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Abstract 
In this paper, the derivation of an exact stiffness matrix for a non-prismatic plane frame element 

with parabolic varying depth is presented .The derivation considered the coupling between the axial 

force, shear force and bending moment .A numerical example is carried out on a beam element using 

the derived stiffness matrix showing the difference between the exact solution and that obtained by 

finite element method by dividing the element into a number of prismatic elements is presented. The 

obtained results show the validity and efficiency of the derived stiffness matrix. It is found that the 

deflection obtained by using the finite element method is greater than the exact solution by ( %.141 ).    
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 الخلاصة

فييهذاييلبذب تمييشذقيي ذبفيية الذلابييالفضذب بييعضضذب شايي لنضذ  اييلذد غييامهذورييامهذب ض ييا ذخطيي ذلالفييل  ذلاة طيي ذب  ييش ذ    يياذذ لارمرييهذ
أذلاثيا ذحيلاكافئ(ذ.ذفهذالبذب فة الذقي ذب  يلذظر ي ذب اةتيا ذقياب أذب ةييوط ذظيط ذايأذلاي ذمب  يل,ذب شمل صيضعزل,ذب  ياذ ايم ذب  مريا ذ.قي ذ

ط ياذطأذاالذد غامهذضاسةخاب ذب شبالفضذب شغة ضذ لا ا  ضذب رةامجذب ةهذقي ذب مبيل ذالط ياذلايكذقلي ذب ةيهذقي ذب مبيل ذال بحاذيةاش ذقمل
ضاسييةخاب ذن ص ييضذب  راليي ذب شمييا ,ذظة  يي  ذب  اييلذد ييصذاييا ذلايي ذب  راليي ذب شلفييل صض.لا ذ ييع ذب رةييامجذب ةييهذقيي ذب مبييل ذالط يياذق ييط ذ

ضالييصذلايي ذذ ذب رةييامجذضاايياعذق ييط ذضوذب   ييل ذب ريياقجذضاسييةخاب ذن ص ييضذب  راليي ذب شمييا ,لييمضذ فاال ييضذب شبييالفضذب شغيية ضذ. لايي ذ ييع
ذ%(.ذ1,14 يذب مأذب شا لطذظ

1.Introduction 
Members having varying depth are frequently used in many engineering 

structures, such as haunched beams for bridges or portal frames, as precast roof 

girders, or as cantilever slabs. In addition, members with varying depth are commonly 

utilized in mechanical and aerospace engineering structures.In civil engineering 

construction, non-prismatic members offer several advantages such as;(1)larger 

stiffness at the ends of the span reduces the positive moment due to gravity loads and 

increases the overall stability and stiffness;(2) economical design that translated into 

larger or taller structures and (3) larger beam- column area (joints) to resist greater 

shear and moment. Up to now, there is no exact stiffness matrix for members with 

parabolic varying depth .Head and Aristizabal-Ochoa (1987) presented a computer 

algorithm that attempts to predict the behavior of slender ,linearly tapered,reinforced 

concrete columns.The conjugate beam method was used to calculate the second order 

effects (i.e.,the additional moment caused by the applied axial load). Feris and 

Kneene (1990) proved that the elastic and inelastic analysis of members with 

continuously varying moment of inertia ( xI ) and modulus of elasticity ( E ),along 

the length of the member, could be carried out by using linear equivalent systems of 

constant stiffness ( EI ). Avery good approximate solution was obtained that reduces 

the mathematical complexity of the problem. Hashim (1999) derived a numerical 

form stiffness matrix for element having linearly varying depth .The element is 

divided into three zones each zone have a specified flexural rigidity ( EI ).The 

derivation considered the coupling between the axial force,shear force and bending 

moment. The derived stiffness matrix is used in the inelastic analysis of plane frames.   
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The purpose of the present paper is to derive an exact stiffness matrix for a plane 

frame element with parabolic varying depth.  

    

2. Derivation Of Stiffness Matrix For An Element With Parabolic 

Varying Depth: 
Consider the element of length ( L ) shown in Fig.1(a). The element is 

rectangular in cross-section with parabolic varying depth and constant width. Three 

degrees of freedom are assumed at each node Only the deformations in the plane of 

the element and the bending about centroidal main axis are considered. All 

displacements and forces are positive if they are in the directions shown in Fig.1(b).    
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Fig.1:Plane Frame Element with Parabolic varying Depth        
(a) Typical Element (b) Degrees of Freedom 

 

The stiffness coefficients corresponding to the degrees of freedom shown in 

Fig.1(b) can be obtained by using Castigliano’s second theorm Boresi, (2003), which 

states that the deflection caused by an external force is equal to the partial derivative 

of the strain energy (U ) with respect to that force . 

The strain energy (U ) is 
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Where MandP  are the axial force and bending moment at section ( x ) from the left 
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IandA are the area and the moment of inertia at the same section which can be 

written as  
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Where ( c ) is a constant depends on the greatest depth of the element  as follows : 
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The strain energy can be written as  
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By substitution of eqs.(2),(3),(4),(5) in eq.(7) and after integrations , the final 

expression for the strain energy is 
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Where )Lc(tan
1  

The partial derivative of the strain energy ( U ) with respect to ( iP ) is 
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Similarly, the partial derivative of the strain energy ( U ) with respect to iQ and iM  

are 
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The stiffness coefficient ( ijk ) is the force of type ( i ) required to induce a unit 

displacement of type ( j ) and all other displacements equal to zero. Therefor 

eqs.(16),(17)and (18) will be used to find the stiffness matrix of the element. 

 

2.1 Axial Stiffness 
Consider the element shown in Fig.(2) which is subjected to a unit axial displacement. 

The stiffness coefficients corresponding to that displacement can be found  by setting 

eqs.(16),(17)and(18) equal to 1 , 0and 0 respectively, hence 
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                              Fig.(2):Element with Parabolic Varying Depth  

                                       Subjected to a Unit Axial Displacement 

  
 Solving eqs.(19),(20) and (21) simultaneously yields : 
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From equilibrium requirements  
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2.2 Transverse Stiffness 
Proceeding as in the previous section,stiffness coefficients due to a unit lateral 

displacement at end i (Fig.(3)) can be found by making expressions (16),(17) and (18) 

equal to 0 , 1 and 0 respectively, hence 
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Again, by solving eqs.(28),(29) and (30) simultaneously , the following expressions 

can be obtained 
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Also, due to equilibrium requirements  
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Fig.(3): Element with Parabolic Varying Depth Subjected         

to a Unit Lateral Displacement 
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2.3 Rotational Stiffness 
Stiffness coefficients corresponding to a unit rotational displacement at node 

( i ),as shown in Fig.(4) can be found by setting expressions (16),(17),and (18) equal 

to 0 , 0 and 1 respectively, so 
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Solving eqs.(37),(38) and (39)  simultaneously , yields 
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Fig.(4): Element with Parabolic Varying Depth Subjected 

to    a Unit Rotational Displacement 
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From equilibrium, the following expressions can be obtained  
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All other stiffness coefficients can be found from symmetry and equilibrium 

requirements. The coefficients of the 66*  stiffness matrix in the local coordinates 

system according to the degrees of freedom shown in Fig.1(b) is as follows : 
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The above coefficients can be written in a matrix form as follows 
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3. Numerical Example 
To verify the validity and efficiency of the derived stiffness matrix, a cantilever 

beam shown in Fig.5(a) is analyzed first by using the derived stiffness matrix then the 

beam is idealized to a number of equal lengths prismatic finite elements(Fig.5(b)) and 

analyzed using stiffness method. A computer program “NASPAC” is used for the 

analysis by using the finite element method .A comparison study is made between the 

exact solution using the derived stiffness matrix and the approximate solution.The 

effect of shear deformations is neglected in both analyses.The comparison is shown in 

Fig.6which represents the relationship between vertical deflection at free end with 

number of elements using both exact and approximate solution. The deflection 

obtained from the approximate method by dividing the beam into six elements is 

greater than the exact solution by ( %.141 ).It is clear from Fig.6 that the exact stiffness 

matrix derived in this paper offer an efficient and less calculations solution than that 

by using finite elements.       
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                                       Fig.5: The Cantilever Beam of the Numerical Example                       

(a) Load and Dimensions (b) Approximating the Beam to a Number of Prismatic Elements                                                                 
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4.Conclusions 
The exact stiffness matrix derived in this paper can be used directly and 

successfully in the analysis of girders and frames consisting of members having 

parabolic varying depth. The derived stiffness matrix offer an efficient and less 

numerical calculations solution than that by using finite elements .In addition,it is 

clear from the above figure that the non-prismatic member with parabolic varying 

depth is stiffer and more economic than that consisting of a number of prismatic 

elements. It is found that the deflection obtained by using the finite element method is 

greater than the exact solution by ( %.141 ).    

     

 

 

 

 

 

 

 

 

 

Fig.6: Vertical Deflection at Free End (Point A)  
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6.Notations 
The following symbols are used in this paper 

:oA cross-sectional area of the smallest cross-section of the element  

:b width of the element cross-section 

:E modulus of elasticity 

:oh  the smallest depth of the element  

:h1 the greatest depth of the element 

:oI the moment of inertia of the smallest cross-sectional area about the major axis 

  :K the stiffness matrix 

:k ij the stiffness coefficient 

:L length of the element  

:M moment at a specified section 

:P axial force at a specified section  

:Q shear force at a specified section  

:U the strain energy 

:u the horizontal displacement 

:v the vertical displacement 

 


