

Odd Chen المقارنة بين طريقة الامكان الاعظم وطريقة كريمر فون مايسز لتقدير دالة البقاء لتوزيع Fréchet Distribution

A comparison between of Maximum Likelihood Method and Cramer von Misses method for Estimating Survival Function Odd Chen Fréchet Distribution with Applications

أ.م .د صدى فياض محمد
Sada Fayed Mohammed
كلية الادارة والاقتصاد جامعة كربلاء
College of Administration and
Economics/University of Karbala
Sada @s.uokerbala.edu.iq

شهد عماد عبد الرسول Shahad Emad Abdel Rasool کلیة الادارة والاقتصاد جامعة کربلاء College of Administration and Economics/University of Karbala Shahad@s.uokerbala.edu.ig

المستخلص: قدم هذا البحث التوزيع المركب (El-Morshedy and all) الذي تم الحصول عليه عن طريق استخدام قاعدة (Family Generator) عام (2020)، كقاعدة لاقتراح التوزيعات الاحتمالية التي (Family Generator) عام (2020)، كقاعدة لاقتراح التوزيعات الاحتمالية التي تمتزل بانها توزيعات ذات مرونة ودقة عالية في تمثيل البيانات الإحصائية كونها تمتزل باكبر عدد من المعلمات مقارنة بالتوزيعات الاحتمالية الموجودة بغية الحصول على توزيع احتمالي جديد يمتاز بالدقة والشمولية والحداثة والمرونة في تمثيل بيانات الظاهرة المدروسة اذ تم اشتقاق بعض الخصائص الرياضية للتوزيع المقترح (Cramer von المياسوس المناسوس الإحصائية المستعملة (Misses method) وذلك بهدف إعطاء فكرة كاملة عن المقاييس الإحصائية المستعملة وباستخدام المؤشر الإحصائي متوسط مربعات الخطاء (MSE) المقارنة بين افضلية طرائق التقدير المستعملة إذ اظهرت افضليه طريقة كريمر فون مايسز (Cramer von المتوسل المناسوس المن

ABSTRACT: This research presented the compound distribution (Odd Chen Fréchet Distribution) obtained by using the rule (The Odd Chen Generator (Family). This rule was discovered for the first time by the scientist (El-Morshedy and all) in the year (2020), as a basis for proposing distributions Probability, which is characterized as distributions with flexibility and high accuracy in representing statistical data, as it is characterized by the largest number of parameters compared to the existing probability distributions in order to obtain a new probability distribution characterized by accuracy, comprehensiveness, modernity and flexibility in representing the data of the studied phenomenon, as some mathematical properties of the proposed distribution were derived. Where the survival function estimates were derived using the Maximum Likelihood Method, and the Cramer von Mises method in the experimental aspect. Monte Carlo simulations were employed to generate random data for a sample of five sample sizes (30,50,75,100,150) following the proposed model (Odd Chen Fréchet Distribution) in order to give a complete idea of the statistical measures used and using the statistical indicator Mean Square Error (MSE) to compare the preference of the used estimation methods, as it showed the preference of the Cramer von Mises (cvm) method in estimating the survival function for the sizes of medium and large samples As for the applied

(real) side, the researcher used the Cramer von Mises method. To estimate the survival function on the study sample (kidney failure patients in the holy governorate of Karbala) for the period between 5/8/2020 until 17/7/2020, as the number of observations was (110), and the results shown in the experimental and applied aspects confirmed the use of Cramer von Mises method to estimate the survival function at the sizes of medium and large samples, as well as the recommendation to adopt the results of the research at the Holy Karbala Health Department.

Keywords: Maximum Likelihood Method, Cramer von Mises method, Odd Chen Fréchet Distribution

1-المقدمة:

تعد مرحلة وضع البيانات ضمن أنموذج علمي مدروس يناسبها من أهم مراحل التحليل الإحصائي التي تعتمد عليها بقية المراحل وتعرف هذه المرحلة بالمرحلة " نمذجة البيانات " والتي تستعمل لتوزيعات احتمالية معروفة لتمثيل البيانات والظواهر المدروسة.

Odd وفي هذا البحث تسعى الدراسة وفي هذا البحث الى استعمال نظرية التوزيعات المركبة في بناء توزيع احتمالي مقترح جديد يعرف بتوزيع (Chen Distribution) ذو اربع معلمات $(\alpha, \beta, \gamma, \theta)$ ، إذ تمت دراسة واشتقاق بعض الخصائص الرياضية المرتبطة بالتوزيع المقترح ، اما في الجانب التجريبي تم توظيف اسلوب المحاكاة مونت كارلو للمقارنة بين مقدرات طريقة الإمكان الأعظم Method likelihood)

(Maximumوطريقة كريمر فون مايسز لتقدير دالة البقاء بأستعمال المقياس الاحصائي متوسط مربعات الخطاء (MSE) للمقارنة بين افضلية هذه طرائق المستعملة لتقدير دالة البقاء.

2- منهجية البحث:

(Problem of Research) مشكلة البحث 1-2

ان التطور الحاصل في الظواهر الحياتية وما يرافقها من مشكلات في تحديد الشكل الرياضي المناسب لها ادى الى ظهور حاجه ماسة الى رفد المكتبة بتوزيعات جديد مشتقة من التوزيعات الكلاسيكية لتواكب هذا التطور السريع .

وكما هو معلوم ان دالة البقاء تعتمد على الزمن لذلك يجب علينا نمذجة و تحليل البيانات بشكل اكثر دقه للحصول على نتائج ادق لذلك تم استعمال طريقة (Odd Chen Distribution) لتوسعة توزيع فريجيت إذ تظهر اهمية دراستنا هذا في تقدير المعلمات و دالة البقاء.

(Aim of Research) هدف البحث 2-2

1- تقدير دالة البقاء لنموذج احتمالي (Odd Chen Distribution).

2- الحصول على افضل طريقة من طرائق التقدير باستعمال المحاكاة.

3-تطبيق الطريقة الأفضل في الجانب التجريبي على عينة حقيقية من مرضى الفشل الكلوي في كربلاء المقدسة.

(Survival Function) : قاء

أحد أساليب في علم الإحصاء هو تحليل البقاء على قيد الحياة، الذي يصف الموت في الكائنات الحية والفشل في لأنظمة والمكائن إضافة الى استخداماتها في الجانب الحياتي والجانب الطبي ويمكن تعريف وقت البقاء على انه حدوث حدث معين، كظهور مرض معين او الاستجابة الى العلاج معين او الانتكاسة او الموت، يتركز تحليل البقاء على قيد الحياة بشكل رئيسي على التنبؤ في تحديد احتمال المخاطر ويرمز لها بالرمز (s(t) ويمكن التعبير عنها رياضيا كالاتي [1] [18] :

S(t) = 1 - F(t) ... (1) ... (1) F(t): يمثل دالة الكثافة التجميعية التراكمية للمتغير العشوائي. F(t): يمثل زمن بقاء الكائن الحي على قيد الحياة

(Frecht Distribution)

5- توزيع فريجت:

يعد توزيع فريجت [13]من التوزيعات الإحصائية المستمرة المستخدمة بشكل واسع في نمذجة بيانات الحياة يستخدم في تحليل الاشارات الضوئية ودراسة الظواهر العشوائية مثل سرعة الرياح وهطول الامطار ودالة البقاء، ينتسب هذا التوزيع الى العالم الفرنسي عام (Maurice Frechet 1973) وأن اكتشاف هذا التوزيع ساهم في تطور الإحصاء ، ويعد احد نماذج الفشل ،وان توزيع فريجت (Frecht Distribution) له العديد من الاستعمالات في الحقول المختلفة و منها في دراسات المعولية، و ان دالة الكثافة الاحتمالية للتوزع تكون بالصيغة التالية:

$$f(x, \gamma, \theta) = \frac{\gamma}{\theta} \left(\frac{\theta}{x}\right)^{\gamma+1} e^{-\left(\frac{\theta}{x}\right)^{\gamma}} \qquad ; x, \gamma, \theta > 0 \qquad \dots (2)$$

حبث ان: -

γ : معلمة الشكل (Shape parameters).

. (Scale parameter) معلمة القياس θ

وأن دالة الكثافة التجميعية للتوزيع C·D·F تكتب بالصيغة التالية:

$$F(x) = e^{-\left(\frac{\theta}{x}\right)^{\gamma}} \qquad x > 0 \qquad \dots (3)$$

6-التوزيعات المركبة (Compound Distribution)

تؤدي التوزيعات الأحتمالية المركبة دورا هاما للغاية في معظم الحالات الناشئة في مجالات عملية مختلفة مثل الابحاث المتعلقة الطب الحيوي العلوم الهندسية والعديد من المجالات الاخرى، وتنشاء التوزيعات المركبة من التوزيعات الاصلية وفي, هذه الدراسة تم استخدام قاعدة (Family Generator) تم اكتشاف هذه القاعدة لأول مرة من قبل العالم (El-Morshedy and all) عام (2020)، كقاعدة لاقتراح التوزيعات الاحتمالية التي تمتاز بانها توزيعات ذات مرونة ودقة عالية في تمثيل البيانات الإحصائية كونها تمتاز باكبر عدد من المعلمات مقارنة بالتوزيعات الاحتمالية الموجودة ويمكن أن نوضح هذه القاعدة بالخطوات التالية:

$$f(x,\alpha,\beta,\tau) = \frac{\alpha\beta G(x,\tau)^{\beta-1}g(x,\tau)}{\left[1 - G(x,\tau)\right]^{\beta+1}} \left[e^{\left[\frac{G(x,\tau)}{1 - G(x,\tau)}\right]^{\beta}} \right] e^{-\alpha \left[e^{\left[\frac{G(x,\tau)}{1 - G(x,\tau)}\right]^{\beta}} - 1\right]} \qquad ... \quad (4)$$

اذ ان:

تمثل دالة توزيع تراكمية للتوزيع الاحتمالي المراد استعماله في عملية البنا. G(x, au)

تمثل دالة الكثافة الاحتمالية للتوزيع المراد استعماله في عملية البناء. $f(t; \theta)$

 β, α : تمثل متجه معلمات التوزيع.

وبذلك تكون الصيغة النهائية لدالة التوزيع التراكمي التي سوف تعتمد في هذه الدراسة لدالة التوزيع الاحتمالي المركب على النحو الاتي:

$$F(x,\alpha,\beta,\tau) = 1 - e^{-\alpha \left[e^{\left[\frac{G(x,\tau)}{1 - G(x,\tau)} \right]^{\beta}} - 1 \right]} \qquad \dots (5)$$

اذ ان:

. تمثل دالة توزيع تر اكمية للتوزيع الاحتمالي المراد استعماله في عملية البناG(x, au)

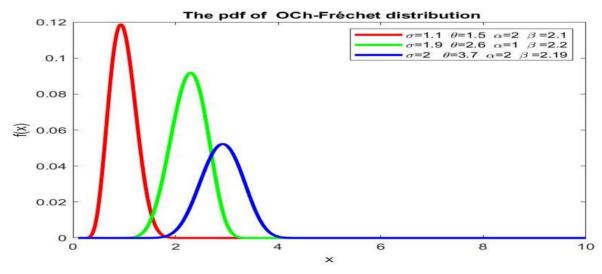
7 - التوزيع المقترح (The Odd Chen Fréchet Distribution): (14)

يتم الحصول على دالة الكثافة الاحتمالية للتوزيع المقترح (Probability density function Pdf) لتوزيع (Probability density function Pdf) لتوزيع (Fréchet Distribution) باستعمال الصيغة المعرفة بالمعادلة (4) وعند تعويض دالة الكثافة الاحتمالية لتوزيع فريجت الذي نحصل عليه بالرجوع للمعادلة (3) المعرفة في المعادلة (2)، و $F(x, y, \theta)$ الذي نحصل عليه بالرجوع للمعادلة (3) فنحصل على الدالة الاحتمالية الجديدة للتوزيع المقترح (The Odd Chen Frechet Distribution) كما في الصيغة الآتي:

$$f(x,\alpha,\beta,\tau) = \frac{\alpha\beta G(x,\tau)^{\beta-1}g(x,\tau)}{\left[1 - G(x,\tau)\right]^{\beta+1}} \left[e^{\left[\frac{G(x,\tau)}{1 - G(x,\tau)}\right]^{\beta}} \right] e^{-\alpha \left[e^{\left[\frac{G(x,\tau)}{1 - G(x,\tau)}\right]^{\beta}} - 1\right]} \qquad ... (6)$$

$$f(x,\alpha,\beta,\gamma,\theta) = \frac{\alpha\beta \left[e^{-\left(\frac{\theta}{x}\right)^{\gamma}} \right]^{\beta-1} \frac{\gamma}{\theta} \left(\frac{\theta}{x}\right)^{\gamma+1} \left(e^{-\left(\frac{\theta}{x}\right)^{\gamma}} \right)^{\beta-1}}{\left[1 - e^{-\left(\frac{\theta}{x}\right)^{\gamma}} \right]^{\beta+1}} \left[e^{\left(\frac{e^{-\left(\frac{\theta}{x}\right)^{\gamma}}}{1 - e^{-\left(\frac{\theta}{x}\right)^{\gamma}}}\right]^{\beta}} \right] e^{-\alpha} \left[e^{\left(\frac{e^{-\left(\frac{\theta}{x}\right)^{\gamma}}}{1 - e^{-\left(\frac{\theta}{x}\right)^{\gamma}}}\right]^{\beta}} \right] \cdots (7)$$
... (7)
$$= \frac{\alpha\beta \left[e^{-\left(\frac{\theta}{x}\right)^{\gamma}} \right]^{\beta-1} \left[e^{-\left(\frac{\theta}{x}\right)^{\gamma}} \right]^{\beta-1}}{\left[1 - e^{-\left(\frac{\theta}{x}\right)^{\gamma}} \right]^{\beta+1}} e^{-\alpha} \left[e^{-\left(\frac{\theta}{x}\right)^{\gamma}} \right] e^{-\alpha} \left[e^{-\left(\frac{\theta}{x}$$

والشكل رقم (1)يوضح سلوك الدالة الاحتمالية للنموذج الاحتمالي (The Odd Chen Frechet Distribution)و هو من اعداد الباحث بالاعتماد على برنامج (ماتلاب).



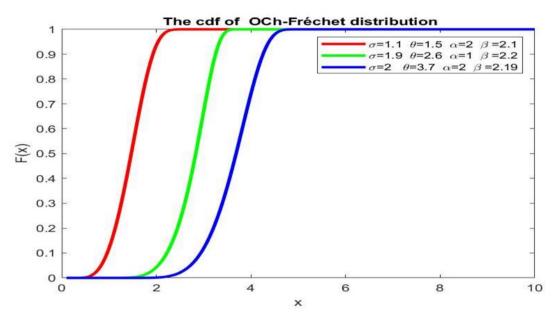
شكل (1) يوضح سلوك الدالة الاحتمالية للنموذج الاحتمالي (The Odd Chen Frechet Distribution)

8- دالة الكثافة التجميعية للنموذج(The Odd Chen Frechet Distribution): (The cumulative distribution)

ويمكن الحصول على دالة التوزيع التراكمية التجميعية للتوزيع المقترح عند تعويض معادلة (3)في المعادلة(5) و عليه تكون الدالة التراكمية للتوزيع المقترح :

$$F(F(x,\alpha,\beta,\gamma,\theta) = 1 - Exp\left(-\alpha\left(\left(Exp\left(e^{-\left(\frac{\theta}{x}\right)^{\gamma}} - 1\right)^{-\beta}\right) - 1\right)\right) \quad ... \quad (8)$$

والشكل رقم (2)يوضح سلوك الدالة الكثافة التجميعية التراكمية للنموذج الاحتمالي(The Odd Chen Frechet Distribution)وهو من اعداد الباحث بالاعتماد على برنامج (ماتلاب).



شكل (2)يوضح سلوك الدالة الاحتمالية التراكمية للنموذج الاحتمالي (The Odd Chen Frechet Distribution)

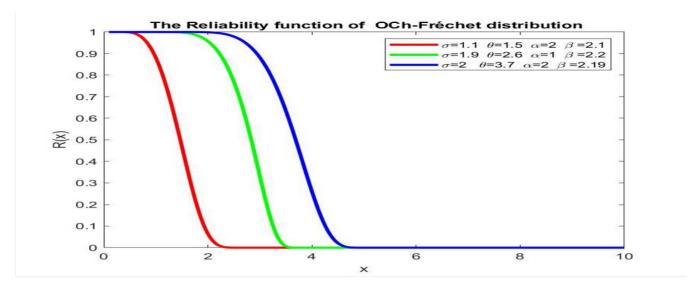
9 - دالة البقاء للتوزيع

(The Odd Chen Frechet Distribution)

$$S(t) = 1 - F(t)$$

$$S(x, \alpha, \beta, \gamma, \theta) = 1 - \left(1 - \exp\left(-\alpha \left(\left(\exp\left(e^{-\left(\frac{\theta}{x}\right)^{\gamma}} - 1\right)^{-\beta}\right) - 1\right)\right)\right) \quad \dots (9)$$

والشكل رقم (3)يوضح سلوك دالة البقاء للنموذج الاحتمالي (The Odd Chen Frechet Distribution)وهو من اعداد الباحث بالاعتماد على برنامج (ماتلاب).



شكل (3) يوضح سلوك دالة البقاء للنموذج (The Odd Chen Frechet Distribution): حصائص التوزيع (The Odd Chen Frechet Distribution):

(Derivative of Central Moments)

1-10 اشتقاق صيغة العزم المركزي:

$$\mu_{\rm r} = E(x - \mu)^{\rm r} = \int_{0}^{\infty} (x - \mu)^{\rm r} f(x, \alpha, \beta, \gamma, \theta) dx \dots (10)$$

$$=\int\limits_0^\infty (x-\mu)^r \begin{pmatrix} \sum_{i=1}^\infty \ \sum_{j=0}^i \ \sum_{k,m=0}^\infty \ \frac{(-1)^{i+j}\alpha^i(i-j)^k\Gamma k\beta + m}{i!\ k!\ m!\ \Gamma k\beta} \\ {i\choose j}\frac{\gamma(k\beta+m)}{\theta} {\left(\frac{\theta}{x}\right)}^{\gamma+1} e^{-\left(\frac{\theta}{x}\right)^{\gamma}} \left(e^{-\left(\frac{\theta}{x}\right)^{\gamma}}\right)^{k\beta+m-1} \end{pmatrix} dx$$

$$c = \begin{pmatrix} \sum_{i=1}^{\infty} \ \sum_{j=0}^{i} \ \sum_{k,m=0}^{\infty} \ \frac{(-1)^{i+j}\alpha^{i}(i-j)^{k}\Gamma k\beta + m}{i!\ k!\ m!\ \Gamma k\beta} \\ {i\choose j} \frac{\gamma(k\beta+m)}{\theta} \end{pmatrix}$$

و عليه فأن:

$$E(x-\mu)^r = C \int_0^\infty (x-\mu)^r \left(\left(\frac{\theta}{x}\right)^{\gamma+1} e^{-\left(\frac{\theta}{x}\right)^{\gamma}} \left(e^{-\left(\frac{\theta}{x}\right)^{\gamma}} \right)^{k\beta+m-1} \right) dx$$

$$u = \left(\frac{\theta}{x}\right)^{\gamma}, \frac{\theta}{x} = u^{-\gamma}, \ x = \theta u^{\gamma}, dx = \theta \gamma u^{\gamma-1} du$$

$$E(x-\mu)^r = C\int\limits_0^\infty (\theta u^\gamma - \mu)^r \, \left((u)(u^{-\gamma})e^{-u}[e^{-u}]^{k\beta+m-1} \right) . \, \theta \gamma \, u^{\gamma-1} \, du$$

$$E(x-\mu)^r = \gamma C(\theta^{r+1}) \int_0^\infty \left(u^\gamma - \frac{\mu}{\theta} \right)^r e^{-u} (e^{-u})^{k\beta + m - 1} \cdot du$$

وباستعمال نظرية ثنائي الحدين $(x-\mu)^r = \sum_{j=0}^r C_j^r(x)^j (-\mu)^{r-j}$ تكون الصيغة المذكورة آنفاً بالشكل:

$$E(x-\mu)^r = \gamma C(\theta^{r+1}) \int\limits_0^\infty \sum_{j=0}^r \binom{r}{j} (u^\gamma)^j \, \Big(-\frac{\mu}{\theta}\Big)^{r-j} \, \Big(e^{-u}(e^{-u})^{k\beta+m-1}\Big). \, du$$

$$E(x-\mu)^r = \gamma C(\theta^{r+1}) \sum_{j=0}^r \binom{r}{j} \ \left(-\frac{\mu}{\theta}\right)^{r-j} \int\limits_0^\infty (u^\gamma)^j \ \left(e^{-u}(e^{-u})^{k\beta+m-1}\right) du$$

$$E(x-\mu)^r = \gamma C(\theta^{r+1}) \sum_{j=0}^r \binom{r}{j} \left(-\frac{\mu}{\theta}\right)^{r-j} \frac{\Gamma 1 + rj}{(k\beta + m)^{1+rj}}$$

وعليه تكون صيغة العزوم المركزية حول الوسط الحسابي بالصيغة الآتية:

$$E(x-\mu)^r = \begin{pmatrix} \sum_{i=1}^{\infty} \sum_{j=0}^{i} \sum_{k,m=0}^{\infty} \frac{(-1)^{i+j}\alpha^i(i-j)^k\Gamma k\beta + m}{i! \ k! \ m! \ \Gamma k\beta} \\ \binom{i}{j} \frac{\gamma(k\beta+m)\gamma(\theta^{r+1})}{\theta} \sum_{j=0}^{r} \binom{r}{j} \ \left(-\frac{\mu}{\theta}\right)^{r-j} \frac{\Gamma 1 + rj}{(k\beta+m)^{1+rj}} \end{pmatrix} \quad ... \ (11)$$

عندما r=2

$$E(x-\mu)^2 = \begin{pmatrix} \sum_{i=1}^{\infty} \ \sum_{j=0}^{i} \ \sum_{k,m=0}^{\infty} \ \sum_{j=0}^{r} \ \frac{(-1)^{i+j}\alpha^i(i-j)^k\Gamma k\beta + m}{i!\ k!\ m!\ \Gamma k\beta} \\ \binom{i}{j}\gamma^2(k\beta+m)(\theta^r) \left(\binom{2}{j}(\theta^2) \ \left(-\frac{\mu}{\theta}\right)^{2-j} \frac{\Gamma 1 + 2j}{(k\beta+m)^{1+2}} \right) \end{pmatrix}$$

وللحصول وعليه فأن صيغة التباين تكون بالشكل التالي:

$$\sigma^{2} = \begin{pmatrix} \sum_{i=1}^{\infty} \sum_{j=0}^{i} \sum_{k,m=0}^{\infty} \sum_{j=0}^{r} \frac{(-1)^{i+j} \alpha^{i} (i-j)^{k} \Gamma k \beta + m}{i! \ k! \ m! \ \Gamma k \beta} \\ \binom{i}{j} \gamma^{2} (k\beta + m) (\theta^{r}) \left[\binom{2}{j} (\theta^{2}) \left(-\frac{\mu}{\theta} \right)^{2-j} \frac{\Gamma 1 + 2j}{(k\beta + m)^{1+2}} \right] \end{pmatrix} \dots (12)$$

$$\text{StandardDeviation} = \sigma = \sqrt{ \begin{pmatrix} \sum_{i=1}^{\infty} \ \sum_{j=0}^{i} \ \sum_{k,m=0}^{\infty} \ \sum_{j=0}^{r} \ \frac{(-1)^{i+j} \alpha^{i} (i-j)^{k} \Gamma k \beta + m}{i! \ k! \ m! \ \Gamma k \beta} \\ \binom{i}{j} \gamma^{2} (k\beta + m) (\theta^{r}) \left[\binom{2}{j} (\theta^{2}) \ \left(-\frac{\mu}{\theta} \right)^{2-j} \frac{\Gamma 1 + 2j}{(k\beta + m)^{1+2}} \right] }$$

عندما r=3

430

$$\mu_3 = \textbf{E}(\textbf{x} - \boldsymbol{\mu})^3 = \begin{pmatrix} \sum_{i=1}^{\infty} \ \sum_{j=0}^{i} \ \sum_{k,m=0}^{\infty} \ \sum_{j=0}^{3} \ \frac{(-1)^{i+j}\alpha^i(i-j)^k\Gamma k\beta + m}{i! \, k! \, m! \, \Gamma k\beta} \\ \binom{i}{j}\gamma^2(k\beta + m)(\theta^3) \left[\binom{3}{j}(\theta^3) \ \left(-\frac{\boldsymbol{\mu}}{\theta}\right)^{3-j} \frac{\Gamma 1 + 3j}{(k\beta + m)^{1+3j}} \right] \end{pmatrix}$$

عندما _{r=4}

$$\boldsymbol{E}(\boldsymbol{x}-\boldsymbol{\mu})^{4} = \begin{pmatrix} \sum_{i=1}^{\infty} \sum_{j=0}^{i} \sum_{k,m=0}^{\infty} \sum_{j=0}^{4} \frac{(-1)^{i+j}\alpha^{i}(i-j)^{k}\Gamma k\beta + m}{i! \ k! \ m! \ \Gamma k\beta} \\ \binom{i}{j}\gamma^{2}(k\beta + m)(\theta^{4}) \left[\binom{4}{j}(\theta^{4}) \ \left(-\frac{\mu}{\theta}\right)^{4-j} \frac{\Gamma 1 + 4j}{(k\beta + m)^{1+4j}} \right] \end{pmatrix}$$

2-10أشتقاق صيغة العزم اللامركزي الرائي حول نقطة الأصل:(Derivative of The Moment about origin)

$$\mu'_{r} = E(x^{r}) = \int_{0}^{\infty} x^{r} f(x, \alpha, \beta, \gamma, \theta). dx$$
 ... (16)

$$E(x^{r}) = \int_{0}^{\infty} x^{r} \begin{pmatrix} \sum_{i=1}^{\infty} \sum_{j=0}^{i} \sum_{k,m=0}^{\infty} \frac{(-1)^{i+j} \alpha^{i} (i-j)^{k} \Gamma k \beta + m}{i!! k! m! \Gamma k \beta} \\ \left(\frac{i}{j}\right) \frac{\gamma(k \beta + m)}{\theta} \left(\frac{\theta}{x}\right)^{\gamma + 1} e^{-\left(\frac{\theta}{x}\right)^{\gamma}} \left[e^{-\left(\frac{\theta}{x}\right)^{\gamma}} \right]^{k \beta + m - 1} \end{pmatrix} dx$$

$$\boldsymbol{c} = \begin{pmatrix} \sum_{i=1}^{\infty} \ \sum_{j=0}^{i} \ \sum_{k,m=0}^{\infty} \ \frac{(-1)^{i+j} \alpha^{i} (i-j)^{k} \Gamma k \beta + m}{i! \ k! \ m! \ \Gamma k \beta} \\ \binom{i}{j} \frac{\gamma(k\beta + m)}{\theta} \end{pmatrix}$$

$$\text{E}(\textbf{x}^r) = \text{c} \int_0^\infty \ \textbf{x}^r \left(\frac{\theta}{\textbf{x}}\right)^{\gamma+1} e^{-\left(\frac{\theta}{\textbf{x}}\right)^{\gamma}} \left[e^{-\left(\frac{\theta}{\textbf{x}}\right)^{\gamma}} \right]^{k\beta+m-1}.\, d\textbf{x}$$

letu =
$$\left(\frac{\theta}{x}\right)^{\gamma}$$
, $\frac{\theta}{x} = u^{-\gamma}$, $x = \theta u^{\gamma}$, $dx = \theta \gamma u^{\gamma - 1} du$

$$E(x^{r}) = c \int_{0}^{\infty} (\theta u^{\gamma})^{r} u u^{-\gamma} e^{-u} [e^{-u}]^{k\beta+m-1} \cdot \theta \gamma u^{\gamma-1} du$$

$$E(x^{r}) = c\theta^{r+1}\gamma \int_{0}^{\infty} (u^{\gamma})^{r} u^{1-\gamma} e^{-u} [e^{-u}]^{k\beta+m-1} . u^{\gamma-1} du$$

$$E(\mathbf{x}^r) = c\theta^{r+1}\gamma \int_{0}^{\infty} (u^{\gamma})^r (e^{-\mathbf{u}})[e^{-\mathbf{u}}]^{\mathbf{k}\beta+m-1}.du$$

$$E(\mathbf{x}^r) = c\theta^{r+1}\gamma \int_0^\infty (u^\gamma)^r \ [\mathbf{e}^{-\mathbf{u}}]^{\mathbf{k}\beta+m}. du$$

$$E(\mathbf{x}^r) = c\theta^{r+1}\gamma \left[\frac{\Gamma 1 + r\gamma}{(\mathbf{m} + \mathbf{k}\beta)^{1+r\gamma}} \right]$$

عليه فان الصيغة النهائية للعزم الرائي يكون كالآتي:

$$E(\mathbf{x}^{\mathrm{r}}) = \bar{\mu}_{r} = \begin{pmatrix} \sum_{i=1}^{\infty} \sum_{j=0}^{i} \sum_{k,m=0}^{\infty} \frac{(-1)^{i+j} \alpha^{i} (i-j)^{k} \Gamma k \beta + m}{i! \, k! \, m! \, \Gamma k \beta} \\ \binom{i}{j} \frac{\gamma^{2} (k\beta + m)}{\theta} \binom{\theta^{r+1}}{(m+k\beta)^{1+r\gamma}} \end{pmatrix} \dots (13)$$

الصيغة (2-13) تمثل الصيغة العامة للعزم حول نقطة الاصل وللحصول على العزم الاول (الوسط الحسابي) والثاني والثالث والرابع نعوض عن r بالقيم (1,2,3,4) على الترتيب وعلى النحو الاتي:

$$\mu_{1}' = Ex = \begin{pmatrix} \sum_{i=1}^{\infty} \sum_{j=0}^{i} \sum_{k,m=0}^{\infty} \frac{(-1)^{i+j} \alpha^{i} (i-j)^{k} \Gamma k \beta + m}{i! k! m! \Gamma k \beta} \\ {i \choose j} \gamma^{2} (k \beta + m) (\theta^{1}) \left[\frac{\Gamma 1 + \gamma}{(m + k \beta)^{1+\gamma}} \right] \end{pmatrix} \dots (14)$$

$$\mu_{2}' = Ex^{2} = \begin{pmatrix} \sum_{i=1}^{\infty} \sum_{j=0}^{i} \sum_{k,m=0}^{\infty} \frac{(-1)^{i+j} \alpha^{i} (i-j)^{k} \Gamma k \beta + m}{i! k! m! \Gamma k \beta} \\ \binom{i}{j} \gamma^{2} (k \beta + m) \binom{\theta^{2}}{m! k! \beta! (m+k \beta)^{1+2\gamma}} \end{pmatrix} \dots (15)$$

$$\mu_{3}' = Ex^{3} = \begin{pmatrix} \sum_{i=1}^{\infty} \sum_{j=0}^{i} \sum_{k,m=0}^{\infty} \frac{(-1)^{i+j}\alpha^{i}(i-j)^{k}\Gamma k\beta + m}{i!k!m!\Gamma k\beta} \\ \binom{i}{j}\gamma^{2}(k\beta + m)\binom{\theta^{3}}{m} \left[\frac{\Gamma 1 + 3\gamma}{(m+k\beta)^{1+3\gamma}} \right] \end{pmatrix} \dots (16)$$

$$\mu_{4}' = Ex^{4} = \begin{pmatrix} \sum_{i=1}^{\infty} \sum_{j=0}^{i} \sum_{k,m=0}^{\infty} \frac{(-1)^{1+j} \alpha^{1} (i-j)^{k} \Gamma k \beta + m}{i! \ k! \ m! \ \Gamma k \beta} \\ \binom{i}{j} \gamma^{2} (k\beta + m) \left(\theta^{4}\right) \left[\frac{\Gamma 1 + 4\gamma}{(m + k\beta)^{1+4\gamma}} \right] \end{pmatrix} \dots (17)$$

(The Coefficient of Variation)

10-3معامل الاختلاف:

$$C \cdot V = \frac{\sigma}{\mu'_{1}} \times 100\%$$

$$C.V = \frac{\sqrt{\begin{pmatrix} \sum_{i=1}^{\infty} \sum_{j=0}^{i} \sum_{k,m=0}^{\infty} \sum_{j=0}^{2} \frac{(-1)^{i+j} \alpha^{i}(i-j)^{k} \Gamma k \beta + m}{i!k!m!\Gamma k \beta} \\ \binom{i}{j} \gamma^{2} (k\beta + m) (\theta^{r}) \left[\binom{2}{j} (\theta^{2}) \left(-\frac{\mu}{\theta} \right)^{2-j} \frac{\Gamma 1 + 2j}{(k\beta + m)^{1+2}} \right] \end{pmatrix}}{\begin{pmatrix} \sum_{i=1}^{\infty} \sum_{j=0}^{i} \sum_{k,m=0}^{\infty} \frac{(-1)^{i+j} \alpha^{i} (i-j)^{k} \Gamma k \beta + m}{i!k!m!\Gamma k \beta} \\ \binom{i}{j} \gamma^{2} (k\beta + m) \binom{\theta^{1}}{\theta} \left(\frac{\Gamma 1 + \gamma}{(m + k\beta)^{1+\gamma}} \right) \end{pmatrix}} \dots (18)$$

(The Coefficient of Skewnes) : معامل الالتواء

$$S \cdot K = \frac{\mu_3}{(\mu_2)^{\frac{3}{2}}}$$

$$S_{k} = \frac{\begin{pmatrix} \sum_{i=1}^{\infty} \sum_{j=0}^{i} \sum_{k,m=0}^{\infty} \sum_{j=0}^{3} \frac{(-1)^{i+j} \alpha^{i} (i-j)^{k} \Gamma k \beta + m}{i!k!m!\Gamma k \beta} \\ \binom{i}{j} \gamma^{2} (k\beta + m) (\theta^{3}) \left[\binom{3}{j} (\theta^{3}) \left(-\frac{\mu}{\theta} \right)^{3-j} \frac{\Gamma 1 + 3j}{(k\beta + m)^{1+3j}} \right] \end{pmatrix}}{\begin{pmatrix} \sum_{i=1}^{\infty} \sum_{j=0}^{i} \sum_{k,m=0}^{\infty} \sum_{j=0}^{r} \frac{(-1)^{i+j} \alpha^{i} (i-j)^{k} \Gamma k \beta + m}{i!k!m!\Gamma k \beta} \\ \binom{i}{j} \gamma^{2} (k\beta + m) (\theta^{7}) \left[\binom{2}{j} (\theta^{2}) \left(-\frac{\mu}{\theta} \right)^{2-j} \frac{\Gamma 1 + 2j}{(k\beta + m)^{1+2}} \right] \end{pmatrix}^{\frac{3}{2}}} \dots (19)$$

(Coefficient Of Kurtosis)

10-5معامل التفلطح:

$$C \cdot K = \frac{\mu_4}{(\mu_2)^2} - 3$$

$$.\,K = \frac{\begin{pmatrix} \sum_{i=1}^{\infty} \ \Sigma_{j=0}^{i} \ \Sigma_{k,m=0}^{\infty} \ \Sigma_{j=0}^{4} \ \frac{(-1)^{i+j}\alpha^{i}(i-j)^{k}\Gamma k\beta + m}{i!k!m!\Gamma k\beta} \\ \binom{i}{j}\gamma^{2}(k\beta + m)(\theta^{4}) \left[\binom{4}{j}(\theta^{4}) \ \binom{-\mu}{\theta}^{4-j} \frac{\Gamma_{1} + 4j}{(k\beta + m)^{1+4j}}\right] \end{pmatrix}}{\begin{pmatrix} \sum_{i=1}^{\infty} \ \Sigma_{j=0}^{i} \ \Sigma_{k,m=0}^{\infty} \ \Sigma_{j=0}^{2} \ \frac{(-1)^{i+j}\alpha^{i}(i-j)^{k}\Gamma k\beta + m}{i!k!m!\Gamma k\beta} \\ \binom{i}{j}\gamma^{2}(k\beta + m)(\theta^{\Gamma}) \left[\binom{2}{j}(\theta^{2}) \ \binom{-\mu}{\theta}^{2-j} \frac{\Gamma_{1} + 2j}{(k\beta + m)^{1+2}}\right] \end{pmatrix} \end{pmatrix}^{2}} - 3 \qquad ...(20)$$

11-طريقة الإمكان الأعظم ML: (Maximum Likelihood Method) (8,14)

تعد هذه الطريقة من طرائق التقدير التقليدية $^{[5]}$ المهمة في عملية التقدير واكثرها استخداما كونها تمتاز بخصائص جيدة منها الكفاية والثبات والاتساق وعدم التحيز وتملك اقل تباين, وتكون اكثر دقة عندما يكون حجم العينة كبير, وان مبدأ وهدف هذه الطريقة هو ايجاد قيم تقديرية للمعلمات التي نريد تقديرها وذلك بجعل دالة الامكان في نهايتها العظمى ويرمز لدالة الامكان بالرمز (ML) لتكن $x_1, x_2, ..., x_n$ مشاهدات عشوائية بحجم عينة n تتبع التوزيع المقترح The Odd Chen Frechet Distribution فان دالة الإمكان للمشاهدات يمكن صياغتها بالشكل الأتي $^{[1]}$:

Lf(xi, α , β , γ , θ) = $\prod_{i=1}^{n} f(x, \alpha, \beta, \gamma, \theta)$

تعويض دالة الكثافة الاحتمالية لتوزيع (OddChenFrecheDistribution) في الصيغة المذكورة آنفاً:

$$\mathrm{Lf}(\mathrm{xi},\alpha,\beta,\gamma,\theta) = \prod_{i=1}^{n} \left(\frac{\left(\alpha\beta\frac{\gamma}{\theta} \left(\frac{\theta}{x}\right)^{\gamma+1} e^{-\left(\frac{\theta}{x}\right)^{\gamma}}\right) \left[e^{-\left(\frac{\theta}{x}\right)^{\gamma}}\right]^{\beta-1}}{\left[1-e^{-\left(\frac{\theta}{x}\right)^{\gamma}}\right]^{\beta+1}} \left(e^{\left[\frac{e^{-\left(\frac{\theta}{x}\right)^{\gamma}}}{1-e^{-\left(\frac{\theta}{x}\right)^{\gamma}}}\right]^{\beta}}\right) e^{-\alpha\left[e^{\left[\frac{e^{-\left(\frac{\theta}{x}\right)^{\gamma}}}{1-e^{-\left(\frac{\theta}{x}\right)^{\gamma}}}\right]^{\beta}}-1\right]} \right) \dots (21)$$

وبأخذ اللوغارتم لطرفي الصيغة آنفاً نحصل على:

$$\log L = \log \prod_{i=1}^{n} \left(\frac{\left(\alpha\beta\frac{\gamma}{\theta} \left(\frac{\theta}{x}\right)^{\gamma+1} e^{-\left(\frac{\theta}{x}\right)^{\gamma}}\right) \left[e^{-\left(\frac{\theta}{x}\right)^{\gamma}}\right]^{\beta-1}}{\left[1 - e^{-\left(\frac{\theta}{x}\right)^{\gamma}}\right]^{\beta+1}} \left(e^{\left[\frac{e^{-\left(\frac{\theta}{x}\right)^{\gamma}}\right]^{\beta}}{1 - e^{-\left(\frac{\theta}{x}\right)^{\gamma}}}\right]^{\beta}} e^{-\alpha\left[e^{\left[\frac{e^{-\left(\frac{\theta}{x}\right)^{\gamma}}\right]^{\beta}}{1 - e^{-\left(\frac{\theta}{x}\right)^{\gamma}}}\right]^{\beta}}}\right) e^{-\alpha\left[e^{\left[\frac{e^{-\left(\frac{\theta}{x}\right)^{\gamma}}\right]^{\beta}}{1 - e^{-\left(\frac{\theta}{x}\right)^{\gamma}}}\right]} \right)$$

$$\log \mathbf{L} = \sum_{i=1}^{n} \log \left(\boldsymbol{\alpha}^{n} \boldsymbol{\beta}^{n} \frac{\boldsymbol{\gamma}^{n}}{\boldsymbol{\theta}^{n}} \left(\frac{\left[\left(\frac{\boldsymbol{\theta}}{\boldsymbol{x} i} \right)^{\gamma+1} e^{-\left(\frac{\boldsymbol{\theta}}{\boldsymbol{x} i} \right)^{\gamma}} \right] \left[e^{-\left(\frac{\boldsymbol{\theta}}{\boldsymbol{x} i} \right)^{\gamma}} \right]^{\beta-1}}{\left[1 - e^{-\left(\frac{\boldsymbol{\theta}}{\boldsymbol{x} i} \right)^{\gamma}} \right]^{\beta+1}} \left[e^{\left[\frac{e^{-\left(\frac{\boldsymbol{\theta}}{\boldsymbol{x} i} \right)^{\gamma}} \right]^{\beta}}{1 - e^{-\left(\frac{\boldsymbol{\theta}}{\boldsymbol{x} i} \right)^{\gamma}} \right]^{\beta}} \right] e^{-\boldsymbol{\alpha} \left[e^{\left[\frac{e^{-\left(\frac{\boldsymbol{\theta}}{\boldsymbol{x} i} \right)^{\gamma}} \right]^{\beta}}}{1 - e^{-\left(\frac{\boldsymbol{\theta}}{\boldsymbol{x} i} \right)^{\gamma}} \right]} \right]} = 0$$

$$= \begin{pmatrix} \log \boldsymbol{\alpha}^{n} + \log \boldsymbol{\beta}^{n} + \log \boldsymbol{\gamma}^{n} - \log \boldsymbol{\theta}^{n} + (\gamma + 1) \sum_{i=1}^{n} \log \left(\frac{\boldsymbol{\theta}}{\chi i}\right) - \sum_{i=1}^{n} \left(\frac{\boldsymbol{\theta}}{\chi i}\right)^{\gamma} + \sum_{i=1}^{n} \log \left[e^{-\left(\frac{\boldsymbol{\theta}}{\chi}\right)^{\gamma}}\right]^{\beta - 1} \\ - \sum_{i=1}^{n} \log \left[1 - e^{-\left(\frac{\boldsymbol{\theta}}{\chi}\right)^{\gamma}}\right]^{\beta + 1} + \sum_{i=1}^{n} \left[\frac{e^{-\left(\frac{\boldsymbol{\theta}}{\chi i}\right)^{\gamma}}}{1 - e^{-\left(\frac{\boldsymbol{\theta}}{\chi}\right)^{\gamma}}}\right]^{\beta} - \sum_{i=1}^{n} \boldsymbol{\alpha} \left[e^{-\left(\frac{\boldsymbol{\theta}}{\chi}\right)^{\gamma}}\right]^{\beta} - 1 \end{pmatrix} \dots (22)$$

وبأخذ المشتقة الجزئية الأولى للصيغة (2-26) آنفاً بالنسبة للمعلمات ($\alpha, \beta, \gamma, \theta$) ومساواتها الى الصفر نحصل على:

$$\frac{\partial \log L}{d\gamma} = \sum_{i=1}^{n} \frac{(-1 + e^{(\frac{\theta}{X})^{\gamma}} + (-1 + e^{(\frac{\theta}{X})^{\gamma}}(1 + (\frac{1}{-1 + e^{(\frac{\theta}{X})^{\gamma}}})^{\beta}(-1 + e^{(\frac{1}{-1 + e^{(\frac{\theta}{X})^{\gamma}}})^{\beta}}\alpha)\beta))(\frac{\theta}{X})^{\gamma}) \text{Log}[\frac{\theta}{X}]}{-1 + e^{(\frac{\theta}{X})^{\gamma}}} = \mathbf{0} \dots (23)$$

$$\frac{\partial \log L}{d\beta} = \sum_{i=1}^{n} \left(\left(\frac{1}{\beta} - \left(\frac{1}{-1 + e^{\left(\frac{\theta}{X}\right)\gamma}} \right)^{\beta} \left(-1 + e^{\left(\frac{1}{-1 + e^{\left(\frac{\theta}{X}\right)\gamma}} \right)^{\beta}} \alpha \right) \text{Log}\left[\frac{1}{-1 + e^{\left(\frac{\theta}{X}\right)\gamma}} \right] \right) = 0 \dots (24)$$

$$\frac{dLnL}{d\theta} = \sum_{i=1}^{n} \frac{\gamma(-1 + e^{\left(\frac{\theta}{X}\right)\gamma} + (-1 + e^{\left(\frac{\theta}{X}\right)\gamma}\right)} \left(1 + \left(\frac{1}{-1 + e^{\left(\frac{\theta}{X}\right)\gamma}} \right)^{\beta} \left(-1 + e^{\left(\frac{1}{-1 + e^{\left(\frac{\theta}{X}\right)\gamma}} \right)^{\beta}} \alpha \right) \beta)) \left(\frac{\theta}{X} \right)^{\gamma}} \right)}{(-1 + e^{\left(\frac{\theta}{X}\right)\gamma})\theta} = 0 \dots (25)$$

$$\frac{dLnL}{d\alpha} = \frac{n}{\alpha} - \sum_{i=1}^{n} e^{\left(\frac{e^{-\left(\frac{\theta}{x}\right)\gamma}}{1 - e^{-\left(\frac{\theta}{x}\right)\gamma}}\right)^{\beta}} \dots (26)$$

المعادلات (23) و (25) و (25) لا يمكن حلها بالطرائق التحليلية الاعتيادية لأنها معادلات غير خطية ولذلك يتم حلها باستعمال الطريقة العددية للحصول على مقدرات معلمات التوزيع المقترح بطريقة الامكان الاعظم، وتعويض قيم المقدرات ($\hat{\theta}_{MLE}, \hat{\alpha}_{MLE}, \hat{\beta}_{MLE}, \hat{\gamma}_{MLE}$) في دالة البقاء في المعادلة (1) نحصل على مقدر الامكان الاعظم لهذه الدالة.

$$S(x, \alpha, \beta, \gamma, \theta)_{ML} = Exp\left(-\alpha_{ML}\left[\left(Exp\left[e^{-\left(\frac{\theta_{ML}}{x}\right)^{\gamma_{ML}}} - 1\right]^{-\beta_{ML}}\right) - 1\right]\right) \quad ...(31)$$

12 -طريقة كريمر فون مايس (Cramer-Von Mises method) (CVM) طريقة كريمر فون مايس

Cramer-Von Mises تعتمد طريقة كريمر فون مايسز على مقدرات الحد الأدنى للمسافة اذ يمكننا الحصول على تقديرات المسافة الدنيا لطريقة $c(\gamma, \theta, \beta, \alpha, x)$ بالنسبة للمعلمات غير المعروفة ويمكننا الحصول على المقدرات وذلك بالاشتقاق الجزئي $c(\gamma, \theta, \beta, \alpha, x)$ بالنسبة للمعلمات غير المعروفة ومساواتها للصفر وكالاتي :

$$c(\gamma, \theta, \beta, x) = \frac{1}{12n} + \sum_{i=1}^{n} \left[F(\gamma, \theta, \beta, \alpha, x) - \frac{2i-1}{2n} \right]^{2} \qquad ... (27)$$

اذ ان $F(\gamma, \theta, \beta, x)$ تمثل الدالة التجميعية لتوزيع (OddChenFrecheDistribution) وبتطبيق المعادلة رقم (Y = 1 نحصل على:

$$c(\gamma, \theta, \beta, \alpha, x) = \frac{1}{12n} + \sum_{i=1}^{n} \left(1 - e^{-\left(\frac{\theta}{x}\right)^{\gamma}\right)^{\beta}} - 1 - \frac{2i-1}{2n} \right)^{2} \dots (28)$$

ولتصغير المسافة الدنيا يتم اشتقاق جزئي بالنسية للصيغة (28) ومساواتها للصفر وحسب ما يأتي:

$$\frac{dc}{d\gamma} = 2\sum_{i=2}^{n} \left(1 - e^{\left[\frac{e^{-\left(\frac{\theta}{x}\right)^{\gamma}}}{e^{-\left(\frac{\theta}{x}\right)^{\gamma}}}\right]^{\beta}} - 1}{1 - e^{\left[\frac{2i-1}{2n}\left(-e^{-1-\left(\frac{1}{-1+e^{\left(\frac{\theta}{x}\right)^{\gamma}}}\right)^{\beta}\alpha + \left(\frac{\theta}{x}\right)^{\gamma}}\right)^{1+\beta}\alpha\beta\left(\frac{\theta}{x}\right)^{\gamma}Ln\left[\frac{\theta}{x}\right]}\right)} = 0 (29)$$

الاشتقاق بالنسبة α للحصول على المقدر $\widehat{\alpha}_{cvm}$ و كالاتى:

$$\frac{dc}{d\alpha} = 2\sum_{i=2}^{n} \left(1 - e^{\left[\frac{e^{-\left(\frac{\theta}{x}\right)^{\gamma}}}{\left[1 - e^{-\left(\frac{\theta}{x}\right)^{\gamma}}\right]^{\beta}}\right]_{-1}}\right] - \frac{2i-1}{2n} e^{-1 - \left(\frac{e^{-\left(\frac{\theta}{x}\right)^{\gamma}}}{1 - e^{-\left(\frac{\theta}{x}\right)^{\gamma}}\right)^{\beta}\alpha}} \left(\frac{e^{-\left(\frac{\theta}{x}\right)^{\gamma}}}{1 - e^{-\left(\frac{\theta}{x}\right)^{\gamma}}\right)^{\beta}}\right)^{\beta} = 0 \tag{30}$$

الاشتقاق بالنسبةheta للحصول على المقدر $\hat{ heta}_{ ext{Cvm}}$ وكالاتي :

الاشتقاق بالنسبة eta للحصول على المقدر $eta_{
m Cvm}$ وكالاتي :

$$\frac{dc}{d\beta} = 2\sum_{i=2}^{n} \left(\frac{\left[\frac{e^{-\left(\frac{\theta}{X}\right)^{\gamma}}}{e^{-\left(\frac{\theta}{X}\right)^{\gamma}}} \right]^{\beta}}{1 - e^{-\left(\frac{\theta}{X}\right)^{\gamma}}} \right] - 1} - \frac{2i-1}{2n}$$

$$e^{-1-\left(\frac{e^{-\left(\frac{\theta}{X}\right)^{\gamma}}}{1 - e^{-\left(\frac{\theta}{X}\right)^{\gamma}}}\right)^{\beta}} \alpha \left(\frac{e^{-\left(\frac{\theta}{X}\right)^{\gamma}}}{1 - e^{-\left(\frac{\theta}{X}\right)^{\gamma}}} \right)^{\beta} \alpha Ln \left[\frac{e^{-\left(\frac{\theta}{X}\right)^{\gamma}}}{1 - e^{-\left(\frac{\theta}{X}\right)^{\gamma}}} \right]} = 0 \qquad ... (32)$$

بعد تعويض قيم المشتقات $\left(\frac{dc}{d\eta}\right)$, $\left[\frac{dc}{d\theta}\right]$, $\left[\frac{dc}{d\theta}\right]$, $\left[\frac{dc}{d\eta}\right]$) من المعادلات (29) و (31) و (31) و (31) و دالة التوزيع التراكمية لتوزيع

(OddChenFrecheDistribution) وحل المعادلات باستعمال الطرق العددية يمكننا الحصول على القيم المقدرة للمعلمات المجهولة ثم بعد ذلك يتم تعويض المقدرات في دالة البقاء (1) نحصل على مقدر كريمر فون مايسز لدالة البقاء .

$$S(x, \alpha, \beta, \gamma, \theta)_{Cvm} = Exp\left(-\alpha_{Cvm}\left[\left(Exp\left[e^{-\left(\frac{\theta_{Cvm}}{x}\right)^{\gamma_{Cvm}}} - 1\right]^{-\beta_{Cvm}}\right) - 1\right]\right) \qquad ... (33)$$

(Simulation)

13-الجانب التجريبي:

تم استخدام المحاكاة ⁴الغرض المقارنة بين الطرائق المختلفة تجريبا، حيث تم توليد البيانات التي تتبع التوزيع المقترح نظريا من دون الحصول عليها من الواقع العملي اذ يتميز هذا الأسلوب بالدقة ويوفر للباحثين الكثير من الوقت والجهد والمال لذلك يعتبر أسلوب مرن ويمكن تلخيص هذه الطريقة بالخطوات الاتية: أولا- تحديد القيم الافتراضية: تم اختيار خمس حجوم للعينات وهي (30,50,75,100,150) واستخدمت قيم افتراضية للمعلمات فكانت كما في الجدول الاتي:

(Odd Chen Frechet Distribution) لمعلمات التوزيع	القيم الافتراضية	جدول رقم (1)
---	------------------	--------------

Experiment	θ	α	β	γ
1	0.5	0.4	1.1	0. 7
2	0.09	0.005	0.8	0. 5

ثانيا- تكر ار التجربة 1000مرة.

ثالثًا - توليد المتغير العشوائي الـذي يتوزع وفق النموذج (OddChenFrecheDistribution) بأربـعة معلمات .

ثالثا-تقدير دالة البقاء للتوزيع المقترح(OddChenFrecheDistribution) وذالك بأستعمال طرائق التقدير المشار اليها.

رابعا المقارنة بين طرائق التقدير المستخدمة واختيار الطريقة الأفضل بأستعمال المعيار الاحصائي متوسط مربعات الخطاء (MSE) والذي كلما تقل قيمته كلما كان المقدار افضل وتكتب صيغته كالاتي[3]:

MSE
$$(\hat{S}(ti)) = \frac{1}{L} \sum_{i=1}^{n_t} (\hat{S}j(ti) - S_j(ti))^2$$
 ... (34)

إذ أن:

L: تمثل عدد مرات تكرار التجربة وهو (1000) مرة.

. هي معبرة عن حدود المتغير (t_i) من الحد الادني الى الحد الاعلى . n_t

أ:القيمة المقدرة لدالة البقاء وفق طرائق التقدير المستعملة .

ii: تمثل أوقات البقاء لحين الفشل والتي تعتبر عينة تمثل التوزيع الاحتمالي (OddChenFrecheDistribution).

(S(t): دالة البقاء الحقيقية (الافتر اضية) وهي في حالة تناقص.

ثارية البقاء المقدرة بطريقة الإمكان الأعظم لـ (1000) تجربة. $\hat{S}(t)_{ML}$

ثانية البقاء المقدرة بطريقة العزوم لـ (1000) تجربة وهي في حالة تناقص, $\hat{\mathbb{S}}(t)_{cvm}$

وفي ما يلي نتائج تجارب المحاكات:

جدول (2)القيم الحقيقية والتقديرية لدالة البقاء بموجب طرائق التقدير وقيمة متوسط مربعات الخطاء التكاملي لكل طريقة عند احجام العينات المفترضة للأنموذج الأول والثاني

عيناتعند المعلمات	وحسب حجوم الـ	ألة البقاء لكافة طرائق التقدير للأنموذج الثالث	جدول رقة (MSE) والرتب الجزئية لمتوسط مربعات الخطأ لد الافتراضية (0.5=0, 0.4=)	قيم متوسط مربعات الخطأ
Sample size		Perfo	ormance	Best
-		Methods		
		MLe	Cvm	
30	MSE	0.00428477745915	0.0014788616498	Cvm
50	MSE	0.00215243873827	0.0003952788138	Cvm
75	MSE	0.0015078456257	0.0009354319901	Cvm
100	MSE	0.0011402357107	0.0005237858907	Cvm
	MSF	0.00032592339012	0.000162429533	Cvm

	جدول رقم (3)						
حجوم العيناتعند	يبين قيم متوسط مربعات الخطأ (MSE) والرتب الجزئية لمتوسط مربعات الخطأ لدالة البقاء لكافة طرائق التقدير للأنموذج hgehkd وحسب حجوم العيناتعند						
·	$(\gamma=0.~5$ ، $\beta=0.8$ ، $\alpha=0.005$, $\theta=0.09$) المعلمات الافتر اضية						
Sample size	Performance	Best					

150

		Methods	Methods			
		MLe		Cvm		
30	MSE	0.0080410420638		0.0003292570843		Cvm
50	MSE	0.0118244873325		0.0001923591131		Cvm
75	MSE	0.00016254392858		0.0095718723373		MLe
100	MSE	0.00012353107380		0.0093240670698		MLe
150	MSE	0.00011048636481		0.0110416355845		MLe

14- الجانب التطبيقي:

جمعت البيانات المتعلقة بالرسالة لعدد من المصابين بمرض الفشل الكلي من سجلات دائرة مستشفى الحسين التعليمي في محافظة كربلاء المقدسة قسم الحميات والبالغ عددها (110) مشاهدة تمثل أوقات بقاء المرضى بالساعات تحت المراقبة والعلاج لحين الوفاء للمدة بين (2020/8/3) ولغاية (2021/7/2) اذ تم تبويب البيانات للأشخاص المصابين لغرض الحصول على أوقات الحياة (Survival Time) وذالك بطرح تاريخ الإصابة بالفايروس من تاريخ الوفاة وكما يلى:

جدول (4) يمثل اوقات البقاء لمرضى المصابين بالفشل الكلوى

0.14	0.39	1.25	1.45	1.65	2.1	2.69	3	3.5	4.1	4.8
0.14	0.39	1.25	1.45	1.7	2.15	2.7	3.1	3.6	4.3	4.8
0.21	0.4	1.27	1.5	1.73	2.2	2.75	3.15	3.6	4.4	4.9
0.28	0.4	1.3	1.5	1.75	2.4	2.8	3.15	3.6	4.45	4.95
0.28	0.42	1.3	1.55	1.77	2.4	2.8	3.17	3.75	4.45	5
0.28	0.42	1.35	1.55	1.8	2.45	2.9	3.2	3.8	4.5	5.1
0.3	0.45	1.38	1.58	1.85	2.5	2.95	3.2	3.9	4.55	5.15
0.32	1	1.39	1.6	1.9	2.6	2.95	3.25	4	4.6	5.2
0.35	1	1.4	1.6	2	2.65	2.97	3.3	4	4.65	5.25
0.35	1.2	1.4	1.65	2	2.67	3	3.4	4	4.75	5.5

(Good ness of Fit)

14-1 اختبار حسن المطابقة:

لغرض معرفة أن البيانات الحقيقية تتبع التوزيع المقترح (فريجت -كاما) فقد تم أستعمال اختبار حسن المطابقة (Good ness of Fit) وحسب الفرضية الاحصائية الأتية^[2]:

H₀: The data have OddChenFrecheDistribution

H₁: The data dont have OddChenFrecheDistribution

وقد تم توضح نتائج اختبار فرضية حسن المطابقة الفرضية بأستعمال قانون Chi -Squared كما في الجدول التالي :[10]

جدول (5) نتائج اختبار حسن المطابقة تم اجراء الاختبار وكانت قيمة

Distribution	$\chi^2_{\rm c}$	$\chi^2_{ m t}$	Sig,	Decision
OddChenFrecheDistribution	2.22	2.34	0.0680	Not RejectH ₀

نلحظ من الجدول (4) ان قيمة χ² المحسوبة وفق الصيغة هي اكبر من الجدولية إذن لا نرفض فرضية العدم القائلة بأن البيانات تتوزع وفق النموذج OddChenFrecheDistribution

(Criteria choosing the best distribution) دعاييراختبار افضل توزيع: 2-14

(Akaike Test) :[2] AIC اختبار أكايكي 2-14

أن الصيغة العامة لأحصاءة معيار أكايكي(AIC) كما يلي:

 $A IC = -2L(\hat{\theta} \setminus X) + 2P \qquad \dots (35)$

P : تمثل عدد المعلمات في دالة التوزيع الاحتمالية النظرية.

لمشاهدات بيانات العينة. (Log Likelihood Function) نمثل لوغاريتم دالة الترجيح: $L(\hat{\theta} \setminus X)$

(Bayesian Akaike Test)

: BICحتبار بيز أكايكي2-14

احدى معاير اختبار حسن المطابقة (GOF) ويرمز له اختصار (BIC) [10] وأن صيغته العامة تكون كما يلي:

 $BIC = -2L(\hat{\theta} \setminus x) + P Log(n) \qquad ... (36)$

لمشاهدات بيانات العينة. (Log Likelihood Function) نمثل لوغاريتم دالة الترجيح: $L(\hat{\theta} \setminus X)$

P: تمثل عدد المعلمات في دالة التوزيع الاحتمالية النظرية.

n: تمثل حجم العينة.

(Consistent Akaike Information Criterion): CAIC اختبار أكايكي المتسق

ان الصيغة الاختبار حسن المطابقة أكايكي المتسق (CAIC) [2] هي كما يلي:

$$CAIC = -2L(\hat{\theta} \setminus x) + \frac{2nP}{n-P-1} \qquad ... (37)$$

و ان

n:تمثل حجم العينة.

قد تم توضيح نتائج الاختبارات التي تم ذكرها انفاً في جدول رقم (5) لمقارنة أداء التوزيع المقترح مع توزيع Frecht distribution بأستعمال عينة حقيقة تمثل اوقات البقاء بالساعات للأشخاص المصابين بالفشل الكلوى.

جدول (6) يبين معاير المفاضلة بين توزيع OddChenFrechet في تمثيل البيانات الحقيقية

diat	Pa	rameter estim	ation		Logl	AIC	AIC AICe	
dist	α	β	γ	θ		AIC	AICc	BIC
ochF	0.01	0.95	0.34	0.02	192.702	393.404	393.7787	404.2068
F			_	_	357.562	719.1241	719.2342	724.5251

في المعايير الإحصائية هو أختبار أفضل توزيع احتمالي من بين مجموعات احصائية وهنالك عدة معايير والتي استعمل منها ثلاثة معايير الموضحة في المعادلة (39) و(40) و(41) لبيان إفضاليه هذا التوزيع ومن خلال النتائج وفي الجدول (5) تبين أن أفضل توزيع هو OddChenFrecheDistribution لأنه بملك أقل قمة للمعاير الثلاثية.

جدول (7) مقدرات كريمر فون مايسز لدالة البقاء للبيانات الحقيقيـــة

i	ti	f(t)	F(t)	S(t)
1	0.14	0.0225329318127294	0.0316184568843491	0.968381543115651
2	0.14	0.0309338899317216	0.0316184568843491	0.968381543115651
3	0.21	0.0328474951002749	0.0437019222919600	0.956298077708040
4	0.28	0.0348412766147449	0.0557051478352881	0.944294852164712
5	0.28	0.0369159340593755	0.0557051478352881	0.944294852164712
6	0.28	0.0413097871673093	0.0557051478352881	0.944294852164712
7	0.3	0.0436294675371351	0.0591501413670020	0.940849858632998
8	0.32	0.0460309766849082	0.0626071871624692	0.937392812837531
9	0.35	0.0510782078446785	0.0678195288465748	0.932180471153425
10	0.35	0.0510782078446785	0.0678195288465748	0.932180471153425

11	0.39	0.0537227479241604	0.0748269224585488	0.925173077541451
12	0.39	0.0592490272520930	0.0748269224585488	0.925173077541451
13	0.4	0.0621282090668922	0.0765900028103569	0.923409997189643
14	0.4	0.0650826515510849	0.0765900028103569	0.923409997189643
15	0.42	0.0681104786480003	0.0801304167808181	0.919869583219182
16	0.42	0.0712095722658067	0.0801304167808181	0.919869583219182
17	0.45	0.0712095722658067	0.0854779681324224	0.914522031867578
18	1	0.0743775719793967	0.192035918947378	0.807964081052622
19	1	0.0809096411504401	0.192035918947378	0.807964081052622
20	1.2	0.0946702441891064	0.234470246352041	0.765529753647959
21	1.25	0.101840364635067	0.245328723744596	0.754671276255404
22	1.25	0.101840364635067	0.245328723744596	0.754671276255404
23	1.27	0.101840364635067	0.249697350465951	0.750302649534049
24	1.3	0.109159011386497	0.256276186089790	0.743723813910210
25	1.3	0.116588746725882	0.256276186089790	0.743723813910210
26	1.35	0.120332810193490	0.267306862395267	0.732693137604733
27	1.38	0.131618337810142	0.273962759283482	0.726037240716518
28	1.39	0.131618337810142	0.276187353042201	0.723812646957800
29	1.4	0.131618337810142	0.278414847022686	0.721585152977314
30	1.4	0.139131096700344	0.278414847022686	0.721585152977314
31	1.45	0.146581623544379	0.289594114470597	0.710405885529403
32	1.45	0.153922863875515	0.289594114470597	0.710405885529403
33	1.5	0.157537640424221	0.300838532978499	0.699161467021501
34	1.5	0.161107241368269	0.300838532978499	0.699161467021501
35	1.55	0.161107241368269	0.312141877219942	0.687858122780058
36	1.55	0.163224843572933	0.312141877219942	0.687858122780058
37	1.58	0.164625722128125	0.318949547492114	0.681050452507886
38	1.6	0.164625722128125	0.323497840289527	0.676502159710473
39	1.6	0.168087169697990	0.323497840289527	0.676502159710473
40	1.65	0.171728431961730	0.334900045140893	0.665099954859107
41	1.65	0.172345150451486	0.334900045140893	0.665099954859107
42	1.7	0.172345150451486	0.346342055596209	0.653657944403791
43	1.73	0.172345150451486	0.353223672653253	0.646776327346747

44	1.75	0.172889864867571	0.357817387019443	0.642182612980557
45	1.77	0.173540862012902	0.362415389422337	0.637584610577663
46	1.8	0.174673569362366	0.369319516723639	0.630680483276361
47	1.85	0.174673569362366	0.380841894165140	0.619158105834860
48	1.9	0.174815567006068	0.392377950964037	0.607622049035963
49	2	0.174815567006068	0.415464799057035	0.584535200942965
50	2	0.175277918808373	0.415464799057035	0.584535200942965
51	2.1	0.175277918808373	0.438527529434167	0.561472470565833
52	2.15	0.176399197328594	0.450033517555845	0.549966482444155
53	2.2	0.176399197328594	0.461513944928133	0.538486055071867
54	2.4	0.176778115245682	0.507052506388765	0.492947493611235
55	2.4	0.176859762183937	0.507052506388765	0.492947493611235
56	2.45	0.176859762183937	0.518310075390681	0.481689924609319
57	2.5	0.177808267724520	0.529504591370274	0.470495408629726
58	2.6	0.177808267724520	0.551680798448408	0.448319201551592
59	2.65	0.178070991845996	0.562650938090536	0.437349061909464
60	2.67	0.178070991845996	0.567015183440101	0.432984816559899
61	2.69	0.179286495084225	0.571365292802763	0.428634707197237
62	2.7	0.181246364709391	0.573534937418676	0.426465062581324
63	2.75	0.187335002733287	0.584327336893358	0.415672663106642
64	2.8	0.187335002733287	0.595022816665651	0.404977183334349
65	2.8	0.190237616578414	0.595022816665651	0.404977183334349
66	2.9	0.193038903774593	0.616102477448544	0.383897522551457
67	2.95	0.193586564324065	0.626476778127660	0.373523221872340
68	2.95	0.194668977388652	0.626476778127660	0.373523221872340
69	2.97	0.195733925253675	0.630594088567280	0.369405911432721
70	3	0.198317919903600	0.636734410806570	0.363265589193430
71	3	0.203134745678025	0.636734410806570	0.363265589193430
72	3.1	0.205359049562073	0.656881755177591	0.343118244822409
73	3.15	0.206511064935967	0.666762955059034	0.333237044940966
74	3.15	0.206511064935967	0.666762955059034	0.333237044940966
75	3.17	0.207455292958988	0.670678220505032	0.329321779494969
76	3.2	0.207455292958988	0.676510472946371	0.323489527053629

77	3.2	0.213693739991259	0.676510472946371	0.323489527053629
78	3.25	0.214489238967482	0.686120520626266	0.313879479373734
79	3.3	0.215159060198945	0.695589504306529	0.304410495693471
80	3.4	0.215159060198945	0.714090897026357	0.285909102973643
81	3.5	0.215706183412009	0.731989910947525	0.268010089052475
82	3.6	0.215894545205383	0.749265096311578	0.250734903688422
83	3.6	0.216484418781553	0.749265096311578	0.250734903688422
84	3.6	0.216484418781553	0.749265096311578	0.250734903688422
85	3.75	0.217153321605396	0.773969505333450	0.226030494666550
86	3.8	0.217666683144759	0.781874916451319	0.218125083548681
87	3.9	0.218306198501400	0.797183432023970	0.202816567976030
88	4	0.218507608506323	0.811815848510710	0.188184151489290
89	4	0.218703106318344	0.811815848510710	0.188184151489290
90	4	0.218703106318344	0.811815848510710	0.188184151489290
91	4.1	0.219222936363747	0.825767401056048	0.174232598943952
92	4.3	0.219222936363747	0.851624739423605	0.148375260576395
93	4.4	0.219591303568340	0.863536543411235	0.136463456588765
94	4.45	0.219591303568340	0.869240969404378	0.130759030595622
95	4.45	0.220329234898260	0.869240969404378	0.130759030595622
96	4.5	0.220329234898260	0.874779244839576	0.125220755160424
97	4.55	0.220684187507653	0.880152696526094	0.119847303473906
98	4.6	0.220915191972048	0.885362805694446	0.114637194305554
99	4.65	0.220915191972048	0.890411201937085	0.109588798062915
100	4.75	0.221183578950039	0.900030078091740	0.0999699219082596
101	4.8	0.221193228655147	0.904604501790296	0.0953954982097043
102	4.8	0.221347788346507	0.904604501790296	0.0953954982097043
103	4.9	0.221347788346507	0.913294107356170	0.0867058926438303
104	4.95	0.221527741157613	0.917413946207872	0.0825860537921280
105	5	0.221625952160903	0.921387087603494	0.0786129123965063
106	5.1	0.221625952160903	0.928903679939397	0.0710963200606031
107	5.15	0.221659533804627	0.932452542924865	0.0675474570751347
108	5.2	0.221716235780970	0.935865518281207	0.0641344817187927
109	5.25	0.221748004847712	0.939145491056264	0.0608545089437363

110	5.5	0.221748920623778	0.953655023895384	0.0463449761046164
sum	273.2900	17.9849	54.7853	55.2147
mean	2.4845	0.1635	0.4980	0.5020

15- الاستنتاجات:

- أظهرت نتائج تجارب المحاكاةان طريقة كريمر فون مايسز هي الأفضل لتقدير دالة البقاء بالنسبة لحجوم العينات المتوسطة والكبيرة.
- 2. تناقص القيم الخاصة بالمقياس الإحصائي متوسط مربعات التكاملي (MSE) كلما زاد حجم العينة وهذا يطابق النظرية الإحصائية لهذا المؤشر.
 - 3. تناقص قيم دالة البقاء بزيادة الزمن (t)و هذا يطابق مع ما تم عرضه في الجانب النظري عن سلوك هذه الدالة.
 - 4. الاهتمام بالحصول على البيانات مرض الفشل الكلوي في جميع محافظات العراق لحساب دالة البقاء ودالة المخاطرة.

16- التوصيات:

- 1. استعمال أنواع جديدة من التوزيعات المركبة وذالك لما تمتاز به هذه التوزيعات من مرونة وكفاءة عالية في تمثيل بيانات الوقت.
 - 2. استعمال طرائق تقدير أخرى مثل الطرائق البيزية لتقدير دالة البقاء.
 - 3. تطبيق النموذج الجديد المقترح OddChenFrecheDistribution في الجوانب الهندسية والطبية والصناعية.

References:

- Tahani Mahdi, Samira Mazhar and Qutaiba Nabil (2008). "Comparing Bayesian Estimators with Maximum Likelihood Estimator
 in Estimating the Survival Function of Lognormal Distribution Using Type II Observed Data". Journal of Al-Nahrain University.
 1, 11, 58 70.
- Jassim. Khader Naseef (2012) "Comparing the Estimation of the Reliability Function of Mixed Exponential Distribution with a Practical Application" PhD Thesis, College of Administration and Economics - Baghdad.
- 3. Al-Durai'i, Mahdi Ali Abdul-Hussein (2016) "Some methods of estimating the parameters of the reliability function of a complex probabilistic model with a practical application" Master's thesis, College of Administration and Economics University of Baghdad.
- 4. Bakouch ,H,S,, Al-Zahrani, B,M,, Ali A, Al-Shomrani , Vitor A,A, Marchi,F,, Louzada,(2012) ,"An extended Lindley distribution "Journal of the Korean Statistical Society 41 75–85,
- 5.Chen ,D,G,; Lio ,Y,; (2009); "A Note on the Maximum Likelihood Estimation for the Generalized Gamma Distribution Parameters under Progressive Type-II Censoring"; International Journal of Intelligent Technology and Applied Statistics, Vol, 2, No, 2, pp, 57-64, 6.Chi YY, Ibrahim JG, 2006, "Joint models for multivariate longitudinal and multivariate survival data,", Biometrics, 62(2):432-45,
- 7. Cox ,C,;(2008);"The generalized F distribution:an umbrella for parametric survival analysis"; Statistics in Medicine ,vol,27,pp,4301-4312, U,S,A,
- 8. Cox ,Ch ,;Chu, H,; Schnider, FM,;and Mu noz, A,; (2007);"Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution" ;Statistics in Medicine vol,26,pp,4352–4374, U,S,A,
- 9. Day, N,E, (1969) "Estimating The Component of A Mixture of Normal Distribution" Biometrika Vol,56, No,3, PP,463-474,5,

- 10. Diab L,S, and , Muhammed H, Z, , (2014) "Quasi Lindley Geometric Distribution" International Journal of Computer Applications (0975 8887) Volume 95– No, 13, June,
- 11. Diciccio, T,J, (1987), "Approximate Inference for the Generalized Gamma Distribution", Technometrics, Vol. 29, No. 1, PP, 33-40,
- 12. Farahat; M. AI-Shammari; (2004); "Power system reliability evaluation and quality assessment by fuzzy logic technique ",IeeeXplore, Vol.1, Page(478-483).
- 13. Rinne,H,(2014),The Hazard Rate Theory and Inference http://geb,uni-giessen,de/geb/volltexte/2014/10793/pdf/RinneHorst_hazardrate_2014,pdf,
- 14.El-Morshedy, M., Eliwa, M. S., & Afify, A. Z. (2020). The odd Chen generator of distributions: Properties and estimation methods with applications in medicine and engineering.