محلة جامعة بابل/ العلوم الصرفة والتطبيقية/ العدد (٤) / المحلد (١١): ١٣٠١

تقويم كفاعة النتروجين والنحاس في مكافحةاللفحة البكتيرية على البصل المتسبب عن.Xanthomonas sp.

Allium Xanthomonas Xanthomonas cepa L. CuSO₄.5H₂O 100 80 60 0) Yeast extract – dextrose – CaCO₃ 20 10 0) / 100 (Xanthomonas (YDC) 10 / 10 / 100 Xanthomonas Xanthomonas

Abstract

This study was conducted to isolate and identify *Xanthomonas* bacteria which causing blight of bacterial diseases on *Allium cepa* L. plant, and resistance this bacteria by using nitrogen and copper fertilizer. *Xanthomonas* bacteria was identified according to microscopic and biochemical characteristics. Field experiment was carried out by planting white onion bulb; four levels of nitrogen fertilizers were applied to soil (0, 60, 80 and 100 kg N/ha) and three levels of copper sulfate (0, 10 and 20 mg Cu/L.) by foliar application. Two treatments of *Xanthomonas* inoculum were used (YDC medium without bacteria, *Xanthomonas* inoculum).

Nitrogen level of 100 kg N/ha gave the highest average of the most growth characteristics, plant height, leaf length, number of leaves and total yield. The copper level of 10 mg Cu/L. gave the highest average of shoot and yield characteristics. Bacterial inoculum affected decreasing of growth and yield as compared with plant without inoculation. The treatment of 100 kg N/ha with 10 mg Cu/L. and without inoculation with *Xanthomonas* gave the highest value of the most of growth and yield characteristics.

(Allium cepa L.) Onion

.(1997 Randle) Amaryllidaceae

/ 47.461

Allium cepa L.

/ 24.23

(2003 FAO) / 19.89

.) 1997 / 10.67

.(1998

مجلة جامعة بابل// العلوم الصرفة والتطبيقية// العدد (٤) // المجلد (٧): ١٠٠٩

Bacterial Blight Disease %30 Xanthomonas .(1943 Dowson) .(2003 Schwartz) .(1999 150 Xanthomonas 10-1 10 10 ⁶⁻10 ¹⁻10 0.1 (YDC) Yeast extract – dextrose – CaCO₃ 72 ° 27 Plate count method 6-10-¹⁻10 (8.5) 1 25 ° 45 **YDC** ° 27 (CFU/ml) / ×

.(1983

)

مجلة جامعة بابل// العاوم الصرفة والتطبيقية // العدد (٤) // المجلد (١٠٩١: ١٣٠٩) %46) 0) ((10 / 100 80 60 Triple super phosphate 21 (/ 25 / 48 %21-19) (1985) 30 $CuSO_4.5H_2O$ 50 Singh) 6-4 .(20 10 0) (1997 Gad 1983 15 () Xanthomonas (Xanthomonas **YDC** Xanthomonas 150 () () () Randomized Complete Block Design (RCBD) .(2000) %5 L.S.D. (2) / 100

/

67.1 0

150

60.0

150

مجلة جامعة بابل// العلوم الصرفة والتطبيقية// العدد (٤) // المجلد (١١): ١٣٠٩

.(1999) / 10 150 65.0 63.3 / 150 0 Cytochromoxidase Laccase Phenolase (1) Xanthomonas Xanthomonas 150 63.4 65.5 Xanthomonas Xanthomonas 150 Xanthomonas 10 80) / 68.9 150 (Xanthomonas / 0 / 0) 150 56.1 (Xanthomonas .Xanthomonas (1) **Xanthomonas** () **150 Xanthomonas** Xanthomonas 20 10 0 20 10 0 60.0 61.5 56.1 62.5 65.6 57.9 0 61.3 62.0 63.6 62.7 64.8 66.1 65.4 66.5 66.6 60 63.5 63.1 64.9 62.4 62.1 66.7 68.9 63.7 67.5 80

67.3

65.5

67.0

65.9

68.4

66.0

66.6

64.6

100

66.9

63.4

66.9

63.9

67.6

64.0

66.2

61.9

مُجلة جامعة بالل/ العلوم الدرفة والتطبيقية / العدد (ع) / المجلد (٧): ٩١٠: (١٠)

150	()			(2	2)	
	/					
	20	10	0		/	
60.8	61.9	63.5	57.0		0	
64.8	64.0	65.5	65.0		60	
64.9	66.9	63.0	64.8		80	
67.1	66.9	68.0	66.4		100	
64.4	64.9	65.0	63.3			
			1.48	878 =	L.S.D. 0.05	
	1.0521 = Xant	thomonas L.S.D. 0	.05	.2885 =	L.S.D. 0.05	
		3.6391 = X	Xanthomonas ×	×	L.S.D. 0.05	
					_	
150				(4	1)	
		/	100	,		
		150	47.72	2		
		150			/ 0)	
			42.76	(,	/ 0)	
Kumar)	(1	1999)			
ŕ	·		.(2005		1998	
			/		20	
(/ 0)			150		46.82	
,					44.54	
			•		44.54	
			,			
Xanthomonas			(3)			
	150	44.9	97 Xanthomond	ıs		
			46.46			
			Xanthomonas			
			Adminomonds			

مجلة جامعة بايل/ العلوم الصرفة والتطبيقية / العدد (ع) / المجلد (٧): ٩١: ٥٠١

	Xan	thomonas	5									
				20 /	,		80					
					Xanthomonas							
/	20	/	0							8.80		
,	20	150		11.23	(Var	ıthomona	a		3.00		
()	•				(2	Aur	шиотопа	3		(4)		
()		Λ	Canthomo							(4)		
				150								
		_					_					
		anthomon	as	-		Χι	anthomon					
	/			_	/					1		
	20	10	0		20		10	()			
41.30	41.23	41.43	41.26	44.23	44.8	3	44.50	43	.36	0		
44.84	46.43	45.66	42.43	46.70	47.9		43.83		.30	60		
46.22	46.80	47.40	44.46	47.06	48.8		48.70		.70	80		
47.56 44.97	49.86 46.08	47.86 45.58	44.96 43.27	47.88 46.46	48.7		47.03 46.01		.93 .82	100		
44.97		43.36		40.40	47.3	/	40.01	43		(=\		
	150	1	()						((5)		
			/									
		20)	10			0			1		
	2.76	43.0	-	42.96			42.31			0		
	5.76 5.64	47.		44.74		45.36 44.08				60 80		
	7.72	49.2		47.44			46.44			100		
	5.72	46.0		45.79			44.54					
							1.8	294 =		L.S.D. 0.05		
								.5843		L.S.D. 0.05		
							1.2936 =	Xant	homor	as L.S.D. 0.05		
				5.24	-8 = Xar	ıtho	monas ×	×		L.S.D. 0.05		
									1	-		
	. /							(6)				
11.76		/					/			100		
	/	0					150			/		
•		_			1	50	100		/	11.05		
									,	11.03		
	~				Le		primordia		,			
1992	Srinivas	Niak)					(1957 N	Ijoku	1)			

.(2005

مجلة جامعة بابل// العلوم الصرفة والتطبيقية// العدد (٤)// المجلد (٧): ٩٩:٠

plastocyanin

(1975 Blashop 1966 Boardman)

(stability)

.

. Xanthomonas (5)

150 11.23 Xanthomonas

Xanthomonas

Xanthomonas 150 11.65

.

 100
 /
 Xanthomonas

 /
 Xanthomonas
 /
 20
 /

 .
 150
 /
 12.73

 Xanthomonas
 /
 0
 0

. / 10.46 *Xanthomonas* (6)

150

Xanthomonas Xanthomonas / / / 20 10 0 20 10 0 10.53 10.46 11.70 11.13 11.06 11.43 11.46 11.33 0 11.13 11.10 10.93 11.58 12.10 11.33 60 0 11.63 11.53 11.46 11.77 12.00 11.55 11.76 80 12.73 0 100 11.56 11.60 11.90 11.85 11.60 11.23 0 11.34 11.19 11.18 11.65 12.13 11.48 11.36

مُجلَة جَامِعَة بِالِل // العَامِم الدِرِفة والتطبيقية // المحد (ع) // المجلد (٧): ٩١: ٥٠٠

			/					
	-	20		10		0		/
11.0	5	11.38	1	0.99		10.79		0
11.3		11.61		11.21		11.13		60
11.6	5	11.81	1	11.54		11.61		80
11.7	6	12.14	1	1.60		11.56		100
11.44		11.73	1	11.33	.33 11.27			
		0.2956 =	L.S.D	. 0.05		0.3	413 =	L.S.D. 0.05
						0.2414 =	Xanthon	nonas L.S.D. 0.05
			().8349 =	= Xantho	omonas ×	×	L.S.D. 0.05
								-
					(8)			
	/	100				150		
	•	100			150	100		
					150			
15	50							3.44
							3.14	
)		(1991)				
,		()		,	(2	2005		1979
,	10		150		. (2	.003		17/7
/	10		150					
			3.31					
		150		3.25		(/	0)	
							·	
(1991		1						
(1991		,						
				•				
					(7	7)		
								Xanthomonas
						150	3.23	Xanthomonas
								Xanthomonas
								Aunthomonas
					•			
						(7)		
		150				Xantho	monas	
		/	1	0	/		100	
		150	3.79					Xanthomonas
		/	0	/		0		
					150	3.11		Xanthomonas

مجلة جامعة بابل/ العلوم الدرفة والتطبيقية / العدد (ع) / المجلد (٧): ٩١٠: (١٠)

	Xanthomonas									(8	3)
		150 ()									
	Xc /	anthomon	as		Xanthomonas /					/	
	20	10	0	-	20	1	0	0			
3.14	3.13	3.18	3.11	3.15	3.21		3.14		2	0	
3.22	3.26	3.19	3.22	3.26	3.28	3.	23	3.2	9		60
3.22	3.22	3.28	3.18	3.37	3.35	3.	37	3.4	1		80
3.32	3.35	3.34	3.28	3.56	3.48	3.	3.79		2		100
3.23	3.24	3.20	3.19	3.33	3.33	2.	39	3.2	9		
	150		()							(9))
			/								
		20	C	10			0			/	1
3	.14	3.1	17	3.16)	,	3.11				0
3	5.24	3.2	27	3.21	3.21 3.25				60		
	5.29	3.2		3.32 3.29					80		
3	5.44	3.4	11	3.56	<u> </u>		3.35			1	.00
3	5.28	3.2	28	3.31		3.25					
							0.	1155 =		L	.S.D. 0.05
								0.1	=	L	.S.D. 0.05
						0.0	0817	= Xanti	homoi	nas L	.S.D. 0.05
				0.282	25 = Xan	ıthomon	as ×	×		L	.S.D. 0.05
											-
							(12)			
				/	8	0 10	0				
1	00					/		60			
	20.3	22				·					/
,	20.3										1
		/	16.344								
					.(20	05)		(19	79)		
								(12)			
			/	10				. ,			
	,	17 271	,	10						,	10 045
	/	17.271								/	18.945

مجلة جامعة بايل/ العلوم الصرفة والتطبيقية / العدد (ع) / المجلد (٧): ٩١٠: (٢٠٠١)

Χc	anthomond	as		(11)								
	/ 17.	201										
		/	19.189									
		•					(1	0)				
0	/	100 Xanthomonas								าสร		
Ü	,											
0	,	Xanthomonas /								/ 21.041		
0	/											
		. /	13.336	Xan	ıthom	onas	S			/		
		Xanth	omonas						(10))		
					(/	')			\ - <i>i</i>	,		
					,							
	Y.	anthomon	as			Y.	anthomon	as				
	/	инитотоп	us									
					20 10					/		
	20	10	0				10		0			
15.233	16.915	15.448	13.336		17.6		18.440	16.250		0		
16.008	15.233	17.834	14.959		18.3		19.203	17.111 18.812		60		
18.375 19.189	18.241 19.848	19.027 19.633	17.677 18.088		18.8		21.158 20.826	21.941		80 100		
17.201	17.604	17.985	16.015		19.1		19.906		3.528	100		
17,1201	17700	1		171107	1771		171700		(1)	1\		
		(/)						(1.	1)		
	}		/			I						
		20			10		0			/		
	5.34	17.29			16.944 14.793			0 60				
-	.120 .990	16.80 18.63		18.518 20.092				16.035 18.244				
	.323	20.7		20.229			20.014					
	.194	18.3		18.945			17.271					
L									L.S.D. 0.05			
				1.0951 = L.S.D. 0.0								
							0.8941 = X	Kantl	homona	s L.S.D. 0.05		
				3.0929	= Xar	ithon	nonas ×	×		L.S.D. 0.05		
							.198	3				
	•		•	200	M		.198	J .				
				.200	JU .							

1534

محلة جامعة بابل// العلوم الصرفة والتطبيقية// العدد (٤) / المحلد (١١): ٢٠٩١

.2005 .

.Allium cepa L. Glutathione

.1985 .

.1989 .

.109-101:(5)1 .
.() .1999 .

.1091 .

- **Arnon, D.I. 1950.** Function aspect of copper in plants, p. 89-114. In: Copper metabolism. The John Hopkins Press, Baltimore.
- **Blshop, N.J. 1975.** Partial reactions of photosynthesis and photoreaction. Ann. Rev. Plant Physiol. 17, 185-208.
- **Boardman, N.K. 1966.** Trace elements in photosynthesis, p. 199-212. In: Trace elements in soil plant. Animal systems. Nicholas, ED., EGAN, D-J.D. and EDAN, A.R. Academic Press.
- **Dowson, W.J. 1943.** On the generic names *Pseudomonas, Xanthomonas* and *Bacterium* for certain bacterial plant pathogens. Transaction of the British Mycological Society 26,4 (cited from Allen, D.J. and J.M. Lenne. 1998).
- **FAO. 2003.** Production year book. Food and Agriculture Organization of the United Nation. Rome, Italy.
- Gad, A.A.; M.A. El-Beheidi; M.H. El-Sawah and S.A. Swidan. 1997. Response of onion to NAA, manganese and zinc. 2. yield and quality of bulbs. Zagazig J. of Agri. Res. (Egypt). V. 17 (2) p. 397-402.
- Kumar, H. J.V. Singh; K. Ajay and M. Singh. 1998. Studies of influence of nitrogen on growth and yield of India. J. of Agri. Res. 32(2): 88-92.
- Naik, L.B. and Srinivas. 1992. Seed Production of vegetable crops-II: onion A. Review. Agri. Res. 13: 59-80. India Institute of Hort. Res. Bangalore, India.
- **Njoku, E. 1957.** The effect of mineral nutrition and temperature on leaf shape in *Ipomoea caerulea*. New Phytol. 56: 154.
- **Randle, W.M. 1997.** Onion flavor chemistry and factors influencing flavor intensity. Amer. Chem. Soc. 5: 42-52.
- **Schwartz, H.F.; K.L. Otto and D.H. Gent. 2003.** Relation of temperature and rain fall to development a *Xanthomonas* and Pantoea leaf blight of onion in Colorado. Plant Dis. 87: 11-14.
- Singh, A.R.; S.L. Pankaj and G.N. Singh. 1983. Effect of growth regulators on the growth, yield and quality of onion, Punjab Hort. J. Vol. 23: 100-104.