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Abstract

Linear phase requirement can be achieved by direct design with an FIR filter at
the expense of high order and high computational burden for the given specification.
Alternatively, IR digital filters can be designed with much smaller order than their FIR
counterparts, but at the expense of the non-linear phase. In this paper, a new design of
linear phase IIR digital filter is presented by composing a zero phase efficiently
designed FIR digital filter with maximally flat group delay. The new IIR digital filter is
designed with a lower order satisfying the same roll-off magnitude response of the
corresponding FIR filter and preserving the approximate pass-band characteristics.
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1- Introduction

Many authors have studied the
synthesis of [IR digital filters with
linear phase[1]-[11]. The problem to be
solved is the smultaneous
approximation of both magnitude and
phase characteristics. The preponderant
technique employs all-pass equalizers to
obtain linear phase
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of the IIR digital filter, which
was initially designed from magnitude
characteristics. Hence the
approximations of magnitude and phase
characteristics are handled separately.
Although the stability of the filter is
guaranteed using all-pass equalizer, it is
difficult to achieve a good
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approximation of the linear phase
characteristic, especially the constant
group delay in genera [1]. There are
some design philosophies in [2]
analogous to the equalizer method, in
which, the magnitude and phase
approximations are handled separately.

Many design methods have been
successfully applied to the design of
linear phase IIR digital filters. Linear
programming is one of these methods,
and is used for the design of IR digital
filters with approximated linear phase
that unifies the approximation of both
magnitude and phase characteristics [3].

A new methodology was
presented in [4] to design linear phase
IR digita filters. Such design is based
on a non-causal FIR model that
represents the ideal filter response with
linear phase. A linear phase IIR filter is
then synthesized as an approach of the
ideal FIR filter. The stability of such IIR
filter is guaranteed since these 1IR
filters are obtaned leaning on FIR
pattern.

Other techniques for designing
linear phase IIR filter is a two-path
polyphase structure [5]-[7], Frequency
Masking (FM) technique [8]-[10], and
the new design method of Multirate
approximately linear phase IIR filter
structure for arbitrary bandwidth that is
presented in [11].

The specification of linear phase
is normally given in terms of the desired
constant group delay T for the IIR
digital filter. The desired linear phase
specification can be written as

fw)=-tw ()

where W is the normalized frequency
variable. Varying t value, one can
control the linear phase specification.

Precise linear phase transfer
function can be easly readlized as an
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FIR structure. Unfortunately, this
structure requires many times more
multiplies per output sample to satisfy a
good roll-off magnitude response
specification such as that of IR filters.
On the other hand, the IIR filter can not
be designed to exhibit exact linear phase
response [12]. An approximate linear
phase response is acceptable for [IR
filter. Such approximation may be
carried out for the pass-band only. The
stop-band phase approximetion is
ignored since it is of no significance as
the magnitude values appear with very
low levels in this region [3]. Our
analysis in this paper depends on such
type approximate linear phase design of
IR filters.

A new design method for
approximate linear phase IIR digita
filters is presented in this paper. A
mirror image polynomial of the same
type designed in [13] for FIR filter is
used as an IIR filter’s numerator to
design the magnitude response. Linear
phase all-pole function is cascaded with
this numerator, this cascaded structure
produces an approximate linear phase
IR filter. Such a design is achieved
with optimum frequency response, and
then with reduced complexity. Findly a
merged design is obtained with both
optimal  response and  efficient
realization  properties.  Section 2
includes the design of the al-pole
function that is used in the design of the
linear phase IIR digital filter in Section
3. lllustrative example is shown in
Section 4. In Section 5 some
conclusions are given.

2- Linear Phase All-Pole Function
Design
An adl-pole digital function is

used here to represent the denominator.
It is of the type with maximally flat
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group delay, and can be expressed as
[14]
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all-pole function constant,

t is the desired group delay
(sec.), and

b’s are the al-pole function
coefficients.

Thus, the general form of the IR digital
filter can be written as

M -m
1 aa,z
H(z)= S X m:ON "
gi+ abz"?
€ n=1 17}
..(4)
where a_, is the IR digital filter

numerator coefficient,

The above form of H(2)is

identical to that in [15]. To reduce the
number of the required multipliers, we
can divide the numerator polynomial by
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G . This will reduce the number of
multipliers by one.

It should be noted that the
function in Equation (2) is stable for all
positive values of group delay, t . The

cutoff frequency (W,) of the filter is

determined by the desired group delay
value, and the filter order N. High group
delay vaue gives lower cutoff
frequency, while higher al-pole filter
function order leads to higher cutoff
frequency [16].

This maximally flat group delay
all-pole filter function has a magnitude
value equal to unity aa w =0, and
starts decreasing with very small values
up to cutoff frequency. Magnitude
decreasing amount depends on the
group delay value. That gives amost
constant pass-band magnitude at low
frequencies, this property is used, here,
to design the magnitude response of
low-pass filters. It can be modified to
design band-pass filter when small
group delay values are chosen. In
addition, the al-pole filter function has
linear phase at low frequencies. Figs. 1
and 2 show the magnitude and phase
shapes of the all- pole function with 11"
order and group delay values of 0.1, 0.5,
1, 1.5, 2 sec.srespectively.

3- Linear Phase IIR Digital Filter
Design Procedure

As mentioned before, the
numerator of the proposed linear phase
IR digital filter is a mirror image
polynomial, that gives zero phase. This
numerator is designed in [13] as an FIR
filter. This non-recursive filter has a
zero group delay. Normally, this type of
FIR filter function is wused to
approximate the overal filter magnitude

after being multiplied by 2z VZfor
casualty purposes.
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Cascading the linear phase all-
pole filter function in Section 2, with
the FIR filter gives a new linear phase
IR digital filter. The resulting IIR
digital filter will be stable for al finite
positive values of group delay (t )[16].

In the next sub-sections,
different agorithms will be used to
design this linear phase IIR digitd filter.
First agorithm gives some reduction in
complexity of 1IR filter realization. The
second one presents an optimum linear
phase IR filter magnitude response in
stop-band peak ripple sense. Finaly, a
linear phase IR filter which is
optimally designed with efficient
realization is achieved.

i- Efficient Redlization of Linear Phase
IR Filter

The linear phase IIR filter
designed here is composed of FIR filter
that is previoudly designed in [13] as a
numerator, and an all-pole filter
function of the type used in Section 2 as
a denominator. The FIR filter is
designed by a new procedure, this
procedure results in an FIR filter with
some zero coefficient values. The
number of zero coefficients may be

increased to reach N/2. These zero

coefficients lead to a reduction in the
total required number of multipliers in
thefilter redlization.

Cascading the FIR filter function
with the all-pole function gives a new
linear phase IIR digital filter with some
zero coefficients in the numerator. This
type of IIR filters gives more smple
realization with a good response,
compared to the corresponding IR filter
of the same order.

ii- Optimal Design of Linear Phase IR
filter
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The FIR filter that is designed in
Section 2 of [13], could be used as a
numerator of the linear phase IIR filter.
This filter function numerator is
designed with optima single or double
transition-band samples. These
optimum values are obtaned by
employing the Golden Section Search
optimization  method in  Single
Trangition- Band Sample, and with the
aid of Steepest Descent agorithm in
Double Transition- Band Samples. The
main advantages of these optimization
procedures are reduced in Pass-Band
Average Deviation (PBAD), and
minimum Peak Stop-Band Ripple
(PSBR) levels. Optimal linear phase IR
digital filter response is obtained by
composing this FIR filter function with
the all-pole filter function to produce a
new optima response IR digital filter.
The resulting IIR filter exhibits the
phase linearity property, in addition to
more improvement in  stop-band
response. In other words, if it is
required to obtain the same FIR filter
response, an IIR filter with lower order
can be used.

iii- A Novel Linear Phase IIR Filter
Design and Realization

In the Sub-section 3., an
approximate linear phase IIR digita
filter with some zero coefficient values
is designed. This IIR filter gives some
reduction in required number of
multipliers in 1IR filter realization. In
Sub-section 3.ii, an optima design for
IR filter is achieved in the sense of
stop-band ripple levels.

In this sub-section, the linear
phase IIR filter is designed utilizing the
above two approaches (i.e., efficient
realization, and optimal response). The
resulting IR filter represents a
modernistic design and realization.
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4- Design Example

It is required to design a low
pass IIR digita filter meeting the
following specification: 11"  order,
w, =50 /11rad. , and group delay
values (t ) of 0.1, 0.5 and 1 sec.s
respectively.

In Case 1, the designed IIR
digital filter is as in Section 3.i. The
values of transition-band samples of the
filter numerator are chosen arbitrarily.
The numerator and denominator
coefficients of the designed IIR filter
function are listed in Table 1. Fig. 3
shows the magnitude response of the
overall filter. The PSBR levels are -
23dBat =01sec,-39dB att =05
sec., -47dB at t =1 sec.. For the same
above sequence of group delay values,
the corresponding PBAD are 1.05%,
6.51%, and 13.20%.

In Case 2, the designed IIR
digital filter is as in Section 3.ii. The
double transition-band sample values of
the filter numerator are optimized using
Golden Section search method with the
aid of Steepest Descent agorithm (an
= 0.58073, ap = 0.0983101) to give
minimum peak ripple in the stop-band.
The IIR filter coefficients are listed in
Table 2. The magnitude response of the
linear phase IR filter is shown in Fig. 4.
The PSBR levels are reduced for { =
0.1, 0.5, and 1 sec., to -79dB, -91dB, -
103dB, respectively. The corresponding
PBAD are 0.70%, 6.17%, and 12.87%.

In Case 3, the IR digital filter is
designed by using the same procedure
illustrated in Section 3.iii. The double
transition-band sample values of the
filter numerator are optimized to give
minimum peak ripple in the stop-band
besdes having some of zero
coefficients values. The sum of these
transition-band samples is ill equa to
unity. The IIR filter coefficients (with

optimized  trangtion-band  sample
an=0.58073, a;»=0.0983101) are listed
in Table 3. The magnitude response of
the linear phase IIR filter is shown in
Fig. 5. The PSBR levels are reduced for
t =0.1, 0.5, and 1 sec,, to -55dB, -
61dB, -69dB, respectively. The
corresponding PBAD ae 0.70%,
6.17%, and 12.87%. The final IR filter
has five zero coefficients values.

In al the above three cases, the
average Pass-Band Phase Error (PBPE)
for t = 0.1, 0.5, and 1 sec. takes the
values 3.87°10°, 1.653 107, and
2.78 10° rad. respectively (see Fig. 6).
This means that a good approximation
for passband phase linearity is
achieved in the design of this IIR digital
filter.

5- Conclusions

In this paper, the design of linear
phase | IR digital filter has been resulted
from cascading separated zero phase
numerator and approximated linear
phase denominator. A mirror image
polynomial (FIR filter function) has
been utilized here to design the
numerator of the linear phase IR filter
function. A linear phase dl-pole
function has been designed to smulate
the denominator of this new IIR filter. It
has been noticed that the magnitude and
the phase shapes of the designed linear
phase all-pole function are highly
dependent of the desired filter order (N),
and the assigned group delay value ().
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All-pole order = 11
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Fig. 1 Magnitude response for an 11" order all-pole function
with group delay values 7= 0.1,0.5,1.0,1.5 and 2 secs.

Group delay = 0.5 sec.

\/ All-pole order = 11
Group delay = 0.1 sec.
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Group delay = 1.0 sec.

Group delay = 1.5 sec.
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Fig. 2 Phase response for an 11™ order all-pole function with
group delay values 7= 0.1,0.5,1.0,1.5 and 2 secs.
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Fig. 3 Magnitude response for an 11" order LP IR filter with
an=0.7,a8,=0.3, 7= 0.1,0.5, and 1 secs.
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Fig. 4 Magnitude response for an 11" order LP IR filter with
an =0.580273,a,,=0.0983101,7=0.1,0.5, and 1 sec.s.

37



IJCCCE.No.1.V0al.5.2005 A New Design for Linear Phase IIR Digital Filter

with Efficient Redization

IR filter order=11

—&@— Group delay=0.1 sec.
—@ — Group delay=0.5 sec.
—A&— Group delay=1 sec.

N
m
©
=
—
£
]
—
L
(]
e]
S
x=
5
=

Fig. 5 Magnitude response for an 11" order LP IR filter with
an =0.779858, a,=0.220142,7=0.1,0.5, and 1 sec.s.
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Fig. 6 Pass-band phase response for an 11™ order all-pole function with
group delay values 7= 0.1,0.5,and 1.0 secs.
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Coefficient Number

0.437581

0.272728

-0.0759297

0.0294854

-0.0071285

0.003978

-0.180328

0.0819672

0.0380974

0.0160423

-0.0058223

0.0017602

-4.28310*

8.0308*10°

-1.0869*10°

9.431*10°

-3.9395¢10°®

0.26087

0.16259

0.0

-0.0452664

0.0

0.017578

0.0

-0.00424976

0.0

-0.00258912

0.0

0.00237154

-0.846154

0.604396

-0.362637

0.181319

-0.0746606

0.0248869

-0.00654918

0.00130984

-1.8171*10*

1.701*10°

-3.9395* 107

0.0880698

0.0

-0.0245193

0.0

0.0095214

0.0

-0.00230195

0.0

-0.00140244

0.0

0.00128458

-1.57143

-1.17847

0.93277

-0.323529

0.119195

-0.0340557

Table 1 IR digital filter coefficients for Case 1

Coefficient Number

0.00729766

-0.00110571

1.0576%10*

-4.8074*10°

0.437581

0.272728

-0.0759297

0.0294854

-0.0071285

0.003978

-0.180328

0.0819672

0.0380974

0.0160423

-0.0058223

0.0017602

-4.283*10*

8.0308*10°

-1.0869* 10"

9.431*10°

-3.9395¢10°®

0.26087

0.16259

0.0

-0.0452664

0.0

0.017578

0.0

-0.00424976

0.0

-0.00258912

0.0

0.00237154

-0.846154

0.604396

-0.362637

0.181319

-0.0746606

0.0248869

-0.00654918

0.00130984

-1.8171*10*

1.701*10°

-3.9395* 107

0.0880698

0.0

-0.0245193

0.0

0.0095214

0.0

-0.00230195

0.0

-0.00140244

0.0

0.00128458

-1.57143

-1.17847

0.93277

-0.323529

0.119195

-0.0340557

Table 2 IR digital filter coefficients for Case 2
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0.00729766

-0.00110571

1.0576%10*

-4.8074*10°
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0.003978

-0.0071285

0.0

0.0294854

-0.0759297

0.272728

-3.9395¢10°®

9.431*10°

-1.0869*10°

8.0308*10°

-4.283*10*

0.0017602

-0.0058223

0.0160423

0.0380974

0.0819672

-0.180328

0.00237154

0.0

-0.00258912

0.0

-0.00424976

0.0

0.017578

0.0

-0.0452664

0.0

0.16259

-3.9395* 10"

1.701*10°

-1.8171*10*

0.00130984

-0.00654918

0.0248869

-0.0746606

0.181319

-0.362637

0.604396

-0.846154

0.00128458

0.0

-0.00140244

0.0

-0.00230195

0.0

0.0095214

0.0

-0.0245193

0.0

0.0880698

-4.8074*10°

1.0576%10*

-0.00110571

0.00729766

-0.0340557

0.119195

-0.323529

0.93277

-1.17847

Table 3 IR digital filter coefficients for Case 3
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-1.57143




