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Abstract 
 In the present research, flow through rotor-stator of first stage of axial flow turbine in Al-Hilla 

Gas Turbine Power Plant is analyzed. This 2D analysis provides insight into the accuracy of the 

discretization scheme and FLUENT's ability to predict the complicated flow features typical of turbo 

machinery applications. The analysis method is based on unsteady, two dimensional, compressible, 

inviscid flow with steady-state solutions computed as the asymptotic limit in time of transient solution. 

Two turbine blade cases are presented. The first involves subsonic flow throughout the rotor blade 

turbine; the second involves subsonic inlet and discharge flows with transonic flow over a portion of 

the blade passage. Generally good results is shown. 

 ةالخلاص
لمحىرب  فىي للتىربيين ا للمرحلة الأولى  في هذا البحث تم تحليل الجريان ثنائي الأبعاد خلال كلاً  من الريشة المتحركة والثابتة

  تحليىل حيىث انمىاز النرنىامج بالقىدب   لىالشابك ألانزلاقىي   وطريقة  FLUENTمحطة كهرياء الحلة الغازية ، وذلك باستخدام برنامج الى
 ليب الجريىىان المعقىىىد  وخافىىةً  فىىىي تطنكقىىال المحركىىىال التربيينكىىىة   عن طريقىىة التحليىىىل ا  تمىىدل  لىىى  فىىر  الجريىىىان    يىىىركافىىة أسىىىا

ان مسىىتقر    ثنىىائي الأبعىىاد   ان؛ىىغاطي    يىىر لىىزب   مىىع الأخىىذ بناىىر الا تبىىاب حالىىة الجريىىان المسىىتقر كاىىرو  ابتدائكىىة لحالىىة الجريىى
ة الجريىان ؛ىاً  تىم دباسىة حىالتين للجريىان المىاب خىلال الريشىة المتحركىة للتىربيين ، الحالىة الأولى   حالىالغير المسىتقر وفىي هىذا البحىث أ 

لا الصىىرتي  دون الصىرتي وفرقىى   ىرو قىىد و دون الصىرتي بالا تمىىاد  لى   كمىىة ال؛ىغج الخىىابب مىن الريشىىة المتحركىة   والحالىىة الثانكىة هىىي حا
 حققت كِلا الحالتين نتائج جيد  

Nomenclature 
C Chord Line 

M Mach number 

P Static pressure 

Po stagnation pressure 

R Radius  

T Passing period 

U Axial velocity 

V Radial velocity 

Subscripts 

1 Uniform state upstream of rotor-stator blade 

2 Uniform state downstream of rotor-stator blade 

x Axial direction 

Abbreviation 

CFL Courant-Friedrichs-Lewy 

CFD Computational Fluid Dynamic 

1.Introduction 
The flow through an axial turbo-machines is primarily in the axial direction. 

Axial flow turbo-machines have airfoil- shaped surfaces, called blades, attached to the 

periphery of a rotating disk spokes on a hub. The unit is known as a rotor and is 

usually enclosed by a casing to minimize leakage over the tips of the blades. The fluid 

flows axially through the annular space between the hub and casing, Figure (1) shows 

the principle of the axial flow rotor. Many axial flow machines have sets of 

alternating moving blades and stationary surfaces called vanes. The vanes are also 

airfoil- shaped and are attached to the inside of the casing. A circumferential set of 

vanes is called a stator. The stator does not change the mechanical energy of the flow 
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but simply alters the proportion between static and dynamic pressure. Since the fluid 

is confined, substantial changes in static pressure can occur. One rotor and its adjacent 

down stream stator are called a stage. Some axial flow compressor may have as many 

as 15 stages, axial flow turbines usually have no more than three stages.  

 

 

 

 

 

 

 

 

 

 

 

Figure(1): Axial Flow Rotor (Mironer, Alan, 1979). 

The determination of the steady two dimensional isentropic flow field in the 

blade passages of an axial flow turbine is difficult, because the partial differential 

equation governing subsonic flow are elliptic. Consequently the solution at every 

point in the flow field depends on all of the boundary data simultaneously. In the case 

of an unsteady two dimensional isentropic flow of an inviscid fluid, however, the 

governing equations are hyperbolic, and the method of characteristics may be 

employed for determining the flow field. Delaney and Kavanagh, 1976 are developed 

a complete computer program based on pentahedral bi-characteristic curve network 

proposed by Butler, 1960. They apply a second order time dependent method 

characteristics using bi-characteristics. Their inverted scheme fixes the solution point 

in the new time plane determined by the time increment and the bi-characteristics and 

particle path are projected back from the solution point into the initial data plane. This 

permits the use of a regular finite difference grid formed by equally spaced quasi-

orthogonal and quasi-streamlines. The streamline curvature method has been widely 

used in calculating through flow behavior, whilst several restriction were originally 

placed on both the grid and the positions of the calculation stations, modern versions 

of this technique have eliminated such restrictions, among workers in this method, we 

can cite Katsanis, 1968, Smith  , 1966, Novak  , 1967 and Frost,  1970. Finite element 

solutions of the through flow problem are presented by Hirsch and Warzee, 1976, 

Oates, Knight and Carey, 1976. An interesting discussion by Sapikes at the end of 

Hirsch and Warzee, 1976 article, provides the impetus for a streamline curvature/ 

finite element comparison. Currently, turbomachinery analysis consider two extreme. 

The overall machine is broadly designed using throughflow techniques(like 

streamline curvature)which rely heavily on a mature database(for loss and deviation 

for example). AGARD AR-175, 1989, describes this sort of approach in detail. The 

individual blade rows are examined using 2D or 3D Euler or Navier-Stokes solvers, 

nominally at an operating point similar to that supplied from the through flow 

analysis, but really run as if in an isolated cascade AGARD LS-140, 1985, VKI-LS-2, 

1986, Dawes, 1990. Computational Fluid Dynamic (CFD) simulation has become an 

essential tool in the design and analysis of modern turbomachinery components 

during the past decade. Steady and unsteady state flow predictions are widely studied 

for problem ranging from a single turbine blade to a complete multistage 

turbomachine and MUSCL-type approach is used for achieving higher-order accuracy 

Guha, and Mei, 2005. 

 
 
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2. Purpose of This Research 
In this research, we focus our attention on a specific axial flow turbo-machines, by 

considering a first stage of an axial flow turbine of Al-Hilla gas turbine power plant to 

analyze the flow between the stator–rotor blade by using fluent technique, and the flow 

between vanes and blades will be considered as unsteady, compressible, inviscid, and 

turbulent flow.  

3. Problem Description 
3.1 Turbine Section 

The turbine is where the high temperature gases from the combustion section 

are converted to shaft horsepower. The power required to drive the load package and 

compressor rotor is provided by the two stage turbine rotor. The first stage, or high 

pressure wheel and the second-stage, or low pressure wheel bolted together to make 

up a single unit through which the first and second stage nozzles direct the flow of 

combustion gases. These components, with associated air seals and deflectors are 

contained within the turbine shell. Figure (2) illustrate schematically the planar slice 

through the rotor and stator blades, extracted by unrolling a plane of constant radius 

(R=0.658 m). the speed of rotation , 5100 r.p.m, yields a linear velocity of the rotor, 

R, equal to 351.48531 m/sec as indicated  in Figure (2). 

 

 
 

 

 

 
Stagger Angle Stator=28.5o; Stagger Angle for Rotor=27o 

Airfoil camber Angle for Stator =60o; Airfoil camber Angle for Rotor=109o 

Incidence Angle for Stator=0o 

Figure (2): Rotor-Stator Problem Description. 

3.2. Grid Generation and Boundary Conditions:  
3.2.1 Grid Generation 

                                                 
  Fluent is a state -of-the –art computer program for modeling fluid flow and heat transfer in complex geometric, fluent 

is written in the C computer language and makes full use of the flexibility and power offered by the language in addition 

fluent, provides complete mesh flexibility, solving your flow problems with unstructured meshes that can be generated 

about complex geometries with relative case. Supported mesh types includes 2D triangle / quadrilateral 3D tetrahedral 

/hexahedral/ pyramid / wedge, and mixed (hybrid) meshes. Fluent also allows you to refine or coarsen your grid based on 

the flow solution. 

Direction of motion 

(V=351.48531m/sec) 

C=0.0884648 

Cx=0.1047242 m 

Sliding Mesh 

Stator Vanes 

(Stationary) 
Suction surface 

Pressure surface 

Throat 

Axial direction 

Cx=0.053232 m 

Blade Pitch=7.5 cm 

Rotor Blades 

(Moving) 

Po1=570000 Pa 

To1=1227 k 

M1=0.6 

C=0.1246618 m 
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The geometries of the stator and rotor flow domain have been meshed 

separately, this is usual procedure when the sliding mesh capability is used, for stator 

vane the finite difference mesh is (71*11) grid is used while for the rotor blade is 

(71*16) as shown in Figure (3). 

 

 
 

Figurer (3):Rotor-Stator Mesh Display. 

 

The Sliding Mesh Technique: 

In the sliding mesh technique two or more cell zones are used. Each cell zone is 

bounded by at least on " interface zone" where it meets the opposing cell zone. The 

interface zone of adjacent cell zones are associated with one another to form a " grid 

interface" the two cell zones will move relative to each other along the grid interface. 

Note that the grid interface must be positioned so that it has fluid cells on both sides, 

for example, the grid interface for the geometry shown in Figure(2) must lie in the 

fluid region between the rotor and stator ; it cannot be on the edge of any part of the 

rotor or stator. During the calculation, the cell zones slide (i.e., rotate or translate) 

relative to one another along the grid interface in discrete steps Jameson, et. al., 1981. 

nia,  June 1981. 
Grid Interface Shapes 

The grid interface and the associated interface zones can be any shapes, 

provided that the two interface boundaries are based on the same geometry. Figure (4) 

shows an example with a linear grid interface and Figure (5) shows a circular-arc grid 

interface. In both figures, the grid interface is designed by a dashed line Jameson, A., 

et. al., 1981. In this research we used the Figure(4).  

. 

 

 

s=x 
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Figure(4): 2D Linear Grid Interface. 

 

 
Figure (5): 2D Circular- Arc Grid Interface. 

3.2.2 Governing Equations: 

 The governing equations for the model used in this research are the 

compressible, continuity, momentum equation, and energy equations written in an 

integral form where the volume of a computational cell is denoted by V 

  



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dVHdAGFdVW
t

                                                                      …(1) 
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And the vector H contains source term such as body forces and energy sources. Here 

, , E, and p are the density, velocity, total energy per unit mass, and pressure of the 

fluid, respectively.  is the viscous stress tensor, and q is the heat flux. Total energy E 

is related to the total enthalpy H by 

 E=H-p/                                                                                                                 …(2) 

2/hH
2

                                                                                                        …(3) 
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The Navier-Stokes equations as expressed in equation(1) become 

(numerically) very stiff at low Mach number due to the disparity between the fluid 

velocity  and the acoustic speed c(speed of sound). This is also true for 

incompressible flows, regardless of the fluid velocity, because acoustic waves travel 

infinitely fast in an incompressible fluid (speed of sound is infinite). The numerical 

stiffness of the equations under these conditions results in poor convergence rates. 

This difficulty is overcome in Fluent's coupled solver by employing a technique 

called (time derivative) preconditioning Westbrook, and Dryer, 1981.  

3.2.3 Preconditioning 

Time derivative preconditioning modifies the time derivative term in equation 

(1) by pre-multiplying it with a preconditioning matrix. This has the effect of re-

calling the acoustic speed (eigenvalues) of the system of equations being solved in 

order to alleviate the numerical stiffness encountered in low Mach number and 

incompressible. Derivation of the preconditioning matrix begins by transforming the 

dependent variable in equation (1) from conserved quantities W primitive variable Q 

using chain-rule as follows: 

 








VV

HdVdAGFdVQ
tQ

W
                                                                  …(4) 

Where Q is the vector  TTwu  and the Jacobian 
Q

W
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Where 
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and =1 for an ideal gas and =0 for an incompressible fluid. The choice of primitive 

variables Q as dependent variables is desirable for several reasons. First it is a natural 

choice when solving incompressible flows. Second, when we use second order 

accuracy we need to reconstruct Q rather than W in order to obtain more accurate 

velocity and temperature gradients in viscous fluxes, and pressure gradients in invscid 

fluxes. And finally, the choice of pressure as a dependent variable allows the 

propagation waves in the system to be singled out Venkateswaran, et al., 1992. The 

inviscid flux vector F appearing in equation (5) is evaluated by a standard upwind, 

flux difference splitting Roe, 1986. This approach acknowledge that the flux vector F 

contains characteristic information propagating through the domain with speed and 

direction according to the eigenvalues of he system. By splitting F into parts, where 

each part contains information traveling in a particular direction (i.e., characteristic 

information), and upwind differencing the split fluxes in a manner consistent with 

their corresponding eigenvalues, we obtain the following expression for the discrete 

flux at each face: 

  QÂ
2

1
FF

2

1
F LR                                                                                   …(6) 
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Here Q is the special difference QR-QL. the fluxes FR=F(QR) and FL=F(QL) are 

computed using the (reconstructed) solution vectors QR and QL on the "right" and 

"left" side of the face. He matrix Â is defined by 
1

MMÂ
                                                                                                          …(7) 

Where  is the diagonal matrix of eigenvalues and M is the modal matrix that 

diagonalizes -1Â. Where A is the inviscid flux Jacobian Q/F  . 

3.2.4 Turbulence Model 

3.2.4.1 The Standard k- Model 

The standard k- model Launder, and Spalding, 1974 is a semi-empirical 

model based on model transport equations for the turbulent kinetic energy (k) and its 

dissipation rate (). The model transport equation for k is derived from the exact 

equation, while the model transport equation for  was obtained using physical 

reasoning and bears little resemblance to its mathematically exact counterpart. In the 

derivation of the k- model, it was assumed that the flow is fully turbulent, and the 

effects of molecular viscosity are negligible. The standard k- model is therefore valid 

only for fully turbulent flows. 

3.2.4.2 Transport Equations for the Standard k- Model  

The turbulent kinetic energy, k, and its rate of dissipation, , are obtained from 

the following transport equations: 

Mbk

ik

t

i

YGG
x

k

xDt

Dk




























 




                                                …(8) 
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In these equations, Gk represents the generation of turbulent kinetic energy due to the 

mean velocity gradients, and calculated from 

i
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jik
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                                                                                                   …(10) 

To evaluate Gk in a manner consistent with the Boussinesq hypothesis, 
2

tk SG                                                                                                               …(11) 

Where S is the modulus of the mean rate of strain tensor, defined as 

ijij SS2S                                                                                                          …(12) 

With the mean strain rate Sij given by 
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 Gb is the generation of turbulent kinetic energy due to buoyancy which is neglected 

here, and YM represents the contribution of fluctuating dilatation in compressible 

turbulence to the overall dissipation rate, this term is modeled according to a proposal 

by Sarkar and Balakrishnan, 1990 
2

tM M2Y                                                                                                           ...(14)  

Where Mt is the turbulent Mach number, defined as 

2t
a

k
M                                                                                                              …(15) 
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Where a( RT ) is the speed of sound.  

This compressibility modification always takes effect when the compressible form of 

the ideal gas law is used. 

3.2.4.3 Modeling the Turbulent Viscosity 

The "eddy" or turbulent viscosity, t, is computed by combining k and  as follows: 


 

2

t

k
C                                                                                                         …(16) 

Where C is a constant and the model constants C1 , C2 , C3 , k and  have the 

following default values Launder, B. E. and Spalding, D. B., 1974 

C1 =1.44,  C2 =1.92, C3 =0.09, k =1.0, =1.3. 

3.2.4.4 Time Marching for Steady-State Flows 

The coupled set of governing equation (4) in FLUENT is discretized in time 

for both steady and unsteady calculations. In the steady case, it is assumed that time 

marching proceeds until a steady state solution is reached. Temporal discretization of 

the coupled equations is accomplished by either an implicit or an explicit time-

marching scheme. The implicit time- marching are used in this research . 

Implicit Scheme 

In the implicit scheme, an Euler implicit discretization in time of the governing 

equations (4) is combined with a Newton-type linearization of the fluxes to produce 

the following linearized system in delta form Weiss  et. al., 1997: 
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The center and off-diagonal coefficient matrices, D and Sj,k are given by: 
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and the residual vector Rn and time step t are defined as, respectively 

 
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where max is the maximum of the local eigenvalues. 

 

Equation (17) is solved using a point Gauss-Seidel scheme in conjunction with an 

algebraic multigrid (AMG) method adapted for coupled sets of equations. 

Temporal Discretization for Unsteady Flows 

For time-accurate calculations, explicit and implicit time-stepping schemes are 

available. (The implicit approach is also referred to as "dual time stepping".) 

To provide for efficient, time-accurate solution of the preconditioned equations, we 

employ a dual time-stepping, multi-stage scheme. Here we introduce a preconditioned 

pseudo-time-derivative term into Equation (1) as follows: 
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where t denotes physical-time and   is a pseudo-time used in the time marching 

procedure. Note that as  , the second term on the LHS of Equation (20) vanishes 

and Equation (1) is recovered. 

The time-dependent term in Equation (20) is discretized in an implicit fashion by 

means of either a first- or second-order accurate, backward difference in time. This is 

written in semi-discrete form as follows: 
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where 0 = 1 = 1=2; 2 = 0  gives first-order time accuracy, and 0 =3/2; 1 = 2; 2 

= 1/2 gives second-order. k is the inner iteration counter and n represents any given 

physical-time level. The pseudo-time-derivative is driven to zero at each physical time 

level by a series of inner iterations using either the implicit or explicit time marching 

algorithm. Throughout the (inner) iterations in pseudo-time, Wn and Wn-1 are held 

constant and Wk is computed from Qk. As  , the solution at the next physical 

time level Wn+1 is given by W(Qk). Note that the physical time step t is limited only 

by the level of desired temporal accuracy. The pseudo-time-step  is determined by 

the CFL condition of the time-marching scheme Jameson, et. al., 1981.. 

3.2.5 Boundary Conditions: 

Boundary conditions for the network are: the upstream boundary points for 

stator vane, the downstream points for the rotor. The inlet and exit boundary panels 

are positioned sufficiently far from the vane and blade so that uniform flow property 

distributions may be assumed along them. At the upstream boundary points, the 

steady state stagnation pressure and temperature are specified(as exit from 

combustion chamber), and the whirl component of the velocity (i.e, the y-component 

of velocity at the entrance to the cascade) is specified as zero. At the downstream 
boundary points the steady state static pressure is specified **. The specific heat ratio 

of the combustion gases is assumed to be(=1.3) as shown in Figure (6). 

 
 

 
Figure(6): Boundary Condition for The Network. 

                                                 
 ** Delaney(1) presented two cases of steady flow through a turbine cascade : one for subsonic flow throughout and one 

with region of transonic flow. The only difference between the subsonic and transonic flow cases is the value of the static 

pressure along the downstream boundary , denoted by p2, for the subsonic flow case p2=0.685 po1, while for the transonic 

flow case , p2=0.578 po1, where po1 is the steady state stagnation pressure along the upstream boundary. In both cases the 
whirl velocity component along the upstream boundary is zero, so that the velocity along the upstream boundary is in the 

axial direction.  
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4. Coupled Solution Method 
The coupled solver is the solution algorithm previously used by Fluent. This 

approach, using the governing equations of continuity, momentum, and energy 

equation are solved simultaneously (i.e., coupled together) as in equation (5). 

Governing equations for additional scalars will be solved sequentially (i.e., segregated 

from one another and from the coupled set) Because the governing equations are non-

linear (and coupled), several iterations of the solution loop must be performed before 

a converged solution is obtained. Each iteration consists of the steps illustrated in 

Figure (7) and outlined below: 

1. Fluid properties are updated, based on the current solution. (If the calculation has 

just begun, the fluid properties will be updated based on the initialized solution.) 

2. The continuity, momentum, and energy equations are solved simultaneously . 

3. Equations for scalars such as turbulence are solved using the previously updated 

values of the other variables. 

4. A check for convergence of the equation set is made which is equal to 0.00001. 

These steps are continued until the convergence criteria are met. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure (7): Overview of the Coupled Solution Method. 
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5.Results and Discussions: 
 Results computed for the two cases of unsteady flow through a blade passages 

of Al-Hilla Gas Turbine Power Plant are presented. The first case involves subsonic 

flow throughout the rotor-stator, and the second involves subsonic inlet and discharge 

flows, but with transonic flow over a portion of the blade passages. In both cases, the 

computed blade pressure and Mach number distribution are obtained. 

 For convenience, the results for the two example case are initially solved for 

steady flow through the blade passages. Later, the steady flow through the non-

moving rotor passage will be present the starting point for the transient calculation.                                                                                                                                                

The selection of the time step is critical for accurate time dependent flow predictions. 

Here, the time step is chosen to be about 1/22 of the passing period, T***. The passing 

period is the time it takes for the rotor blade to pass from one stator blade row to the 

next: 

   T=(0.075m)/(351.45831m/s)= 2.1338018e-04 

Using a time step of 0.00001second, 20 time steps will be performed as the 

rotor performs one pass. 

The rotor-stator flow prediction will be continued in time until a time-periodic 

flow is obtained. Low accuracy during the initial passing periods is acceptable as long 

as convergence is achieved during each time step of the final passing periods. 

 Subsonic flow case: in this example, in addition to contain uniform inlet 

stagnation conditions, steady-state boundary conditions were prescribed as 1- zero 

whirl component along the upstream boundary for the stator, and 2-uniform 

normalized static pressure p2=0685Po1along the downstream boundary for the rotor, 

after 600 iterations, the steady flow calculation be fully converged as shown in Figure 

(8). Here, this is not of concern, as the steady-state prediction will be used only as a 

starting solution for the transient sliding-mesh calculation. 

 

                                                 
 *** for some problems (e.g., rotor-stator interactions), you may be interested in a time-periodic solution. 

That is, the startup transient behavior may not be of interest to you. Once this startup has passed, the  flow 

will star to exhibit time-periodic behavior. If T is the period of unsteadiness, then for some flow property 

(t)=(t+NT)  (N=1,2,3,….) 

For rotating problems, the period (in seconds) can be calculated by dividing the sector angle of the domain 

(in radians) by the rotor speed (in radian/sec); T=/. For 2D rotor-stator problems, T=P/Vb where P is the 

pitch and Vb is the blade speed the number of time steps in a period can be determined by dividing the time 

period by the time step size. When the solution field does not change from one period to the next ( for 

example, if  the change is less than 5%), a time-periodic solution has been reached as mentioned in Fluent 

Inc user's guide, 1998, Meinhard, T. Schobeiri ,Burak, Öztürk, and David, E. Ashpis, 2003. 
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Figure (8): Lift Coefficient and Normalized Scaled Residual History; Steady 

Flow, Non-moving Rotor; Subsonic Flow Case; p2=0.685Po1. 

 
 By requesting 1019 time step this will include roughly 48 passing periods 

(48*Tsec=0.01019 sec). Figure(9) for the lift force coefficient history shows that the 

flow becomes time periodic approximately 0.0008(after about 4 passing periods).  

 
 

 

 
Figure (9): Lift Coefficient and Normalized Scaled Residual History; Unsteady 

Flow; moving Rotor; Subsonic Flow Case; p2=0.685Po1. 

In Figure (10), the computed values of the blade surface static pressure for 

rotor are plotted versus axial distance x along the blade the lowest value of pressure 

occurs on the blade suction surface near the throat location for the blade passage 
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(x/Cx=0.6916) where Cx, is the blade axial chord. The pressure distribution on the 

rotor blade pressure surface indicate approximately uniform flow for x/Cx<0.6916, 

followed by accelerated flow to the trailing edge. On the blade suction surface the 

reverse is true, that is accelerated flow is indicated upstream of the throat, with nearly 

uniform flow downstream of the throat. 

 
 

Figure (10): Rotor- Blade Surface Distribution of Static Pressure- 

Subsonic Flow Case; p2=0.685Po1. 

 
Velocity vectors at every other point in the solution grid are shown in 

Figure(11) large velocity gradients are observed upstream of the passage throat for 

rotor, while downstream of the throat are approximately uniform distribution of the 

velocity can be seen. The velocity distribution around the leading edge of the rotor 

blade indicate that the stagnation point is located on the pressure surface of the blade. 

In the region of he upstream boundary, the velocity gradient in the axial direction is 

approximately zero. This tends to support the assumption of uniform whirl velocity 

distribution along the upstream boundary for stator.  

 

 
 

Figure (11): Velocity Vector Field; Subsonic Flow Case; p2=0.685Po1.  
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A contour plot of computed static pressure over the flow field is presented in 

Figure(12). The highly two-dimensional character of the flow is indicated. The 

maximum pressure gradient occur near the passage throat for rotor, with the minimum 

pressure occurring on the blade suction surface near the throat location. Upstream of 

the stator blade a nearly uniform pressure distribution is shown. At the downstream 

boundary, the axial pressure gradient are approximately zero, in support of the 

assumption of uniform static pressure along the downstream boundary. 

 
 
Figure (12): Contour of Static Pressure; Subsonic Flow Case; p2=0.685Po1.  

 

Lines of constant Mach number in the flow field are shown in Figure(13). The 

contours indicate rapidly accelerating flow around the rotor blade leading edge on the 

suction surface and relatively uniform flow on the pressure surface near the leading 

edge.           

 Also, an approximately uniform distribution of Mach number is shown 

downstream of the throat on the blade suction surface. At the upstream boundary for 

stator, the contour lines are nearly horizontal indicating essentially zero Mach number 

gradient in the axial direction near the boundary. 

 
Figure (13): Contour of Mach Number; Subsonic Flow Case; p2=0.685Po1.  
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Transonic flow Case: the boundary conditions for this case flow example were 

the same as in the subsonic flow case except that the downstream normalized pressure 

p2=0.578Po1along the downstream boundary for the rotor. In this case, the flow 

accelerating to the transonic regime in the rotor blade passage. The initial data for the 

transient solution were taken from the steady state solution as mentioned in the 

subsonic flow, after 414 iterations, the steady flow calculation be fully converged as 

shown in Figure (14). Approximately 1041 time steps were required to obtain the 

steady flow results as presented in Figure (15). 

 

  

 
Figure (14): Lift Coefficient and Normalized Scaled Residual History; Steady 

Flow, Non-moving Rotor; Transonic Flow Case; p2=0.578Po1. 
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Figure (15): Lift Coefficient and Normalized Scaled Residual History; Unsteady 

Flow, moving Rotor; Transonic Flow Case; p2=0.578Po1. 

 

In Figure(16), the pressure level on the blade suction surface of rotor indicates 

supersonic flow downstream of the throat. Also, the minimum blade surface pressure 

dose no occur at the blade throat as in the subsonic flow case, but further downstream 

at about (x/Cx=0.7573). The shifting of the minimum pressure point downstream of 

the throat is indicative of the fact that supersonic flow has been established. 

Comparison of blade pressure distribution in Fig.(16) and Fig.(10) for the two flow 

cases substantially higher blade loading in the transonic case with the majority of the 

loading increase occurring on the rear half of the rotor blade. 

 
Figure (16): Rotor- Blade Surface Distribution of Static Pressure- 

Transonic Flow Case; p2=0.578Po1. 

 

The velocity vector field for this example is presented in Figure(17). The 

influence of the blades on the upstream velocity distribution is again evident. Also, 

the leading edge stagnation point appears to be located in approximately the same 

location as in the subsonic flow case. However, one difference noted from the 

subsonic case is the increased velocity level which exists downstream of the throat. 
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Figure (17): Velocity Vector Field; Transonic Flow Case; p2=0.578Po1.  

 
A contour plot of static pressure is presented in Figure(18) . as in the subsonic 

flow case, a nearly uniform distribution of static pressure exists upstream of the rotor 

blade. The contour line distribution of static pressure for the subsonic and transonic 

flow cases in Figures(12),(18), respectively, are nearly the same upstream of the 

passage throat, indicating that both flow cases are close to the chocked condition. 

Much higher pressure gradients are shown downstream of the passage throat for the 

transonic flow case in Figure (18). Also, as has been noted already, it is apparent in 
Figure(18) that the minimum pressure point location has moved downstream to a 

point near rotor blade trailing edge on the suction surface. 

 
 

Figure (18): Contour of Static Pressure; Transonic Flow Case; 

p2=0.578Po1.  

 
Lines of constant Mach number in the flow field are shown in Figure(19). The 

supersonic flow region is located on the rotor blade suction surface near the trailing 

edge. Again, the contour line distribution upstream of the throat is nearly the same as 

that in Figure(13) for the subsonic flow case. 
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Figure (19): Contour of Mach Number; Transonic Flow Case; 

p2=0.578Po1.  

 

6-Conclusions: 
In this research we have modeled the time periodic flow involving rotor-stator 

interaction in Al-Hilla Gas Turbine Power Station and we have learned how to create 

the grid interface zones along the sliding mesh by using FLUENT technique. Steady 

state flows are computed as the asymptotic limit of transient solutions. Two turbine 

blade flow examples have been presented. One example involves subsonic flow 

throughout the rotor blade of turbine, while the other involves transonic flow over a 

region of the rotor blade passage. The success of the present model in solution of 
blade to blade flows in turbine stage suggests that the method could be extended for 

solution of hub-to-tip flow on an arbitrary stream surfaces in rotating blade rows. 
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