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Abstract

This paper investigates the emerging notion of multiwavelets in the context of multirate
filter banks, and applies a multiwavelet system to image denoising. Multiwavelets are of interest
because their constituent filters can be simultaneously symmetric and orthogonal and because one
can obtain higher orders of approximation for a given filter length. Local block filtering was a
method for solving wavelet and multiwavelet transform. In this paper we add this method for image
denoising application and comparing it with another methods of thresholding.
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1. Introduction
Multiwavelets systems with two or more signal and image application like denoising
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scaling functions spanning the “low pass and compression. This paper reviews different

space offer advantages of short support, methods of denoising algorithms and
symmetry, and orthogonality. While block comparing them with block processing with
filter banks issues of symmetric extension and different type of algorithms that controlied on
filter design have not previously been blocking scheme and size.

addressed.  Furthermore, the use of This paper is organized as follows:
multiwavelet filters in a cascade algorithm Section 2 reviews the definition and
leads to a novel pre-and post-processing construction of continuous time multiwavelet
method for block filter banks, based on the system, and Section 3 describes the methods
sampling/interpolation theory of wavelets of denoising by threshold. In section 4 we
[13]. Multiwavelets [6] used to solve different introduce the new methods for block
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Construction of continuous time multiwavelet
system and section 3 describes the methods of
denoising by threshold. In section 4 we
introduce the new methods for block
processing multiwavelet transform. Finally, in
Section 5. we compare the two above
methods.

2. Multiwavelets

Multiwavelet bases of multiplicity 2 provide a

multiresolution analysis usingthe
multiscaling function and multiwavelet
function. The perfect reconstruction
multiwavelet filter bank is shown in

Figure 1[8].
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Figure 1: The perfect reconstruction
multiwavelet filter bank (a) analysis section,

(b) Synthesis section.

As in the scalar wavelet case, the
theory of multiwavelets is based on the idea
of multiresolution analysis (MRA) [1]. The
difference is that multiwavelets have several
The
multiresolution has one scaling function @(t)
[8].

o The translates @(t ~ k) are linearly

scaling functions. standard

independent and produce a basis of the

subspace V.
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e The 02 t-k) generate

dilates
subspaces Vj, j €Z.
w(t). lts

translates w(t — k) produce a basis of

e There is one wavelet
the “detail” subspace Wg to give V).

For multiwavelets, the notion of
MRA is the same except that now a basis
for Vp is generated by translates of N
scaling functions @(t — k), @(t — k), ...,
On(t — k). The vector G(t) = [Di(t), ...,
On(t),]T, will satisfy a matrix dilation

equation (analogous to the scalar case)

(1) = Y ClEID(21 ~ k)

The coefficients C[k] are N by N matrices
instead of scalars.

Associated with these scaling

functions are N wavelets w(t), ..., wn(t),

satisfying the matrix wavelet equation

W(t) = DIkI®(2t—k)

Again, W(t)= [w(t), ..., wn(D)] Tis a vector
and the D[k] are N by N matrices [10].

In practice multiscaling and wavelet
functions often have multiplicity r=2. An
important example was constructed by
Geronimo, Hardin and Massopust {10], which
we shall refer to as the GHM system. For the
GHM multiscaling functions there are two
scaling functions (1), Ja(t) and the two
wavelets w(t), wa(t).
of

orthogonal multiwavelets with approximation

Another example symmetric
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Order 2 is due to Chui and Lian (CL) [1].
Here both scaling functions are supported on
[0,2], which is slightly longer than GHM. For
the CL system, only three -coefficients
matrices are required, but it is less smooth
than GHM ones.

Recently, Strela [1] suggested a way
to construct biorthogonal multiscaling
functions. Starting with the GHM system, one
can take out one approximation order from
the analysis part of the multifilter bank and
transfer it to the synthesis part. GHM
functions have two approximation orders, so
the biorthogonal GHM (BiGHM) scaling
functions have approximation order 3, and the
dual

Naturally,

ones have approximation order 1.
BiGHM scaling functions are
smoother than dual ones.

Another biorthogonal multifilter bank
BiHermite comes from Hermite cubic ‘finite
elements’. These cubics are supported on
[0,2]. The Hermite multiscaling function
satisfies a dilation equation with three
coefficient matrices. The common feature of
CL, BiGHM, and BiHermite systems is that
one scaling function is symmetric and another
is antisymmetric. Similar symmetry can be
observed in the corresponding filter
coefficients [1].

Before the operation of decomposition
is applied to the input data, the preprocessing
The aim of

preprocessing is to associate the given scalar

operation must be done.
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input signal of length N to a sequence of
length-2 vectors {vo,k} in order to start the
analysis algorithm. Here N is assumed to be a
power of 2, and so is of even length. After the
wavelet reconstruction (synthesis) step a
postfilter is applied. Clearly, prefiltering,
wavelet transform, inverse transform, and
postfiltering should recover the input signal
exactly if nothing else has been done. A
different type of preprocessing was suggested
such as repeated row (oversampling), matrix
approximation (critical sampling) and so on
[11].

A different type of prefilters and
postfilters was used. The postfilter P that
accompanies the prefilter Q satisfies PQ=I,
where [ is the identity matrix. Therefore, if we
apply a prefilter, DMWT, inverse DMWT, a
postfilter to any sequence, the output will be
identical to the input. The commonly used
prefilters are the identity prefilter, the Xia
prefilter, the minimal matrix prefilter, the
interpolation prefilter [11].

3. Thresholding Multiwavelets

Suppose that a signal of interest (f)
has been corrupted by noise, so that we
observe a signal (g) [2]:

gln] =f[n] +o z[n]

where z[n] is unit-variance, zero-mean

Gaussian white noise. What is a robust

method for recovering (f) from the samples

best as possible? Donoho and

gln] as
Johnstone [4,12] have proposed a solution via
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Wavelet shrinkage (soft-thresholding) in the
wavelet domain [3]. Wavelet shrinkage works
as follows:

1. Apply the cascade algorithm to get the
wavelet coeffcients corresponding to

g[n].

2. Choose a
coefficients and apply it:

t, = w/2log(n)y0'/«/;z_

3. Invert the cascade algorithm to get the

threshold to the wavelet

denoised signal f* [n].

Donoho and Johnstone's algorithm [5]
offers the advantages of smoothness and
adaptation. Wavelet shrinkage is smooth in
the sense that the denoised estimate (f) has a
very high probability of being as smooth as
the original signal f, in a variety of
smoothness spaces. Wavelet shrinkage also
achieves near minimum Root Mean Square-
(RMSE) of (f),

measured over a wide range of smoothness

Error among possible
classes. In these numerical senses, wavelet
shrinkage is superior to other smoothing and
denoising algorithms.

Heuristically, wavelet shrinkage has
the advantage of not adding “bumps"” or false
oscillations in the process of removing noise,
because of the local and smoothness
preserving nature of the wavelet transform
(71 It is

multiwavelets as the transform for a wavelet

natural to attempt to use

shrinkage approach to denoising, and
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Compare the results with scalar wavelet
shrinkage.

In the oversampled scheme, the first

row is multiplied by 2, to better match the
first eigenvector of the GHM system. The
critically sampled scheme uses the formulas
below to obtain two input rows vl(n) and
v2(n) from a single row of data. After
reconstruction  two  output rows _are
deapproximated using the equations below to
yield the output signal.

Although

thresholding is proven to be at least a smooth

denoising by  soft-
as the original function and free from spurious
oscillations, there is a tradeoff between noise
suppression and oversmoothing of image
details. Another way of denoising by
modifying the wavelet transform coefficients
is called hard-thresholding and is expressed

as:
G, Gﬂ >Thry
0|G;|<Thrv

Xk=T(G,Thry=

Hard thresholding yields better results
than soft-thresholding in terms of RMSE,
Signal to Noise Ratio (SNR), and for Peak
SNR (PSNR). However it produces spurious
oscillations.

4. Local Multiwavelet Filtering

In many of the transform based imazz

denoising processing applications, distinct
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block transforms are used. That is, image
is divided into 7 xU size distinct blocks,
where both 7Tand U are smaller than the
image size, and T x U transform is performed
over each block separately. The reason for
this is not only to decrease the computational
complexity, but also to exploit the local

behavior of the image [9].

4.1. Image Denoising Using Local Distinct
Block Processing

In distinct block operation, the noisy
image is processed a block at a time, which
means partitioning the noisy image in to
T xUsections and some operation is
performed on each distinct block individually
to determine the values of the pixels in the
corresponding block of the output image. So
making use of multiwavelet transforms, the
algorithm of image denoising using distinct
block processing can be formulated as

follows:

1. Divide the noisy image into T xU size

distinct blocks.
2. Compute the multiwavelet transform
coefficients (G{)“"" = MW’ g"" of the

distinct block g7,

3. Multiply the multiwavelet transform

coefficients obtained in step (2) by the

filter coefficients (a,{ ) to compute the

Color Image Denoising Using Local Multiwavelet Filtering

estimated multiwavelet coefficients which

corresponds to the output block:

4, Take the inverse multiwavelet transform
to the estimated coefficients of step (3) to

get the output (denoised) block:
A (Tx IN=1 7~ j \(TxU)
2T = (MY (X))

5. Repeat step 2 — 4 until all the distinct

blocks are exhausted.

6. The denoised image is the concatenation

of all the processed distinct blocks of step

(4)

4.2. Image Denoising Using Local Sliding
Neighborhood

Processing In The

Multiwavelet Domain

In some applications including image
denoising and coding, data is parsed into non-
overlapping blocks, denoising and coding
processes are applied to each block
separately. This independent processing of
each block results in so called blocking
effects. Blocking effects appear because the
final samples of one block will, most likely,
not match with the first samples of the next
block. The modification made to the distinct
block processing by overlapping the blocks

with each other by extra rows and columns is
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not sufficient to remove the blocking
effects totally. So, sliding neighborhood
processing is developed to remove the
blocking effects introduced by the previous
algorithm. Image denoising using sliding
neighborhood processing can be summarized

in the following algorithm:

1.Compute the multiwavelet transform
coefficients (G )" = MW g™ of the

observed noisy image

tu) .

(tu) is TxU frame from

g(

the observed noisy image including the

fragment g

pixels (f,u),....... At +T-1L,u+U-1).

2.Multiply the computed multiwavelet

1)

coefficients by the filter coefficients {a :
(X]{)(f,u) - a}{ (GI{)(’,H)

3.Take the inverse wavelet transform to the
estimated (filtered) wavelet coefficients of

step (2) to get the output (denoised) frame.
i(l,u) — (MW/)—I (AX’\'/{)(I’")
4.The central pixel of the fragment i((’u)is

the estimated value of the image at pixel
((+T/2,u+U/2).

5.Repeat the above steps by sliding the
window over the image for

(1) = (0,0) 0 (tu) = (M V).

Color Image Denoising Using Local Multiwavelet Filtering

4.3. Image Denoising Using Averaging

Over Local Sliding Neighborhood
Processing In The Multiwavelet Domain

In the previous algorithm, a sliding
window over the observed data is used to
estimate the central pixel value. Although this
local transform approach within a sliding
window is expected to adapt to the local
characteristics of the image better than global
transform domain approach, it may still result
in similar artifacts as encountered in the
traditional multiwavelet thresholding
denoising. For obtaining a similar effects as
translation-invariant denoising does, it is
possible to keep the denoising results for
every pixel in a window and estimate a
pixel’s values by averaging the corresponding
pixel’s outputs from denoising of several
windowed fragments. Thus, the image
denoising algorithm using averaging over

local sliding neighborhood processing can be

presented as follows:

1. Compute the multiwavelet transform
coefficients (G})"* = MW gV of the
observed noisy image fragment g ().

g is Tx U frame from the observed
noisy image including the pixels

(t,u),....... (it +T-Lu+U-1).

2. Multiply the obtained multiwavelet

coefficients by the filter coefficients

{a,{}:
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(X =af (G

for that pixel from several fragments of the

image enclosed by all
3. Take the inverse multiwavelet transform

to the estimated (filtered) multiwavelet Wl,u such that (r, 7)€ Wy, .
coefficients of step (2) to get the output

(denoised) frame. 5. Numerical and Graphical Results

) =(MW")“(X,{)"~"’ The algorithm is tested on 100 different

color images. Mask image was one of them

4, Store the denoising results for every that we have see its results in this section with

pixel in the output frame that overlaps additive white Gaussian noise o = {2} to get

with another frame. the noisy version of this image.

5. Repeat the above steps by sliding the Figure 2 shows the result of selecting
window  over the image for different block size for overlapping it on all
(t,u)=(0,0) to (t,u)=(M,N). the image pixels. We conclude that whenever

the block size is large, the result best.
6. The denoised value for every pixel (r,7;)

in the output (reconstructed) image is the

average of all the estimates obtained

4
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Figure 2: Results of local distinct block
processing algorithm using multiwavelet soft
thresholding with CL basis functions and
decomposition level=2, a) original mask
image, b) Noisy version (RMSE= 87.4323),
¢) denoised image using LDBP algorithm
with 16x16 block size (RMSE= 53.3372), d)
denoised image using LDBP algorithm with
32x32 block size (RMSE= 51.6531), e)
denoised image using LDBP algorithm with
64x64 block size (RMSE=49.9743).

leal image was tested on different
types of algorithms local sliding, minimum
local sliding, and averaging local sliding. 32,
16, 8 was different sliding tested on those
three algorithms. Averaging local sliding was
the best results over all different blocking
method. Figure 3 shows the images and its
results. Table 1 present the objective

measures of the previous results.

(a) (b)

(©) (d)
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(e)

Figure 3: Results of block processing algorithms using multiwavelet soft thresholding with CL basis

functions and decomposition level=3, a)

original ieal image, b) Noisy version
(RMSE= 68.1306), c) denoised image using
local sliding algorithm with 32x32 block size
(RMSE= 26.5536), d) denoised image using
local minimum over sliding algorithm with
16x16 block size (RMSE= 26.2173), e)
denoised image using local averaging over
sliding algorithm with 8x8 block size

(RMSE=26.1652).

The different thresholding algorithms
scalar thresholding and local block processing
thresholding (sliding, minimum, averaging)
were compared to find the best one. We test
these algorithms on Flower3 image that show
it in Figure 4. From this comparison we see
averaging  over  sliding

that local

neighborhood block processing was the best.

(d)

Figure 4: Results of block processing algorithms using multiwavelet soft thresholding with CL basis
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functions and decomposition level=2, a)
original ieal image, b) Noisy version
(RMSE= 102.9753), ¢) denoised image
using thresholding (RMSE= 57.4029),

d) denoised image using local averaging
over sliding aigorithm with 8x8 block
size (RMSE= 56.0702).

Denoising algorithm } Sliding size RMSE }
L 32x32 265536 |
Sliding ( 16x16 27.8766
8x8 30.1305
32x32 27.4053 |
Minimum sliding 16x16 262173
8x8 27.2672
Averaging sliding 32x32 L 26.4421
16x16 26.1860
h 8x8 26.1652 j

Table 1: Objective measures of ieal image with different algorithm results

7. Conclusions

Different of  thresholding

types
algorithms were used for denoising images.
Multiwavelet was used to translate these
algorithms these methods was tested with
filters and

different multiwavelet

decomposition levels of multiwavelet.

Blocking effects was one of the most
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