Exact Stiffness Matrix for A Non-Prismatic Plane
Frame Element with Parabolic Varying Depth

Balgees Abdul Wahid Ahmed
Department of Civil Engineering, University of Baghdad

Abstract

In this paper, the derivation of an exact stiffness matrix for a non-prismatic plane frame element
with parabolic varying depth is presented .The derivation considered the coupling between the axial
force, shear force and bending moment .A numerical example is carried out on a beam element using
the derived stiffness matrix showing the difference between the exact solution and that obtained by
finite element method by dividing the element into a number of prismatic elements is presented. The
obtained results show the validity and efficiency of the derived stiffness matrix. It is found that the
deflection obtained by using the finite element method is greater than the exact solution by (1.14%).
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1.Introduction

Members having varying depth are frequently used in many engineering
structures, such as haunched beams for bridges or portal frames, as precast roof
girders, or as cantilever slabs. In addition, members with varying depth are commonly
utilized in mechanical and aerospace engineering structures.In civil engineering
construction, non-prismatic members offer several advantages such as;(1)larger
stiffness at the ends of the span reduces the positive moment due to gravity loads and
increases the overall stability and stiffness;(2) economical design that translated into
larger or taller structures and (3) larger beam- column area (joints) to resist greater
shear and moment. Up to now, there is no exact stiffness matrix for members with
parabolic varying depth .Head and Aristizabal-Ochoa (1987) presented a computer
algorithm that attempts to predict the behavior of slender ,linearly tapered,reinforced
concrete columns.The conjugate beam method was used to calculate the second order
effects (i.e.,the additional moment caused by the applied axial load). Feris and
Kneene (1990) proved that the elastic and inelastic analysis of members with
continuously varying moment of inertia (1) and modulus of elasticity (E ),along

the length of the member, could be carried out by using linear equivalent systems of
constant stiffness ( El ). Avery good approximate solution was obtained that reduces
the mathematical complexity of the problem. Hashim (1999) derived a numerical
form stiffness matrix for element having linearly varying depth .The element is
divided into three zones each zone have a specified flexural rigidity (EI).The
derivation considered the coupling between the axial force,shear force and bending
moment. The derived stiffness matrix is used in the inelastic analysis of plane frames.
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The purpose of the present paper is to derive an exact stiffness matrix for a plane
frame element with parabolic varying depth.

2. Derivation Of Stiffness Matrix For An Element With Parabolic
Varying Depth:

Consider the element of length (L) shown in Fig.1(a). The element is
rectangular in cross-section with parabolic varying depth and constant width. Three
degrees of freedom are assumed at each node Only the deformations in the plane of
the element and the bending about centroidal main axis are considered. All
displacements and forces are positive if they are in the directions shown in Fig.1(b).

A

y

hy = ho(1+cx?)

(b)

Fig.1:Plane Frame Element with Parabolic varying Depth
(a) Typical Element (b) Degrees of Freedom

The stiffness coefficients corresponding to the degrees of freedom shown in
Fig.1(b) can be obtained by using Castigliano’s second theorm Boresi, (2003), which
states that the deflection caused by an external force is equal to the partial derivative
of the strain energy (U ) with respect to that force .

The strain energy (U ) is

2 2

P M
U=]_ —dx+[_-—d 1
e ™ g & 1)

Where pand M are the axial force and bending moment at section ( x) from the left
edge which can be found from equilibrium as follows

P = Pj (2)
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M(x)=QiX+%Piho(CX2)—Mi 3)

Aand | are the area and the moment of inertia at the same section which can be
written as

A= A(x) =bhg(1+cx? )= Ag(1+cx?) (4)
by 2,3 2,3
I=1(x)= o (L4+cx2)° =1g(1+cx“) (5)

Where (¢ ) is a constant depends on the greatest depth of the element as follows :
h(x) =ho(1+cx?), if h(x)=hpat x=L then,

c==ho (6)
ho L2

The strain energy can be written as

L p.2 L(M 2
=i IPI—dX+IﬂdX (7)
2BloAx) o ()
By substitution of egs.(2),(3),(4),(5) in eq.(7) and after integrations , the final
expression for the strain energy is
2p 2 M 2 . O: . O: 2
U=é[Pa2<ao)+%(an—P'“{'—'%(az)+MI' (a3 )+ 12T (24) - I (a5 )4 31 (a6
0 (6] 6] (o] 0 (]
(8)
Where
4o O
TS (9)
3[1, 1. 1,. .3
al=i{z[§0—zsm20}—z(sm0) cosQ] (10)
Je
N PR
a2—4\/5[29 85m4¢9} (12)
_ (31, L o0 Mcose)? i
a3—\/5[4[20+4sm20}+4[(c030) smeﬂ (12)
ag=>f—t 1 (13)
2| y(14cL?)%  (14cl?) 2
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1 1
ag=—|1-— = (14)
> 20[ (1+cL2)2]
a6=%[a2] (15)

Where 6 =tan1(J/cL)
The partial derivative of the strain energy (U ) with respect to (P;) is

ouU 1
O _uj=—|Pi(2a0+
P i [|( 0

=5 h02a1 )— Mijhoaz + Qih0a4] (16)

21, lo lo

Similarly, the partial derivative of the strain energy (U ) with respect to Q; and M;
are

6_U=Vi __1 |Pihoas Mijas 2Qiag (17)
6Q| 2E Io IO IO

U _, _ 1 [=-Pihoaz  2Miaz Qias (18)
6I\/I| 2E Io IO IO

The stiffness coefficient (kjj) is the force of type (i) required to induce a unit

displacement of type (j) and all other displacements equal to zero. Therefor
eqs.(16),(17)and (18) will be used to find the stiffness matrix of the element.

2.1 Axial Stiffness

Consider the element shown in Fig.(2) which is subjected to a unit axial displacement.
The stiffness coefficients corresponding to that displacement can be found by setting
egs.(16),(17)and(18) equal to 1, Oand O respectively, hence

2 . .
219 g o
Pih M; 20Q;
iNo24 _ ias o Qiap -0 (20)
lo lo lo

—Pjhga2 N 2Mja3 Qja5 _

i " I 0 (21)
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Fig.(2):Element with Parabolic VVarying Depth
Subjected to a Unit Axial Displacement

Solving egs.(19),(20) and (21) simultaneously yields :

2El,

Pj =———— (22)
hOZZ]_
2El,
i = 2a3Z9 —a 23
Qi ashozl( 3Z2-az) (23)
2EI
Mj =2t 22 (24)
hO Zl
2aga
21 1 a ( : 2—a4)
Where 77 = —gao +Ea1—a222 +—4(2a322—a2) ,Zz=#
ho a5 (0% _ag)
From equilibrium requirements
—2El
Pj=-Pj= o (25)
ho®Z1
2El 4
i =-Qj = ap—2a3Z 26
Qj =—Qj a5h021(2 3Z2) (26)
h1 —h
M j =P (=2 )+QiL-M;
_2Elq (hl—ho)+(2a322—a2)L Z (27)
Zl 2h02 a5h0 ho

2.2 Transverse Stiffness

Proceeding as in the previous section,stiffness coefficients due to a unit lateral
displacement at end i (Fig.(3)) can be found by making expressions (16),(17) and (18)
equal to 0, 1 and O respectively, hence
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Pi (280 + ho2ay ) Mihoaz  Qihoas _

21, lo lo 0 (28)

p. (034 ) Mids K 20idg _,. (29)

s lo lo

. Noaz | 2Mjaz Qjas _

Pi ( o )+ I o =0 (30)
M

. =1I PI_ﬁQI ........................................................................... J M j

) L jSj_’ L

Fig.(3): Element with Parabolic Varying Depth Subjected
to a Unit Lateral Displacement

Again, by solving egs.(28),(29) and (30) simultaneously , the following expressions
can be obtained

2El,
i= 2a37Z4 —a
i a2h023[ 3Z4-as)

(31)
_2El,

Z3

Qi

(32)
2ElAZ
Mi =%“ (33)

Where , z3 = a4 [2a324_a5]—a5Z4 +2ag ,24 =
az

41pa a
(a1 +0720)275 —a4
ho az

41
(ag +-020)28 |_q)
2 "as
ho
Also, due to equilibrium requirements

2EI
j=——>—las—2a324]
aghoZ3

(34)

—2El,
Qj="5-2
1577,

(35)
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h1 —hg

Mj=Pi(=5—)+QiL-M;
2El, | (2a3Z4 —a5 )(hy —h
_ 0 344—-a5)\M 0)+L—Z4
Z3 2aohg

2.3 Rotational Stiffness

(36)

Stiffness coefficients corresponding to a unit rotational displacement at node
(i),as shown in Fig.(4) can be found by setting expressions (16),(17),and (18) equal

to 0, 0 and 1 respectively, so

2 . .
ho"ay )= Mihoaz  Qihoas _

Pj(2ag +
i (280 21, lo lo

hpa Mija 2Qja
I:,i(cl)4)_ I|5+ I|6=
o 0 0

0

—Pjhpa2 2Mja3 jads
ihoa2 2Mja3 Qija5 .

lo lo lo

Fig.(4): Element with Parabolic Varying Depth Subjected
to a Unit Rotational Displacement

Solving egs.(37),(38) and (39) simultaneously , yields

_AElg (ap-a4Zg)

Pi =
41 5a
hoZ5 (ag + 1080
h 2
0
2El4Z
Qi =28
Zsg
2El
M =—0
Z5
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2a4a
(38~ igay )
0<o
(ar+ °5)
ag’leg —a
Where, Zg =2a2M—a5ZG +2a3 Zg= 0
41gag ' 2242
(al+h72) (236—4—4|
a
° (ag+-20%)
ho

From equilibrium, the following expressions can be obtained

_4Elg (a4Zg-2a2)

"I oz 410a (43)
045 (a1 + 0 o)
he2
(0]
_ —2ElyZg 44
= (44)
hy —h
M =Pi (= =2)+QiL—M
ap—ayg”Z h1—h (45)
=2§|0 (a2 44?); 1 0)+26L—1
> (a1 + 020 )ho
ho
All other stiffness coefficients can be found from symmetry and equilibrium
requirements. The coefficients of the 6*6 stiffness matrix in the local coordinates
system according to the degrees of freedom shown in Fig.1(b) is as follows :
2EI
K11 =— e (46)
ho“Z1
2Elq
Kop = 2a3Zp — 47
21 ashozl( agZz-ay) (47)
2Elg Z9
K31 = == 48
—2EI
Kgp=—32" (49)
ho“Z1
2El,
= —2asZ 50
51~ 2ehoZ1 (ag—2a3Z2) (50)
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- L Zp
2El, (hl—ho)+(2a322 ap)L Zp

(51)
h ho
Ke1 2 ohg? asho
(52)
2El,
K22 = Z
3 (53)
2ElgZ4
K3o = Zs
(54)
2Elo a —2a324]
Kg2 = a2hoZ3 [as
(55)
—2El,
Ks2 = 7
(56)
2El, (23324—35)(h1—h0)+L_Z4
“62= Z3 2aphg
(57)
2El,
K33 = Z
5
(58)
_4Elg (agZg —2ay)
hpZs (314'4|020)
ho
(59)
—2ElyZg
T
(60)
2Elq (32—3426)(h1—h0)+26L_1
K63= 25 (a1+4|020 )ho
ho
(61)
2El,
Kag =—
ho“Z1
O (62)
- _%Elo 2a3Z4—a5]
K54—a2h023[
il (63)
—a4Zg) (h1—ho)
2El, (a5—2a3Z4)L+ 2ap-asZg)
Keq =

ho apZs

2hgZ1
41pa o
(a1+-2%)Z5

ho
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2El,

Kgs = Z3 (69
Koo = 2Elo | (32-2a3Z2) (N1 ~ho)  1oZ6 _hoL (65)
65 ho 2a5Zq Zsg Z3

hy —h
K65=[(K61)%+(K62)L—(K63 )} (66)

The above coefficients can be written in a matrix form as follows
o _
Ko1 Koo sym.
[K]= K31 K32 Ks3

Kg1 Kg2 Kg3 Kyg
Ks1 Ks2 Ks3 Ksg4 Ksgs
Ke1 K62 K63 Kea Kgs Kge |

3. Numerical Example

To verify the validity and efficiency of the derived stiffness matrix, a cantilever
beam shown in Fig.5(a) is analyzed first by using the derived stiffness matrix then the
beam is idealized to a number of equal lengths prismatic finite elements(Fig.5(b)) and
analyzed using stiffness method. A computer program “NASPAC” is used for the
analysis by using the finite element method .A comparison study is made between the
exact solution using the derived stiffness matrix and the approximate solution.The
effect of shear deformations is neglected in both analyses.The comparison is shown in
Fig.6which represents the relationship between vertical deflection at free end with
number of elements using both exact and approximate solution. The deflection
obtained from the approximate method by dividing the beam into six elements is
greater than the exact solution by (1.14%).1t is clear from Fig.6 that the exact stiffness
matrix derived in this paper offer an efficient and less calculations solution than that
by using finite elements.
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y
Informations T
b=0.25m
hg =0.25m p
hy =0.5m
L=4m

E =20*10%kN / m?2
P = 30kN

Note 4
Element properties

canbe found as follows:
For element(i) )
Aj =bhi

- _behi)® e - — %
: 12 hoI 1 |h1i2[h2 i n X

were hj istheaverage

depthof theelement (i)
as showninFig.5(b)

\4 >

(b)

Fig.5: The Cantilever Beam of the Numerical Example
(a) Load and Dimensions (b) Approximating the Beam to a Number of Prismatic Elements
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—=—  Approximate Solution (Finite Elements)
—@—  Exact Solution

4.00 —

Vertical Deflection at Point (A) (cm)

3.00 —
[

No. of Finite Elements

Fig.6: Vertical Deflection at Free End (Point A)

4.Conclusions

The exact stiffness matrix derived in this paper can be used directly and
successfully in the analysis of girders and frames consisting of members having
parabolic varying depth. The derived stiffness matrix offer an efficient and less
numerical calculations solution than that by using finite elements .In addition,it is
clear from the above figure that the non-prismatic member with parabolic varying
depth is stiffer and more economic than that consisting of a number of prismatic
elements. It is found that the deflection obtained by using the finite element method is
greater than the exact solution by (1.14%).
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6.Notations
The following symbols are used in this paper
A, : cross-sectional area of the smallest cross-section of the element

b : width of the element cross-section

E : modulus of elasticity

ho : the smallest depth of the element

hy :the greatest depth of the element

I, : the moment of inertia of the smallest cross-sectional area about the major axis
[K] : the stiffness matrix

ky :the stiffness coefficient

L : length of the element

M : moment at a specified section

P : axial force at a specified section
Q : shear force at a specified section

U : the strain energy
u : the horizontal displacement
v :the vertical displacement
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