{array}{c} \textbf{Corollary 1:} \ \ \text{The rational valued character of a cyclic group C_n of order n} \\ \text{can be written as a Z-linear combination of characters $1_{C_i}^{Q_{2n}}$,} \\ \text{where C_i runs over the set of subgroup of C_n.} \end{array}$

For proof see (Kirdar, 1988)

Lemma 1: Let m be the number of Q-classes Γ i of Q_{2n} , where n is an even number, then $m=m_1+2$, where m_1 is the number of Q-classes Γ 1 of the cyclic subgroup C2n=<x>.

For proof see (Nesir, 1995)

Corollary 2: We have,

$$K(Q_{2n}) = k(Q_{4p}) = k(C_{2n}) \oplus C_8 \oplus C_2 \oplus C_2/C_4$$

Where n=2p and p is any prime number greater than 2.

For proof see (Nesir, 1995)

$$2007:(14)$$
 مجلة جامعة بابل / العلوم / العدد (3) / المجلد

Conclusion

Assuming n=2p where p is any prime number greater than 2, by theorem (1) we get;

$$|\mathbf{k}(\mathbf{Q}_{2n})| = |\mathbf{k}(\mathbf{Q}_{4p})| = \left(\prod_{i=1}^{m} \frac{\mathbf{n}_{i}(|\mathbf{N}(\mathbf{C}_{i})|)}{\phi(|\mathbf{C}_{i}|)}\right)^{1/2}$$
 ...(1)

By corollary (2) we get;

$$|\mathbf{k}(\mathbf{Q}_{2n})| = |\mathbf{k}(\mathbf{Q}_{4p})| = 8|\mathbf{k}(\mathbf{C}_{2n})|$$
 ...(2)

Further more by equation [1] lemma (1) and corollary (2), we get;

$$\begin{split} \left| k(Q_{2n}) \right| &= \left| k(Q_{4p}) \right| \\ &= \frac{\left(\prod_{i=1}^{m} \frac{n_{_{i}}(\left| N(C_{_{i}}) \right|)}{\phi(\left| C_{_{i}} \right|)} \right)^{\frac{1}{2}} \left(\frac{n_{_{r}} \left| N(C_{_{8}}) \right|^{\frac{1}{2}}}{\phi\left| (C_{_{8}}) \right|} \right) \left(\frac{n_{_{t}} \left| N(C_{_{2}}) \right|}{\phi\left| (C_{_{2}}) \right|} \right)^{1}}{\left(\frac{n_{_{s}} \left| N(C_{_{4}}) \right|^{\frac{1}{2}}}{\phi\left| (C_{_{4}}) \right|} \right)} \end{split}$$

but;

$$\phi(|C_s|) = \phi(8) = 4$$

$$\phi(|C_4|) = \phi(4) = 2$$

$$\phi(|C_2|) = \phi(2) = 1$$

and $n_r = 4$, $n_s = 2$, $n_t = 1$

Also, by equation [2] and equation [3], we get;

$$8|k(Q_{2n})| = \left(\prod_{i=1}^{m_i} \frac{n_i(|N(C_i)|)}{\phi(|C_i|)}\right)^{\frac{1}{2}} \cdot \frac{(|N(C_8)|)^{\frac{1}{2}}(|N(C_2)|)}{(|N(C_4)|)^{\frac{1}{2}}}$$

Since

$$\left| k(C_{2n}) \right| = \left(\prod_{i=1}^{m_i} \frac{n_i(\left| N(C_i) \right|)}{\phi(\left| C_i \right|)} \right)^{\frac{1}{2}}$$

$$\therefore 8 = \frac{(|N(C_8)|)^{\frac{1}{2}} (|N(C_2)|)}{(|N(C_4)|)^{\frac{1}{2}}} \dots (4)$$

Hence

$$\prod_{i=1}^{m_{i}} \frac{\left(\left|N(C_{i})\right|\right)^{\frac{1}{2}}}{\left(\left|C_{i}\right|\right)} = \prod_{i=1}^{m_{i}} \frac{\left(\left|N(C_{i})\right|\right)^{\frac{1}{2}}}{\left(\left|C_{i}\right|\right)} \cdot \frac{\left(\left|N(C_{8})\right|\right)^{\frac{1}{2}} \cdot \left(\left|N(C_{2})\right|\right)}{8\left(\left|N(C_{4})\right|\right)^{\frac{1}{2}}}$$

but from equation [4] we get;

2007 : (14) المجلد (3) مجلة جامعة باپل / العلوم / العدد

$$\frac{\left(\left|N(C_{8})\right|\right)^{\frac{1}{2}}\left(\left|N(C_{2})\right|\right)}{8\left(\left|N(C_{4})\right|\right)^{\frac{1}{2}}} = 1$$

$$\therefore \prod_{i=1}^{m} \frac{\left(\left|N(C_{i})\right|\right)^{\frac{1}{2}}}{\left(\left|C_{i}\right|\right)} = \prod_{i=1}^{m_{1}} \frac{\left(\left|N(C_{i})\right|\right)^{\frac{1}{2}}}{\left(\left|C_{i}\right|\right)} \qquad ...(5)$$

on the other hand;

and as above $n_r = n_s = 2$, $n_t = 1$

and
$$\phi(|C_8|) = 4$$
, $\phi(|C_4|) = 2$, $\phi(|C_2|) = 1$,

Therefore;

$$\left(\prod_{i=1}^{m} \frac{n_{i}}{\phi(|C_{i}|)}\right)^{\frac{1}{2}} = \left(\prod_{i=1}^{m_{i}} \frac{n_{i}}{\phi(|C_{i}|)}\right)^{\frac{1}{2}} \dots [6]$$

by comparison [5] and [6], we get;

$$\left(\prod_{i=1}^{m} \frac{n_{i}}{\phi(|C_{i}|)}\right)^{\frac{1}{2}} = \prod_{i=1}^{m} \frac{(N(|C_{i}|)^{\frac{1}{2}})^{\frac{1}{2}}}{(|C_{i}|)} \dots [7]$$

This main result is the following; the rational valued characters of equation group $Q_{2n},$ where n=2p and p is any prime number greater than 2, can be written as Z-linear combination of the induced characters $\mathbf{1}_{c_i}^{Q_{2n}}$, where C_i runs over the set of all subgroup of $Q_{2n}.$

References

Board, A.D., Ocnner, D.E., and Young; 1973. Symmetry and Its Application in Science: Mologaw Hill Book Company Limited (UK).

Curtise, C.R., Reiner, 1988. Representation of Finite Groups and Associative Algebras; Wiley Interscience.

Isacc, I.M.; 1976. Character Theory of Finite Groups. Academic Press, New York.

Kirdar, M.S. 1988. On Artins Theorem. Arab Journal of Mathematics Vol.(9), No.182.

Nesir R.; 1995. The Cyclic Decomposition of the Factor Group of $(Q_{2m}, Z)/RC(Q_{2m})$, M.Sc., thesis University of Technology.

Serre, J.P.; 1977. Linear Representations of Finite group Springier-Verlag (42), New York,