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Abstract

Diabetes is one of the most critical diseases in
the world which requires measuring the
concentration of glucose also the injection of
insulin to control the glucose rate in the body. The
proposed controller is applied to the Bergman’s
three-state minimal patient model, where the
model is considered certain but with unknown
meal. In the present work, a nonlinear controller
is designed to control the concentration of glucose
based on the Backstepping approached with a
sliding mode for observing the disturbance meal.
So will have estimated the meal and have
canceled the effect that the glucose concentration
has regulating to the basal level.

The effectiveness of the proposed controller,
which represent the insulin dose, is proved via
simulating the Bergman’s model with designed
controller via MATLAB Simulink software. The
result clarify the ability and the robustness of the
proposed controller.

Keywords: Backstepping Controller, Sliding
Mode Controller, Sliding Mode Observer, The
Chattering.

1. Introduction

Diabetic patients are impairing regulatory
responses so the level of the glucose
concentration in the blood remains high even if
patients don't eat [1]. Glucose concentration in
Bloodstream is regulating naturally by two
hormones: insulin and glucagon. Both of these
hormones are secreted by g-cells and «-cells in
the islets of Langerhans in the pancreas,
respectively. The concentration of glucose ranges
from 70-110(mg/dl). Accordingly, there are
two state, Hyperglycemia (the glucose
concentration is higher than normal level) and
Hypoglycemia (the glucose concentration lower
than normal level). For Type 1 diabetes the
body’s resistant system attacks S-cells of the
pancreas which give insulin. A high glucose
concentration applies osmotic pressure in the
extracellular liquid and can cause cellular
dehydration. When cells miss their water they
shrivel and die. Both, hyperglycemia and
hypoglycemia leads to a risk to the life of
patients. These have side effects that make the
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body susceptible to many diseases of retinopathy,
neuropathy, renal failure, and amputations of the
body.

According to the report of the World Health
Organization in excess of 180 million people hurt
from diabetes in the world according to these
report may be the number of people patients with
diabetes will be double in the following 30 years
[2, 3]. It estimates that about 9% of all deaths in
the world are caused by diabetes [4]. More than
diabetes will be the 7th leading cause of death in
2030 [5].

In patients the cell that responsible of
regulated glucose rate cannot achieve this task.
Therefore, an external controller wanted to better
solve the problem. Including continuous
monitoring of insulin and glucose, there are many
models have helped to understand the process,
treatment and get the best results through the
robust controls. One of these model is Bergman’s
three-state  minimal patient model which is
introducing a nonlinear model.

The Backstepping controller (BSC) design for
blood glucose control assumes that the glucose
level is accessible for control and another states of
plasma insulin concentration are inaccessible for
measurement [6]. According, it can clearly be
seen that the Backstepping (BS) with sliding
mode controller (SMC) is more precise than
proportional-integral-derivative (PID) and Fuzzy
controller.

The system combined with a control as a
discontinuous state function is called sliding
modes [7]. The sliding mode dynamics do not
depend on control but depend on the equations of
the switching surface. Hence, the design Process
must be made of two steps. First, will have chosen
the equation of the sliding surface (manifold) with
sliding mode that are used to design the wanted
dynamics of this motion in agreement with some
performance condition. Second, will have found
the discontinuous control so that states would
reach the manifold and sliding mode. “From a
geometrical point of view, the equivalent control
method means replacement of discontinuous
control on the intersection of switching surfaces
by a continuous one such that the state velocity
vector lies in the tangential manifold"[7].
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The concept of equivalent control was utilized
by Utkin [7] to design an observer depends on the
sliding mode control theory named a sliding mode
observer (SMO). The SMO can be used to i)
estimate the system state [8], ii) the derivative of
a certain signal (sliding mode differentiator SMD)
or iii) to estimate an unknown quantity like the
disturbance meal (sliding mode perturbation
observer SMPO [9]).

In the present work a SMPO will be utilized to
estimate the disturbance meal that affect the blood
glucose concentrations. The estimated quantity
will be used in designing a nonlinear controller
based on Backstepping approach to regulate the
glucose deviation in presence of disturbance meal
with or without an initial deviation of the blood
glucose or both.

In the next sections the mathematical model of
the insulin glucose regulatory System is presented
then utilizing the method of the classical sliding
mode observer is offered depending on equivalent
control theory [10, 11, 12].

In the last sections, BSC nonlinear controller
utilize an estimate for the disturbance term that
affects the insulin glucose regulatory system.

Finally the control system is simulated for
different initial values in presence of meal or not
via MATLAB software. Figure (1) shows The
block diagram of applied method.

Estimated input Observer

& its derivative

SMO

Nonlinear
System

Figure 1: The block diagram with SMO observer
for control system.

Out

Feedback

2. Mathematical Model

Dr. Richard Bergman is one of the pioneers
that have been made many effort to model
diabetes and developed, so-called 'Bergman’s
three-state minimal patient model' (BEM). There
are many advantages of this model are the number
of parameters is minimum and it describes the
interaction between main components such as
insulin and glucose concentrations without getting
into biological complexity. [13-15]. The dynamic
response of the diabetic patient based on two
factors approximate glucose concentration in the
blood with insulin injections can be represented
by the following nonlinear differential equation,
where it deal with deviation instead of
concentration  of  glucose and  insulin
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[16];
G(t) = —plG(t) — (G(t) + Gh)X(t) + D(t)
X(®) = -p2 X(t) +p3I(t) €y
I(t) = —paI(t) + u(t)

Where the glucose deviation G(t) and insulin
deviation I(t) are defined in terms of glucose
concentration G.(t) and insulin concentration
I.(t). That is; G(t) = G.(t) —Gb and I(t) =
I.(t) — Ib.

Table 1: Physical

meanings of variable in

equation.
Variable | Physical meanings Unite
(o) Plafj?\zaﬂlizaose (mg/dL)
Remote compartment ,
X(©) insulin utiIFi)zation (1/min)
Plasma insulin
1) deviation (mU/ml)
The control variable (mU/mL)
u(t) is the exogenous » min~1)
insulin infusion rate
D) The disturb_ance (mg/dL
exogenous input / min)
The basal pre-
Gb injection glucose (mg/dL)
level
The basal pre-
Ib injection insuﬁn level (mU/mi)
The rate constant for
pl uptake glucose in (1/min)
liver and muscles
The rate for decline
p2 the ability of tissue (1/min)
for glucose uptake
The ratio increase in [(mU
p3 glucos?nutpi;zzﬁz ability Jml) min?]~1
The first-order decay
p4 rate for insulin in (1/min)
blood

Bergman also presented two factors which are
effecting on the regulation of glucose inside the
human body. IS is the insulin sensitivity which is
the ability of insulin for disposal the glucose to
muscles and liver as much as possible represented
the ratio of (p3/p2) and GS is the glucose
sensitivity which is the ability of glucose to
strengthen its own disposal at basal insulin level
and is represented pl. These two factors are
denoted ‘Metabolic Portrait’ for every person and
are essential indicatives of how glucose and
insulin act inside that person’s body [17]. Figure
(2) shows the disturbance meal D(t) can be taken
a standard as presented by Lehmann and Deutsch
[18].

k) ()
D(t) = <ﬁ) elz
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Where t isin (min) and D(t) isin (mg / dl /
min), k denoted carbohydrates quantity in meal,
and b is constant value taking from Table 2 in [4].
The control design approach which is presented in
this work needs a model with relative degree one
between the glucose deviation G(t) and the
insulin infusion rate wu(t). To do that the
Bergman’s model (Eq.(1)) is reduced to a set of
two first order equation via eliminating the
dynamics of the second line in Eq.(1) (the X(t)
dynamics). This step is done but after a primary
design step which consists of transforming X (t)
dynamics to a low pass filter [19] via the
following state transformation, which derived as
follows; Let
—p2 X() + p3I(t) = %(—X(t) +2Z(1))
Z(t) =1 —1p2) X(t) + p3I(t) (3

Where Z(t) is a new state variable. Substitute
(3) in the Bergman’s model, yield;

G(t) = —p1G(t) — (G(t) + GhYX(t) + D(¢t)

X =1 =x(®) + 2(t)}

T
Z(®) = (1 —t2)(—p2 X(t) + p31(t))
—(Tp3pd)I(t) + (tp3)u(t) .....(4)

With a proper selection of the time constant T,
X(t) = Z(t), and hence the Bergman’s model
reduces to;

G(t) = —pl1G(t) — (G(t) + Gh)X(t) + D(t)
Z(t) = 1 —w2)(-p2 X(©) + p31(1))
—(Tp3pDI1(t) + (tp3)u(t) (5)

In Appendix A, the maximum difference [X(t) —

Z(t)| has been estimated, and both of X(t) and

Z(t) are plotted for two simulation cases that

considered in this work. These two figures show

that X (t) = Z(t) as it is required.

The proposed nonlinear controller which it is
designed based on the reduced Bergman model
Eq. (5), is presented in section (5).

3. Problem Statement and The

Proposed Control Structure
In the presence of nonlinearity in system
model and perturbation, a regular BS method can't
be applied especially when the matching
condition is not satisfied. Considering the glucose
Bergman’s model as described by Eq.(1), the
perturbation in Bergman’s model, include
uncertainties in system parameters and the
unknown bounded external meal, lies in the first
line in Eq. (1), the meal does not lie in the input
channel (the third line in Eq. (1)), and this means
that the matching condition is not satisfied for this
model. Accordingly the BS cannot be applied
unless this perturbation is assumed known or
estimated. For this reasons, a robust SMPO is
used in this work in order to estimate the
disturbance meal and enable us to design a

nonlinear controller based on BS method.
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The relative degree in the Bergman’s model
equals to two. This will make the application of
the BS method in designing a nonlinear controller
more difficult. So a reduced Bergman’s model is
required in order to make the relative degree
equals to one. As a result, deriving the control law
becomes easier, and additionally requires only the
first derivative of the disturbance meal as
illustrated in the subsequent sections. Eventually
the proposed BC design relaxes the matching
condition with the aid of estimating the
disturbance meal D via SMPO.

4. The Sliding Mode Perturbation

Observer (SMPO)

In the construction of any practical control
problem, there will always be a difference
between the real model and its mathematical
model used for the controll strategy. These
difference (or discrepancy) appear from unknown
input  disturbances, uncertainty in  model
parameters, and un-modeled dynamics. Designing
control law that gives the wanted performance to
the closed-loop system in the existence of
perturbation (disturbances input /uncertainties in
the parameter) is a very important task for a

control engineer. One design idea for this
situation is to cancel the perturbation term after
estimating it.

In this paper concept of SMPO will be used
for estimating the disturbance meal D(t) based on
equivalent control methodology [12]. After
estimating D(t) the control law will use this
estimation to cancel its effect as will be shown
later. The following procedure uses the SMPO to
reconstruct the unknown input [9] (the meal) for
BEM model.

In the first step, let the observer dynamics be
given by;

G(t) = —pl1G(t) — (G(t) + GhYX(t) + k *
) sgn (G(t) — G(t)),
G(t,) = G(t,) (6)

Where it is assumed that the disturbance meal
is the only unknown term. Define now the sliding
variable s as;

sH=6-660 ... 7
And its time der?vative as
s=6)-G .. (8)

From Eq.(1) & Eq. (6);

s(t) =D(t) —k* sgn(s)

Equivalently during sliding mode $ = s = 0,vt =
to [7];

D(t) = [k * sgn(s(t))]eq

Where [k * sgn s(t)]., is the equivalent
operator of signal function.

The estimation for the meal D(t) is obtained
according to the equivalent control concept [7].
Mathematically the estimated meal v(t) is the
output of the following LPF;
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v(t) = %(—v(t) +k sgn(s(t))) ...... )
And according to Utkin [7]
v(t) = D(t)

To this end the value of k is selected such that
[20]

k> mtaxlDl
or
k=k,+ mtaXIDl ...... (10)

Assuming that the meal disturbance is
bounded by some positive real number like M
(mtaxlDI < M) hence we have;

k=k,+M .. (11)

4.1 SMO with Approximate Signum
Function (ASMO)

The chattering behavior is an inherent feature
in sliding mode controller and observer. Hence
the chattering will be exist in observing the meal
when it is estimated according to the above
design. To eliminate the chattering which occurs
in SMO, the sign function is replaced by an
approximation signum function as follows [20];

sgn(s) = %tan'l(y s) (12)

Where y > 1 is an observer design parameter.
By selecting the observer parameters k and y (see
Appendix B), the error in estimating the meal §
is given by [20].
w(t) = 8] < ——tan 13
v an2k ...... (13)
where M = sup D(t)

t

5. Backstepping Controller Design

The Backstepping approach is an effective
tool for high-order system control problems [21,
22]. Usually a virtual controller is computed to
take place the control action in the upper
uncontrolled subsystem. In the next step, it is
required to determine the derivative of the virtual
controller, which it is usually contains known
terms function to the system state. As mentioned
above the virtual controller will contain a
continuous estimation to the disturbance meal
with its derivative. Consequently, one can
distribute the control design procedure into two
steps: First, design the virtual control Z,(t) to
guaranty that glucose subsystem is stable. Second,
adjust the actual control input to force the variable
Z(t) to follow Z,,(t).

Now let the virtual controller Z,(t) be given
as;
2,(®) = ey (ki = PG +v(®)} - (19)
When Z(t) = Z,(t), the first channel in Eq.(5)
becomes;
G@t) =-k,G) .. (15)
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For k; > 0, G(t) goes to zero asymptotically. To
enforce Z(t) to follow the virtual controller Z,(t)
the following error function is introduced;

e(®)=2(t)-Z,(t) ... (16)

To derive the control law that will make e(t)
goes to zero, a nonstandard Backstepping [23] is
utilized here. First will have needed to derive the
error function dynamics by differentiating Eq.(16)
e(t) =Z(t) — Zy(t)

= (1 —w2)(-p2 X(©) + p3I()) —
(p3pD)I(t) + 3 u(t) — Z,(t) ... (17)

where
Z,(t) ,

(G@®) + Gh){(ky —p1)G(t) + v(8)} —
I (G 2 A GO RAZ G G NP
- (G(t) + Gb)?
and G(t) is computed based on the estimated
meal D(t)
G(t) = —p1G(t) — (G(t) + Gh)X(t) + v(t) (19)
While v»(t) is simply from the LPF equation
(Eq.(9)), and using the approximation in Eq. (12);
v(t) = ( v(t) + —tan_l(ys)) ...... (20)

Eventually the control law which proposed in
the present work is

1+ (- =2 (-p2 X(0) + P31 (D))
u® = (3) +Hap3p)I(0)
+Z,(t) — k2e(t)

G(t) = —p1G() — (G(O) + GBYX(t) + %tan_l(ys)

1 2k
b(t) = ;(—v(t) + ?tan'l(ys))

With initial conditions  G(0) = G(0) and
v(0)=0.

The control law in Eq. (21) will make the error
function e(t) regulated to zero asymptotically,
and consequently Z(t) regulated also to Z,(t)
asymptotically.

After that Z(t) will work as a virtual
controller to regulate the deviation G(t) to zero
after it influenced by the meal D(t). Note that the
virtual plasma insulin deviation I,(t) can be
evaluated from Eq. (3) as;

1,@6) = (pZT _ 1) X() + (é) Z,@®) o (22)

The actual controller will force also the
plasma insulin deviation I(t) to follow I,(t).

6. Simulation Result

The patient full insulin glucose regulatory
system model that is used in present simulations
is given in Eq. (1). Two cases have been used in
the simulations, which uses the bound on the
disturbance meal as mtax|D| < 2. According to

carbohydrates quantity in meal, the disturbance
meal parameters which used to implement Eqg. (2)
is given in Table 2 [4]. System parameters which
used to implement Eq. (1) are given in Table 3

(21)
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[24]. Also the suggested BS controller and the
ASMPO parameters are listed in Table 4 below.

Table 2: Disturbance meal parameters.

Parameter Value Unite
k 150 (mg/dL)
b 80 —
Table 3: System parameters.
Parameter Value Unite
pl 0.028 (1/min)
2 0.025 (1/min)
p3 131075 | [(mU/ml) min?]?
p4 926 x107* (1/min),
Gb 110 (mg/dL)
Ib 1.5 (mu/ml)

Table 4: Proposed BS controller and the ASMPO
system parameters.

Parameter Value Unite
T 1 min

k2 100 -

k1 0.01 -

k 1.3372 -
Ty 0.08 min

Figure (2) shows the disturbance meal that
taken in the simulations. Figure (3) shows the
open loop responses of a sick person with meal. It
is easy to see that the glucose of the patient is
increasing to then decay back at the basal level
(G(t) =0) in the presence of the meal
disturbance, also the sick person’s glucose level
entered in risk range.

Meal (mg / dl / min)

0 100 200 300 400 500 600

time(min.)

Figure2: the disturbance meal.
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Figure 3: Open-loop glucose regulatory system
with meal.

In case one, the BS control is applied to
system model in Eqg.(1) and the response of
system in presence of the disturbance input is
studied. Firstly, Figure (4) shows the estimated
meal that using Classical Sliding Mode Observer
(CSMO) where the chattering behavior is
obvious. Figure (5) represents result to disposal
from chattering by using Approximate Sliding
Mode Observer ASMO with error equal or less
than 0.1.

12 I ]
Disturbance {meal)
1 Estimation disturbance |
i) : :
£ ost
L
o
E 06r
©
]
£ 04t
2
©
E 02
@
i
0

P 300 400 500
time(min.)

Figure 4: Estimated meal using CSMO.
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100 200 600

T T
Disturbance input
Estimation Disturbance

08

061

04+t

Estimate meal(mg/dl/ min)

02

0

300
time(min.)

Figures 5: Meal estimated using ACSMO .
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Figure 6: Glucose deviation.

Figure (6) shows glucose deviation after
applying the proposed controller where the
deviation does not exceed 1.5mg/dL and decay
to zero in less than 150 min. This result can be
explained as follows; in spite of existence of the
meal D(t), Figure (7) shows depicted the plasma
insulin deviation I regulated to the desired or
virtual value plasma insulin deviation I, after a
small period of time. After that the effect of D (t)
is eliminated, via feeding back the output of the
ASMPO, and deviation in G (t) is again regulated
to zero. Figure (8) shows the insulin infusion rate
(the actual controller) with maximum rate does
not exceed 1.2mU *min~! then regulated to
zero, Figure (9) shows eventually the insulin
deviation in the remote compartments.

[N
w

22236
22235
22235
222341

68 24662458625

N
T

(&

o
[

o

Virtual and Plasma Insulin deviation (mU/dL).
o

100 200 300 400 500 600
time(min.)

Figure 7: The plasma insulin and virtual value
plasma insulin deviation.

o
[

o
>

)
N

2,
i

The control insulin Infusion rate (mU/min)

o

0 100 200 300 400 500 600
time(min.)

Figure 8: Controller
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Figure 9: The insulin concentration in the
remote compartments X (t).

Another set of simulation results where the
disturbance input and initial value of the glucose
deviation (G(0) = 10 mg/dL) are considered.
Figure (10) shows the result of applying the
proposed controller where the glucose deviation
are decayed from the initials value of 10 mg/dL
to 0 mg/dL to zero level in less than 250 min.

This result can be explained as follows; in
spite of existence of the meal D(t) and initial
value of the glucose deviation, as shown in Figure
(11) shows the plasma insulin deviation I
regulated to the desired or virtual value plasma
insulin deviation I, after a small period of
time.After that the effect of D(t) is eliminated
and deviation in G (t) is again regulated to zero.

Figure (11) shows the plasma insulin
deviation and virtual value plasma insulin
deviation. While Fig. (12) shows the insulin
infusion rate (the actual controller) with
maximum rate does not exceed 1.4mU *
min~! decays to 0 mU * min~! value.

10

@

Plasma Glucose deviation(mg/dL)

1 H i H
200 300 400 500 600
time(min.)

Figure 10: Glucose deviation

0 100
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Figure 11: The plasma insulin and virtual plasma
insulin deviation
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Figure 12: Controller
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As shown in two cases the glucose
concentration is stable asymptotically at the basal
level in a reasonable time (approximately two
hour) just like healthy person.

7. Conclusion

Insulin glucose regulatory system for diabites
patient have become a difficult problem that has
been discussed and  designed many of the
controllers such as PID and other controllers
offered in other works. The approximate sliding
mode observer estimator (ASMO) is used in the
present work to estimate the disturbance input
(meal) in the insulin glucose regulatory model
through the design of a strong Backstepping
feedback control. The control input to the patient
is treated as a dose taken insulin to control the
glucose concentration. Two cases have been
offered to cancelling the effect of disturbance
input is effective and necessary in order to
maintain blood glucose level in patient body at
the basal value like healthy person. Designing a
robust (BS) continuous control based on ASMO is
the idea behind the paper. The simulation result of
case one offered the effectiveness of the proposed
BS control with ASMO and how regulate the
concentration of glucose by a dose of insulin
injection, where the maximum glucose deviation
does not exceed 1.5 mg/dL compared with open
loop case where glucose deviation reaches
35mg/dL then reaches the steady state value.
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The ability and effectiveness of the proposed BS
controller is again tested by adding an initial
value to the glucose deviation. The results show a
good performance and give acceptable results
which denote the feature for the proposed
controller and observer.
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Appendix A
Consider the second channel in Eq. (4);

X + %X(t) %za) = e/DX(t) +
Ze®/Mx(6) = 2e“/Mz(1)

= £ (eW0x(t)) =2e/D2(t)

Integrate both sides with the aid of by part, yield
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= e®/Ix(t) - X(0) = [} ~e“/DZ(s) ds

= e®/DZ(t) — 2(0) — [, e®/DZ(s)ds
Or
e“D(X() — Z(®)) = (X(0) — Z(0)) —

fot eG/M7(s) ds
= e®IX() - Z(D)|
< IXEO) —Z(0)|
/D7(5) d
+ fo e (s)ds

< 1X(0) — Z(0)| + [ e©/?|Z(s)| ds
< 1X(0) — Z(0)] + ( NS ds) sup|Z ()]
= |X(0) = Z(0)| + (e®™ — 1) sup|Z(®)|

2 eWD1X () = Z(®)]
< 1X(0) - z(0)]
+7(e®? — 1) sup|Z(t)|

Or
1X(®) —Z(®)] < eCD1x(0) — Z(0)|
+7(1—eCYD) sup|Z(®)|

Usually X(0) = Z(0), and Z(t) is a bounded
quantity, and fort = 107, the maximum error
[X(t) — Z(t)| becomes;
IX(®) — Z(t)| < T *sup|Z(t)|
t

From the simulation results which presented
above, and after approximately 10 min (r = 1)
the maximum error does not exceed supl|Z(t)|.

t

Figure (13) and Figure (14) depicted how a
general solution to second channel in Eq. (4) for a
sufficiently value of 7, X(t) = Z(t),with using
the proposed nonlinear controller for two cases of
reduced Bergman model Eq. (5) with time less
than 300 min.
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Figure 13: the X state and Z state for 1'st case
with T = 1min
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001 . . . . , Appendix B
. ; : x10° : Xstate| | Appropriate selection of y and k are obtained
222: N I aE 7 according to Eq. (10) and inequality (13). The
AOOOT A e e e SMO gain k is set equal to (Eq. (10))
S Ll FONNG = : b

£0005 PTI, Su— t

3 0,004 o o =0.2+1.1372

2 : . = 1.3372

Y 2222 | Now set the maximum estimation error to 0. 1 in
inequality (13) yield;

2 T
- < -
[v(t) — 6] < o tanstng(t)

00 160 260 3E.JO 460 500 600
time(min.) -
] 0.1= tan—sup D(t)
Figure 14: the X state and Z state for 2'nd case Txy 2k
with T = 1min 20 n
>y = t *1.1372
¥ =0.08 "2 13372
y = 5.8298

where 7; = 0.08.
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