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Abstract:

Schizophrenia (ZP) is a common devastating cognitive disorder; however, the eti-
ology of its incidence remains largely unclear yet. Although some evidence blames
both environment and genetic factor as main drivers of ZP, but the clear mechanism
of their effect elusive till now. Of interest, severe anemia conditions can lead to
hypoxia in CNS which disturbs the normal structures and functions of some area
in the brain resulting in abnormalities in the neurons communications and decrease
synaptic plasticity. Additionally, modulation of cytoskeleton constituents is thought
to participate to ZP development. Recently, it has been revealed that iron deficiency,
which is the main cause of anemia, has a significant impact on the cytoskeleton con-
stituent’s disassembly. Such conditions are believed to evoke responses to adaptive
as increase some neurotransmitter such as dopamine, which in turn exacerbates the
disease pathophysiology events. Accordingly, the purpose of this review to provide
an insight to the potential impact of anemia on ZP development.
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Introduction:

Schizophrenia is a devastating men-
tal illness results in a dysfunctional
lifestyle. It causes social withdrawal,
cognitive impairment, and decreased
emotional reflection [1-3]. There are no
diagnostic tools to detect schizophre-
nia; diagnosis is depended on behavior
observed. This means that the disease
cannot be predicted, but rather diag-
nosed after the symptoms are resulting
from damage certain areas in the brain
[4]. The global incidence of schizo-
phrenia ranges between 3 to 7.0%, with
globally twenty-four million affected
cases according to the WHO statistics
[ 5]. Several studies have been shown
the higher rate of suicide action in
people diagnosed with schizophrenia
[6-7]. However, the etiology of schizo-
phrenia is still unclear, but in general
it is believed that environment and ge-
netic variations are considered to have
involvement in the occurrence of ZP
[8].

What is not yet clear is the potential
involvement of anemia as a risk factor
in schizophrenia. A number of studies
have found increased prevalence ane-
mia among patients with schizophre-
nia [9]. One of the potential effects of

anemia on the CNS is a change in the
neuron cytoskeleton, which alters neu-
ronal synapses [10]. Recent evidences
suggest the schizophrenia could be re-
lated to impaired neuronal connecting
caused by abnormality in the shape of
the neuron axon [11]. Postmortem stud-
ies in schizophrenia have illustrated the
most of dysfunctions is consequences
of the disturbance in axonal synaptic
[12]. Impairment of axonal synapses
is the result of poorly performing oli-
godendrocytes and cells producing
myelin. These circumstances increase
dopamine secretion as a mechanism to
speeding the signaling transmission in
the context of axonal connections ab-
normalities [13].

Severe anemia led to hypoxia in
the CNS, and this in turn resulted in
clevated levels of hypoxia-inducible
factor-1 alpha (HIF-la). Under these
circumstance miR-210-3p is activated,
which suppressing the brain-derived
neurotrophic factor (BDNF) [14-15],
Furthermore, numerous studies shown
the hypoxia can be blocking and alter
BDNF intercellular signaling pathway
(Fig.1) [16, 17]. The most important
relevant roles of BDNF in CNS are
enhancing the differentiation of oli-
godendrocyte precursor cells (OPCs).
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Additionally, BDNF controls local
translation of neuronal proteins, as well
as regulates of cytoskeleton and mem-
brane dynamics [18]. Furthermore,

pathophysiologic link between schizo-
phrenia and perturbed cortical iron bi-
ology has been suggested recently[19].

Anemia — Hypoxia

lBDNF \

HIF-1a

Alterations of the neuron cytoskeleton
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Figurel: The potential underlying effect of anemia in schizophrenia

Effect of anemia on the neuron
cytoskeleton via BDNF expression
modulation

Anemia is state characterized by a
lessening the number of erythrocyte, or
reduce the quantity of hemoglobin in
the blood results to a decrease the ca-
pacity of oxygen-carrying [20-22]. The
brain responds to the severe chronic
anemia via activation the expression of
HIF-1a[4]. HIF-1a plays crucial role in
BDNF suppression via direct binding to
its promoter region leading to reduced
levels of BDNF [23]. Additionally, hy-

poxia can impair the BDNF expression
through down regulation of its tran-
scription factors such as REST (RE-1
Silencing Transcription factor), which
plays important role in upregulation of
BDNF gene [24]. Furthermore, hypox-
1a circumstances promote the enzymat-
ic activity of BACE1 (B-site amyloid
precursor protein cleaving enzyme 1)
that is involved in the degradation of
BDNF (Fig.2) [25].

The evidence presented thus far
supports the idea that hypoxia can lead
to inflammation in CNS [26]. Most



A review article :The Potential Role of Anemia in the Incidence of Schizophrenia
................................ Abbas S. Neamah , Rana H. K. Al-Rubaye , Fadhel Molammed Lafta

|| 392

studies in this field have found a sig-
nificantly negative correlation between
hypoxia status and BDNF expression
in neurons. It is identified that hypox-
1a can cause epigenetic alternations in

BDNF gene, via increase DNA methyl-
ation at specific CpG within promoter
of BDNF gene, which in turn, reduced
or silence the BDNF mRNA [27].
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Figure 2: Signaling pathway of under hypoxia circumstance. Hypoxia cause
upregulation HIF-a, which in turn downregulation BDNF, as well as downreg-
ulation REST which in turn upregulation BDNF. Additionally, hypoxia activa-

tion BACE1 which is plays role in degradation of BDNF

As it mentioned earlier, BDNF plays
crucial in the neuroplasticity, which
means losing the ability of the brain to
form new neurons connection if there are
any impaired in BDNF expression [28].
Additionally, BDNF maintain the syn-
aptic modulation and reduced its levels
can cause decrease in neuron communi-
cation [29]. Furthermore, recent studies
have illustrated that any alternation in
neuron plasticity can increased dopa-

mine secretion [30]. On the other hand,
recent investigations have shown that
BDNF induce oligodendrocyte precur-
sor cells (OPC) survival, proliferation
and differentiation [31]. There is a large
volume of published studies describing
the role of oligodendrocyte in maintain-
ing the neuron cytoskeleton, via specific
factors expression such as adhesion mol-
ecules [32]. As well as growth factors
and signaling molecules that enhance
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organization the neuron cytoskeleton,
while the signaling molecules influences
on the cytoskeleton components through
assemble and disassemble, such as actin
and microtubule [33]. Furthermore, oli-
godendrocyte considerable main source
for myelin sheet, which in turn impor-
tant to neuron synapse [34]. Recent stud-
ies have been investigated the potential
mechanism underlying schizophrenia,
where it found the alternation in OPCs,
such as disturbance of differentiation
and myelination of OPC implicated in
many cognitive disorder [35].

Effect of anemia on the neuron cy-
toskeleton via the regulation of actin
dynamics

Actin dynamics demonstrate impor-
tant role in the neuron communication,
and development. Previous studies have
shown that actin dynamics involved in
axonal guidance in a neuron synaptic,
as well as, do crucial job in synaptic
plasticity via regulating the stability
and strength of synapses [36]. More-
over, actin dynamics are considered as
principal factor in synapse formation
by stabilizing the structure of dendritic
spines [37]. Furthermore, polymeriza-
tion and remodeling of actin contribute
to long term depression (LTD) and long
term potentiation (LTP)[38], where a

number of studies have reported that
patients with schizophrenia presented
both of the aforementioned abnormali-
ties. The LTP in hippocampus of pa-
tients with schizophrenia is reduced
compared to their healthy counterparts,
and it was correlated with dyscognitive
in the schizophrenic patients [39]. An-
other study investigated the normality
of LTP in the hippocampus showed
there is more decrease in function of
LTP in schizophrenia patients, in com-
parison to healthy individuals [40].
Increasingly evidence suggest that
hypoxia have indirectly impact on ad-
renergic system in the ventral tegmen-
tal area (VTA) via disruption of actin
filament, which results in alternation in
neuron cytoskeleton [41]. On the other
hand, hypoxia status triggers stress in
the VTA, which could lead to the dis-
turbance in actin filaments, resulting in
alterations in synapse of adrenergic sys-
tem[42]. Numerous studies confirmed
the hypoxia circumstance leading to
negative effects on the actin dynamics,
via HIF which is activated in response
to hypoxia status. Such HIF serves as a
transcription factor regulates the expres-
sion some protein implicated in actin
dynamic, such as, ROCK, cofilin, and
RhoA. These proteins involved in actin
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organization, polymerization, and actin
cytoskeleton[43]. Recent research has
shown there 1s abnormalities in ROCK
signaling in patients with schizophrenia,
that indicates potential role of ROCK
signaling in schizophrenia[44]. Other
studies are also shown, there is posi-
tive correlation among aberrant Rho
GTPase and the disorders in the brain
connectivity in individuals with schizo-
phrenia [45]. On the other hand, hypox-
1a can promote several signaling path-
way, which influences on the remolding
the actin dynamics, such as, the MAPK
pathway, and PI3K/Akt [46].

Recently, chronic anemias resulted
from deficient iron delivery can dam-
age the cytoskeletal framework of he-
matopoietic progenitor cells suggest-
ing the identifying of targeted strategy
for cytoskeletal repair, leading to ane-
mia correction [47].Additionally sev-
eral lines of evidence have highlighted
the involvement a number of schizo-
phrenia-associated genes (and their
encoded proteins) in modulating cyto-
skeleton constituents of nerve cells that
is believed to involve in schizophrenia
development. Such findings are sum-
marized in Table 1.

Tablel: Genes implicated
in both cytoskeleton constituents’ modulation and schizophrenia development.

Potential impact in cytoskeleton modulation that linked to schizophrenia
Gene Refs
development
DISC1 Directs microtubule network formation and microtubule organizing centre. (48]
RTN4R | Regulation of actin cytoskeleton by Rho GTPases and the reorganization of actin [49]
cytoskeleton.
SYN2 Neuronal phosphoprotein covering synaptic vesicles, binds to the cytoskeleton, [50]
and regulates the release of neurotransmitter.
SHANK3 Structural and functional organization of .th.e dendritic spine and synaptic junction 51]
plasticity.
DTNBPI Plays a role in actin cytoskeleton reorganization and neurite outgrowth. [52]
Regulates neurite branching and elongation via remodeling of cytoskeletal con-
ULK4 . : . . [53]
stituents, including alpha-tubulin.
DLGAP2 | An adapter protein linking ion channel to the subsynaptic cytoskeleton regulating [54]
and neuronal cell signaling.

MFAPS5 | Affect permeability and motility of endothelial cells via cytoskeleton rearrangement. | [55]
HECW?2 Involved in the regulation of mitotic metaphase/anaphase transition. [56]
KATNAL?2 Major catalytic subunits of the microtubule-severing enzyme [57]
BIRC6 Cytoskeleton and microtubules regulator [58]
GRIN2B Involves in actin cytoskeleton dynamics [59]
AKTI Phosphorylates palladin (PALLD), modulating cytoskeletal organization [60]
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Anemia (iron deficiency) as a risk
factor for schizophrenia through
neurotransmitter pathway

Iron is the most prevalent transition
metal in the brain and is essential for
many neurological processes, such as
neurogenesis, axon myelination, syn-
aptic development, mitochondrial func-
tion, electron transport, neurotransmit-
ter synthesis, and metabolism [61].
Indeed, the disruption of iron homeo-
stasis may influence neurophysiologi-
cal mechanisms, cognition, and social
behavior, ultimately contributing to the
development of a wide range of neuro-
pathologies [62]. Iron deficiency (ID)
1s the most common, avoidable, and
treatable cause of anemia in the world
[63-65]. Recent research suggests that
neurotransmitters such as dopamine,
glutamate, y-aminobutyric acid GABA
and serotonin are major contribu-
tors to schizophrenia, with dopamine
playing the most important role [66].
According to the findings of a recent
study [67] iron deficiency results in an
alterations of monoamine neurotrans-
mitters. Furthermore, dopamine (DA)
1s a key monoamine neurotransmit-
ter in the brain that plays critical roles
in higher brain activities such as mo-
tivation, reward, and cognitive func-

tion. Therefore, it is not surprising that
dopaminergic signaling defects have
been linked to the pathophysiology
of several mental diseases, including
attention deficit/hyperactivity disor-
der (ADHD), Huntington’s disease
(HD), Parkinson’s disease (PD), and
schizophrenia [68]. Moreover, iron is
a cofactor of tyrosine hydroxylase, the
rate-limiting enzyme in dopamine pro-
duction. Therefore, it seems sense that
decreased brain iron levels would de-
crease the availability of iron in dopa-
mine neurons, which may therefore de-
crease dopamine activity in the central
nervous system. Reduced dopamine
activity has been reported to be related
to negative symptoms in schizophrenia
patients [69].

On the other hand, serotonin is a neu-
rotransmitter involved in the regulation
of mood, neuronal activity, and anxiety
and iron is necessary for its synthesis
[67, 70-71]. Decreased circulating iron
leads to disruption of serotonin me-
tabolism and reduced serotonin levels
[72]. Finally iron deficiency during
pregnancy, as well as in infancy and
childhood, is linked to motor, cogni-
tive, and behavioral abnormalities that
are like those seen in children who later
develop schizophrenia [73 -75].
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Conclusions

Considering the scarcity of evidence
linked schizophrenia development to
anemia and cytoskeleton constituents’
disruption, a new insight can be gained
by reviewing genes involved in regu-
lating neural cell cytoskeleton in rela-
tion to the subsynaptic cytoskeleton
regulating and neuronal cell signaling.
Although the direct link between ane-
mia and schizophrenia has not estab-
lished yet, however, the potential link
of iron deficiency to cytoskeleton dys-
regulation opens a new venue for un-
derstanding schizophrenia biology and
suggesting novel therapeutic targets to
tackle such devastating disease.
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