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ABSTRACT

A finite element model for the study of the creep, shrinkage
and tensile stiffness between cracks effects in partially
prestressed continuous composite beams with deformable shear
connections is proposed in this paper.

The algorithm used is very general and allows the adoption of
an arbitrary viscous law expressed in integral form and any load
history. By means of simple numerical comparisons, the
potentials of the proposed formulation are shown. This model,
due to its simplicity, can be easy implemented in an analytical
program.
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INTRODUCTION
Continuous composite beams, like all other structural

members, must be designed to satisfy the requirements of both

the strength and serviceability limit states. Design for adequate

flexural strength is relatively straightforward, with plastification

in sagging bending and buckling in negative bending generally

governing the ultimate strength of an individual cross section [1].

The design of serviceability, however, is not as

straightforward, since the prediction of the behavior under

sustained service load is complicated by time-dependent

deformation in the concrete due to creep and shrinkage and

additional nonlinearity due to concrete cracking. 

The most powerful way that can prevent concrete cracking

and improve the stiffness and strength is using prestressed

concrete.

Dezi and Tarantino [2] in 1993 and Dezi, et.al. [3] in 1995

studied the viscoelastic analysis of non-prestressed or fully

prestressed composite continuous beams with flexible shear

connector assuming that the concrete is uncracked. 

Gilbert and Bradford [4] in 1995 described a simple

analytical model of the behavior non-prestressed composite

continuous beams under sustained service load using the age-

adjusted effective modulus but with neglecting of the effects of

the slip between the concrete slab and steel section as well as the

tensile stiffness of concrete between cracks. 
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This paper describes dependent behavior of partially

prestressed composite continuous beams by a numerical model

which is constructed using finite element method, making it

possible to evaluate the effects of concrete creep and shrinkage

and stiffness of concrete between cracks on the deformations and

stresses of the continuous composite beam at any time.

In this model, a numerical algorithm providing a result of

good accuracy, has been obtained. The integration in time of

viscous law of the material expressed in integral form (Bazant

1972)[5] is carried out by means of the trapezoidal rule.

Its validity is illustrated by simple comparison with

experimental work done by Gilbert and Bradford in 1995.[4]

FINITE ELEMENT MODEL FORMULATION

The proposed model takes into consideration the

composite beam of Fig.(1) constituted by two parallel beams, the

first (concrete) with a viscous-elastic behavior with area Ac,

moment of inertia Jc, and elastic modulus Ec(t), the second (steel)

of area As, moment of inertia Js, and elastic modulus Es.

One can suppose that the two beams are linked by means

of a continuous system of elastic connectors of rigidity K(x)

(which is sufficiently correct in serviceability condition) as in

Fig. (1-c).

For the hypotheses which have been made, indicated by

uc,us the horizontal displacement of the point on the centroidal
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axis of the component beams, and vc,vs the vertical displacement

of the same points, one obtains :

                   vc = vs = v (1)

while the relative slip  between steel and concrete .

(x) = ho [dv/dx]-(uc-us) (2)

Having indicated with the slip force acting on the
connection, one will obviously have:

(x) = K(x) (x) (3)

CONSTITUTIVE EQUATION OF THE MATERIALS.
Generally, the concrete slab may contain three different

materials; concrete, reinforcement , and prestressing steel.
Because of the wide difference among the properties of these
three materials, as well as difference between the behavior of
concrete in tension and in compression, the layerd model
approach will be useful for the analysis of such complex element
(Fig.2).

The concrete layers under compression is assumed to be a
linear visco-elastic material governed by well-known integral-
type relationship between a prescribed uniaxial stress history and
corresponding strain(Bazant 1972):

                                                                                                    (4)
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where (t , to) is the total strain at time to ; which is the sum of
the visco-elastic strain developed in the time interval (t,to) under
examination, represented by Stieltjes  integral :

and the inelastic strain n(t) , which is independent of the stress
state,due ingeneral to the effect of the shrinkage and the thermal
dialation.

The function (t, ), called the viscosity function or creep
function (usually provided by the codes) represents the total
visco-elastic strain at time t caused by the application of a
constant unitary stress applied at time . In the CEB code models
[1976-1978], this function is defined as:

(5)

The sum of an initial elastic contribution 1/Ec( ) at time and
of contibution of viscous character [ 28(t, )/(Ec28) where Ec28 is
the concrete modulus at 28 days and 28(t, ) is the creep
coefficient defined as the ratio between the strain of viscous
character at time t { (t, )}, and the initial elastic strain for a
stress co = c( ):

                                                                                                    (6)
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A very simple way[3] to overcome the difficulties induced by
Voltarie s linear equation (4), consists in approximating the
Stieltjes integral through the the application of trapezoidal rule[6].

For a law c( ) defined in the time interval (to,tk) ; working
thus one obtains:

                                                                                      (7)

 with: ci = c(ti)- c(ti-1)
The constitutive relation in the form (7) is then easly

utilizable by using an incremental step-by-step procedure. If one
writes (7) for t=tk-1 and subtract from (7) the equation obtained,
we easly arrive at the relation:

(8)

                              (9)

                                                                                           (10)

                                                                                           (11)

                                                                 (12)

It is therefore possible to porpose the constitutive equation of
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ck = c(tk) [ ck- vk- nk] (13)

where the increments of total ck, viscous vk and inelastic

nk strain clearly appear in interval 'k'.

The stiffness of concrete between cracks is considered in this

research by adopting an incremental stress-strain relationship for

the reinforcement and prestressing steel including this effect at

the crack position.

When a crack is formed, the stress in the concrete immediately

adjacent to the crack drops to zero and the steel stress increases

to that corresponding to the fully cracked state. With increasing

distance from the crack , the stress in the concrete increased as

force is transferred from the steel to the concrete by bond stress,

b , until at some distance , t , from the crack , the concrete again 

attains the tensile strength of the concrete, Fig. (3) .

The empirical formula suggested by CEB [1967-1978] for

crack spacing ,  (in mm) , that will be recommended here is :

= 2(c+s/10)+(k2 fct/ b) ( Act/us) (14)

where c= the concrete cover (mm) ; s=spacing of bar
(mm); Act = area of concrete in tension; us= the sum of
the perimeters of the reinforcing bars; and k2 = a
coefficient equal equal 1.0 for pure tension and 0.5 for
pure bending.

It assumed that the bond stress is independent of
the displacement of the steel bar relative to the outer
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surrounding concrete. So, the distance t is calculated as
follows:

t= AsEr( r2- cr) / ( bus) t  (15)

where cr = fct / c(t) ; r2 = the reinforcing strain at the
crack position , and Er = reinforcement steel young s
modulus. With regard to the stress of the reinforcement
at the crack position three stages can be distinguished;
Fig. (3).

The incremental form of the stress at the crack
position r2k- mean strain rm relationship can be
written as:

r2k = Er [ rmk+ rk]  (16)

Where rk = r(tk) r(tk-1) and r(tk-1) is memorised through

the calculation.

r(tk)=0 for tk 0.0 ; or r (tk)=(1- t/L)[ r 2- cr] for

0< tk< k/2 or r(tk) = [ bus L]/[4 Es As] for tk k/2 , where

tk, k are the values of t,  in time tk.

In the same way, the behavior of prestressing steel in concrete

slab of composite continuous may be governed by Eq. (16). It

should be noted that the value of pk must be calculated with the 

bond stress between the prestressing steel and the surrounding

concrete.
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ELEMENT FORMULATION
With references to the parameter of nodal

displacement of the finite element proposed in Fig. (4) ,
according to the usual technique for finite elements, it is
possible to suppose :

uc(x) = Nc uc

us(x) = Ns us  (17)
v(x) = Nv v

Where
uc

T={ uc1, uc2, uc3}; Nc={Nc1(x),Nc2(x),Nc3(x)}, and
analogously for the vectors uc

T and vT and for
matrices of shape function Ns , Nv. The expression of the
components of which is reported in appendix A. 

The incremental mean strain ck (x) of the concrete
layer (i) can be expressed as a function of incremental
nodal displacements

ck (x)=Nc uck - yi Nv vk (18)

where the denote and is the first and seconed
derivative.
It is possible to apply the principle of virtual work to a
generic instant tk, considering the creep effects and the
load applied in the time interval (tk-1,tk) and to obtain ,
when working with one finite element:

(19)
L L
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where vc , vs represent the volume of concrete and steel
of the generic element and qk represents the possible
increment of distributed load applied to the element of
length L in the time interval considered.

Considering constitutive relation (13) together with
the relations (2) and (3), supposed in incremental form,
for the (17)and (19 ) one obtain :

(20)

Here, it is assumed that the inelastic strain in
concrete section to be uniform:

            (21)
i.e the shrinkage will made no bending moment present
in section and the viscous strain vk divided   int o two
components,   one 
produced  by  the  effect  of  the  normal force  in section,
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(22)

(22)

with vk
N constant on Ac and vk

M linear with yc vk
M

and equal to
         for which one obtain;

(23)

(24)

As the equation of the virtual works (20 ) must be
respected for every congruent ( uck

T), ( usk
T)and

( vk
T), one immediately obtain the system of solving
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which with the meanings of the symbols as obvious can
be proposed in the form:

(26)

where the effects of the reinforcement and the prestress
considered in this research on the nodal force vectors
appear clearly in equation (26).
Submatrices Kkucuc, Kkucus , etc are reported in appendix B.

One can rearrenge the equations and carry out a static
condensation procedure of the equations of the internal
nodal parameters uc3 and us3

[6], to obtain a reduced
system of the type: 

(27)

in which the matrices Ke
k= condensed stiffness matrix of

the element, and uck
eT= { uc1k, uc2k, v1k, v2k, uc3k,

us1k, us2k, uv3k, uv4k}e as shown in Fig.(4).

The values of the load sub-vectore fn
uck and fq

k can
be easily obtained by integrating the shape functions: 
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Also, in similar way, the load sub-vectors ,
,and
Can be written in the following form:

(30)

here:

(31)

For the load sub-vectors fvuck and fvvk , going back to 
in the matrices in Eq. (25)

 (32)

For the relations (12),(13), (25), and (26), it can be
proposed in the form: 

                                                                      (33)
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where ruci
v represents the increase in effective

equivalent nodal force for the element due to creep effect 
in the i-th term interval. In order to facilitate the
calculation of the term fuck

v , it is then appropriate that
the nodal force ruci

v :

(34)

be memorised during calculation.

For the term fv
vk , in an analogous way the recursive

relations are obtained;
(35)

(36)

1

1
i

* ),()(
2
1uc

k

j

v
jii

n
cicci

v

i jcc ucuuuu rr ttRtEfK

1

1
i

*

1

1

),()(
2
1v

),()(
2
1

k

j

v
jjiii

v
i

k

i

v
kikk

v
k

vcv

vc

rttRtEK

ttRtEf

vv

v

r

r

(90-100)90



Tikrit Journal of Eng. Sciences\Vol.12\No.3\August 2005

The matrices Ki
*ucuc , Ki

*vv which appear in the equations
(35), (36) are directly determinable from the matrices
Kiucuc, Kivv ignoring the terms in which the stiffness
contribution due to the connection and steel bar appears. 

Once uk is obtained, it is then immediate to go
back, for sake of congruence, to the nodal displacements
of the element ue

ck and consequently the increase in the
characteristics of the stress and strain in the component
beams.

The determination of the internal forces in the
concrete must obviously be based on the constitutive
equation (13). With the notation in Fig.(1) and omitting
the symbol regarding the element, this leads to:

(37)

(38)

For the stress increment in the steel beam and the
connection, as the elastic bond is linear, the usual
technique of finite element is used. 

EXPERIMENTAL VERIFICATION

To verify the applicability model , the comparison
is made with the experimental work of Gilbert and
Bradford (1992)[4] . they tested several two span non-
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prestressed continuous composite beams over a period of 
340 days. The measured short-term and long-term
deflections of two beams are compared here with the
corresponding computed values. The two beams were
continuous over two 5.8 m span and were identical,
except for the load level, with cross section and elevation 
similar to that shown in Fig. (4). The relevant properties
and are: Dc=70 mm ; b=1000 mm ; Ds=203 mm ;
Ass=3230 mm2; Iss = 23.6 * 106 mm4 ; dss = 171.5 mm ;
dsr = 15 mm ; Asr = 113mm2 ; and L=5800 mm ; fc =27
MPa.

The first beam B1 was subjected only to it s own
weight, i.e. w=1.92kn/m, while the second beam B2
carried an additional superimposed sustained load of
4.75 kN/m, i.e. w =1.92+4.75=6.67 kN/m.

Measured and computed deflections for both beams 
are shown in Fig. (5) and (6), and are in reasonable
agreement. The computer model appears to provide a
reliable simulation of structural behavior.

In Fig. (7), the computed initial and final bending
moment diagrams are plotted for beam B2. Also, shown
is the final bending moment when shrinkage is set to
zero. It can be seen that the relatively large time-
dependent redistribution of moments that occur in
continuous composite members at service load is
primarily due to concrete shrinkage.
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CONCLUSION

A computer model for calculating the time-
dependent behavior of partially prestressed continuous
composite beams with flexible shear connectors have
been described. The analysis takes into account the
material non-linearity caused by cracking of concrete
slab in negative moment region and the stiffness of
concrete between cracks and the time-dependent
deformations caused by creep and shrinkage in the
concrete. Computed results were shown to be in close
agreement with laboratory measurements taken on two
full-scale continuous composite beams (non-prestressed)
for a period of 340 days. Results are also presented that
demonstrate
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APPENDIX  B 

Stiffness sub-matrices of element with
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Fig.7 Initial and Final Bending Moment Diagrams for  Beam2
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Fig.6 Mid-span Deflection versus Time Curves (Beam 2 )
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Fig.5 Mid-span Deflection versus Time Curves (Beam 1 )
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