
Eng. &Tech.Journal, Vol.34,Part (B), No.2,2016

317
https://doi.org/10.30684/etj.34.2B.15

 2412-0758/University of Technology-Iraq, Baghdad, Iraq

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

Design and Implementation a Server Receiving Data in Both Forms

TCP and UDP Through the Same Port and its Impact on the Network

Performance

Husam Ali Abdulmohsin

Science College, University of Baghdad /Baghdad.

husamex@yahoo.com

Received on:25/12/2014 & Accepted on:20/1/2016

ABSTRACT

 Internet is the largest network that transfers a huge amount of information through the web

and that requires data transfer between many network bottlenecks, devices and different

hardware technologies. This data movement requires data transfer between many application,

software’s and operating systems. Many theses and researches were published in the topic of

solving the issue of extreme data transfer rate; this issue causes time consuming problems.

There are many technologies of transferring data across the internet; two of the major data

transfer technologies are the User Datagram Protocol (UDP) and Transmission Control Protocol

(TCP). Those different data transfer technologies through the internet cause most of the servers

much of their time translating the data from one technology to another because most of the

servers deal with one data transfer technology and therefore it has to translate all other

technologies to the technology that it deals with. This research establishes a Server named TCP-

UDP Server (TUS), to receive data from both UDP and TCP nodes through the same path

without the need of changing the network entities or protocols connected to the server and to

avoid the need for transferring the data from the (UDP) form to the (TCP) form and vise versa.

All the operations performed by the server are accomplished without any hardware intrusion to

avoid time consuming. The TUS server as many servers support the multithreading technology

to serve a large amount of nodes at the same time. Each node has its own thread to deal with.

This thread has its own life time determined by many facts, and that in turn decides to terminate

the thread or not.

Keywords: Multithreading technology, TLT (Thread Life Time), NC (Node Connectivity),

LAN (Local Area Network), TUS (TCP-UDP Server), UDP, TCP.

INTRODUCTION

he web is a massive storage of information, and accessing this information through the

internet has been a major problem discussed in many researches and theses. One of those

problems is the different types of data transfer technologies used by the clients. If you

are behind a router you must forward the port's UDP/TCP traffic from your router to the

machine or server [1]. This can give the opportunity to others to retrieve any data through the

internet regardless of the data transfer technology they’re using. Information can be retrieved

easily with the right tools and methods. Such problems appear in many situations such as

service providing servers and game servers that deal with many kinds of data transfer

technologies and sometimes need to transfer the data received from any technology to the other.

 The TUS based Multithreading technology proposed in this research operates in the application

layer as a standalone server application. So the type of connection used in this work is called the

T

mailto:husamex@yahoo.com

Eng. &Tech.Journal, Vol.34,Part (B), No.2,2016 Design and Implementation a Server receiving Data in both

 forms TCP and UDP through the same port and its

 Impact on the Network Performance

318

open layer interconnection, were each OSI layer can interact directly with the equivalent layer

in the other node [2].

The TUS solves the problem of receiving data from different technologies through the same

port and path.

Methodology

 JAVA has been used to reduce the complexity of setup, through creating a low- level code to

deal with any kind of operating system and hardware, to enhance the portability, flexibility and

scalability of TUS.

 The performance and interaction between different types of operating systems and different

versions of the same type, like WindowsXP and windows7, will be examined through this

research. The TUS server uses the same port to recieve all requests from both types of

connections, UDP or TCP, regardless of the node’s operating system type or version. To be

mentioned, multiple machines connected to the same router will need to choose different ports

for each machine to avoid conflicts, but the TUS server solved that problem, both machines

requests are recieved on the same port, using the same port will reduce the port monitoring

time.

The general idea of the project is illustrated in figure 1, the TUS can deal with different nodes

that either use TCP or UDP data transfer, and the server deals with both using the same port, so

the listener of the server can monitor both the UDP and the TCP on the same port.

 A runtime error handler is added to the server to avoid any jam in the system. The server is

testbeded on a Local Area Network (LAN), with different versions of the windows and open

source operating systems, on different hard specification. Tools designed in this research such

as Thread Life Time (TLT) and tools used such as Jperf to measure the bandwidth of the server

connection, and wireshark (node connectivity) will be used to verify and measure the

connectivity and performance of the TUS server. Relationship and interoperability between each

peer and server will be discussed.

 At the same time privacy for the user in the LAN can be introduced with a minimum

specification. Local Area Network (LAN) which consists of a specific subnet will be designed

to support client to server model for TUS and this will also introduce a trusted domain and

double layer privacy[3].

Skills in network and operating systems will help to reduce the troubleshooting occurring when

the TUS and Client connection is established. The establishment of the testbed will involve the

installation of the TUS Server, routing and the security firewall.

 The routing has to be established previously in the server and the TCP and UDP port is

established at the client side. Because the command to open a specific port is temporary, routing

and firewall configuration will need to be set after each booting to avoid a disconnection error.

The cause of any error cannot be predicted but this has been handled by an error handler that is

supported by the JAVA language but one has to determine the error expected at that part of the

program code, for example, if you are writing a code to create and connect a port, you have to

tell the error handler to look for a port creation or connection error as shown in appendix A (line

6,16,45,52 and 76). A start-up script has to be developed to capture both types of connection the

TCP and UDP as shown in Appendix A (line 5 and 17). Different operating systems have

different styles. In window operating system, the TUS doesn’t have to activate in system

administrator mode, because all the changes will be permitted in the configuration file. The

TUS didn’t have to take care of stacking TCP/UDP processes; because the operating system

takes care of that at the application level, mentioning that the multithreading technology added

to the server solve the stack overflow problem and most of the time there are few tasks in the

stack and if an overflow occurred it can be solved by adding stack overflow Exception to the

error handler. A lot of problems appeared because of lack of understanding routing and firewall.

If the IP is using DHCP, which can also cause a problem because the remote Client address is

Eng. &Tech.Journal, Vol.34,Part (B), No.2,2016 Design and Implementation a Server receiving Data in both

 forms TCP and UDP through the same port and its

 Impact on the Network Performance

319

changing. The changing of IP will make the connection fail because it cannot find the remote

client to validate and authenticate the Identity of the client. It is wise to change the IP to static

IP for the client and server. Wireshark and ping will be used to debug the connection [4]. If one

wants to use the TCPDUMP version 4.5.1, he must install PSSDK protocol driver and must use

Windows 7, Windows 8 and Windows Server 2012 [5]. The measurement of bandwidth will be

captured through Jperf 2.0.0 version [6]. This bandwidth will provide the performance and

relationship to various operating systems.

Figure (1). Module Flowchart that Illustrate a TUS server acting with different types of

clients through the same connection.

Related Work

 NETCAT, THE "SWISS ARMY KNIFE" Netcat is a facility that enables the server to receive

and send data through TCP and UDP Connection network technologies. When you are

responsible of monitoring a network, managing a network or securing a network, it is very

important that you understand the facilities the Netcat provides. There are many uses for the

Netcat, like a port redirector, listener or scanner and many other uses in the network world. A

simple example of scanning a port using a Netcat is "c:\tools>nc -v -w 2 -z target 20-30", this

instruction will scan all the ports in the interval (20 -30) at the targeted node, and in each port

test, the Netcat will inform about the status of the Telnet, FTP and mailer server as shown in

Figure 2. The Netcat can be used to see what ports the target is listening to, by the –z

instruction, this instruction will refuse sending any data through a TCP connection and very

limited probe through a UDP connection. If the listener wants to slow down the scanning speed

he can use the –i instruction [7].

TCP

Server

UDP

Mobile

node

TCP

Node

UDP

ATM

UDP Work

station

TCP

Mobile

node

TUS Server

Port 2001 Evaluation Tools

Wire Shark

Jperf

Supporting Tools

Runtime

Error Handler

Thread Life

Time Control

Eng. &Tech.Journal, Vol.34,Part (B), No.2,2016 Design and Implementation a Server receiving Data in both

 forms TCP and UDP through the same port and its

 Impact on the Network Performance

320

Figure (2). Netcat scanning example.

NETWORK ATTACHED STORAGE (NAS),

 During the NAS1 project, it was decided to configure it without the need to configure the

network configuration and setting, but it was noticed that they need to use the DHCP as a

perfect solution. Therefore we looked for a network that didn’t use the DHCP in is structure.

Here we think about using the UDP communication technology to gain the ability to send a

message to all nodes in the network without the need to know the IP address of all nodes. The

main idea of this project was to have the ability to use administrative interfaces via SSH, Telnet,

HTTP and HTTPS. At this point the necessity for an iproxy was needed and the need for the

tunnelling TCP over UDP was essential. All iproxy infrastructures are constructed from two

proxy servers, the iproxy-client and the iproxy server. Such a proxy infrastructure converts the

TCP data stream to UDP datagram and vice versa. The iproxy-client at the user's node listens

for the incoming TCP streams that might be received from a web server or any node sending a

TCP stream. At this point the iproxy-client duty is to encapsulate the TCP stream into a UDP

datagram. The iproxy-server at this point is running at the NAS and listening for the UDP

datagrams sent from the iproxy-client. But now it is different, there is no need for the iproxy-

client to encapsulate the TCP in to UDP, the ability to receive TCP and UDP through two

different paths has been added to the iproxy-server and can deal with both at the same time.

EXPERIMENTAL

 The experiment test-bed LAN is based on client-server model which consist of two java server,

one supports window 8 and the other supports an open source operating system and the clients

support two versions of windows operating system, the Vista and Windows 2007 version. The

test bed LAN which consists of 20 clients, is using the same specification as shown in table 1,

and of the LAN is connected through a Hub.

Table (1). Hardware and operating system specification
Specification Server Server Client Client1

Operating System Windows 8 Open source Vista Windows 2007

Memory 1GB 1GB 2GB 4GB

Processing 64-bit 64-bit 32-bit 32-bit

Hard disk 500GB 500GB 1T 250GB

Software TUS server TUS server TCP socket UDP socket

Multithread

creator

Multithread

creator

Open socket

and port

Open socket and

port

 Notice that the memory is different from one machine to another and all of them functioned

perfectly without any system jam. Even the server, we didn’t need very high memory storage

because of the thread life termination determined by the TUS as shown in Appendix A (line 38

and 67). The TUS will be installed on the server, and the last in turn will open a TCP socket

Eng. &Tech.Journal, Vol.34,Part (B), No.2,2016 Design and Implementation a Server receiving Data in both

 forms TCP and UDP through the same port and its

 Impact on the Network Performance

321

using the SERVERSOCKET command, see Appendix A (line 5), and will open a datagram

socket using the command DATAGRAMSOCKET [9]. During the authorization process a

certificate authority name and key will be generated. This key is only needed by the server for

authentication and signing-in if needed.

 Once the installation of the TUS is completed a thread will be started by using this command

as shown in Appendix A (line 10 and 15).

 In the server a command as shown in Appendix A (line 5 and 59) will be executed to setup a

port (2001) in the server that will be used to receive any data from any client [10][11]. Both

types of data transfer, the TCP and UDP, will have a direct connection with the server on the

same port, by creating sockets for both types of data transfer technologies (TCP and UDP) that

will create a tunnel with the server through port (2001).

 Once the server have fully completed, then both clients such as TCP and UDP will be

activated. At this point the clients can start sending their requests, for example, a client sending

a Standard Query Language (SQL) command through the browser as shown in figure 3, but at

this case the server has to set on port (8080) to receive all web requests. As soon as the server

receives the request a thread will be created for that certain client.

Figure (3). Client request

EVALUATION

 Debugging tool called jperf will be used to monitor the connection performance and analyse

the results. The results received will help to evaluate the relationship of TUS with operating

system and with the TCP and UDP clients [12]. This experiment uses different specifications

with a minimum memory is 1GB whereas the maximum memory is 4GB. The bandwidth

result will help to determine that if the memory has low impact to the bandwidth compared to

the type of operating system. The type of the operating system is the main criteria which

influence the performance of the bandwidth in the LAN.

 This evaluation is based on comparing the data transfer rate and bandwidth between the TUS

server designed in this work and an ordinary system that receives TCP and UDP requests each

on a separate server then directed to the right position.

The connection between client and server will be through the port 2001 regardless of the

communication protocol the client is using, the connection is successful once it communicates

as shown in Table 2. As you can see in table 2, that no reject nor ignore status occurred during

the connection and that’s because we are implementing in a local area network (LAN), but if

such a case occurred, the client will go back to the waiting queue until the connection is

achieved, because the connection request is in an infinite loop and in case of some reason that

caused the request to go out of the queue, the request will go back into the queue and wait for a

connection. A failure status will appear only if the server was not functioning or the client IP

has changed as shown in Table 2. A reject status will appear only if the client was not

authorized to connect to the server.

Table (2). Connection Status

Client
Time Source Destination Protocol Port

Status Description

C1 20:18:01 http://192.168.1.2 http://192.168.1.1 TCP 2001 Succesful

C1 20:18:22 http://192.168.1.7 http://192.168.1.1 TCP 2001 Failure IP client changed

C1 20:19:47 http://192.168.1.4 http://192.168.1.1 TCP 2001 Failure Server Turned off

C1 20:20:14 http://192.168.1.4 http://192.168.1.1 TCP 2001 Succesful

http://192.168.1.2/
http://192.168.1.1/
http://192.168.1.1/
http://192.168.1.1/
http://192.168.1.1/

Eng. &Tech.Journal, Vol.34,Part (B), No.2,2016 Design and Implementation a Server receiving Data in both

 forms TCP and UDP through the same port and its

 Impact on the Network Performance

322

If the connection happens in one way, then the routing or firewall has not been configured and

opened yet, here the error handler is involved to avoid any jam in the system, so it will

terminate the connection and send the request back to the waiting queue [10][11].

 The jperf was set to capture the bandwidth and the data transfer rate in 21 Seconds limit of

time. Table 3 show the bandwidth of the standard Server decrease and the data transfer show

that the standard server bandwidth reduces based on the time taken. The maximum data transfer

is 8.23Mbytes with a maximum bandwidth 7.86Mbyte/sec but the overall data transfer is

66.53Mbytes and the average of the bandwidth is 3.39Mbyte/sec.

Table 3. Standard Client Server Data Transfer using windows 8 operating system

The data transfer will drop when time passes by because of the increment of clients as shown in

figure 4. One can also notice that the data transferred is not stable in the time interval 5-20 sec,

and that explains the time taken to transfer requests from UDP to TCP and vice versa and the

time required to receive each type of data transfer on a separate port. The graph shows that the

bandwidth is fluctuating.

C2 20:19:02 http://192.168.1.71 http://192.168.1.1 UDP 2001 Reject IP Not Authorised

C2 20:19:57 http://192.168.1.3 http://192.168.1.1 UDP 2001 Succeful

Item Interval Transfer Bandwidth
1 0.0- 1.0 sec 7.68 Mbytes 7.86 Mbyte/sec

2 1.0- 2.0 sec 8.23 Mbytes 7.85 Mbyte/sec

3 2.0- 3.0 sec 6.24 Mbytes 6.91 Mbyte/sec

4 3.0- 4.0 sec 4.88 Mbytes 5.86 Mbyte/sec

5 4.0- 5.0 sec 3.59 Mbytes 3.91 Mbyte/sec

6 5.0- 6.0 sec 3.10 Mbytes 3.05 Mbyte/sec

7 6.0- 7.0 sec 2.04 Mbytes 2.21 Mbyte/sec

8 7.0- 8.0 sec 3.16 Mbytes 2.99 Mbyte/sec

9 8.0- 9.0 sec 3.11 Mbytes 3.18 Mbyte/sec

10 9.0- 10.0 sec 2.12 Mbytes 2.18 Mbyte/sec

11 10.0- 11.0 sec 2.62 Mbytes 2.27 Mbyte/sec

12 11.0- 12.0 sec 2.18 Mbytes 2.17 Mbyte/sec

13 12.0- 13.0 sec 2.31 Mbytes 2.12 Mbyte/sec

14 13.0- 14.0 sec 2.20 Mbytes 2.11 Mbyte/sec

15 14.0- 15.0 sec 2.12 Mbytes 1.98 Mbyte/sec

16 15.0- 16.0 sec 2.23 Mbytes 2.30 Mbyte/sec

17 16.0- 17.0 sec 2.08 Mbytes 2.23 Mbyte/sec

18 17.0- 18.0 sec 2.22 Mbytes 2.34 Mbyte/sec

19 18.0- 19.0 sec 2.37 Mbytes 2.15 Mbyte/sec

20 19.0- 20.0 sec 2.07 Mbytes 2.12 Mbyte/sec

21 0.0- 20.0 sec 66.53 Mbytes 3.39 Mbyte/sec

Sat.25.Sep.2014

Time Sec

B
a
n

d
w

id
th

 K
b

it
/

Se
c

Eng. &Tech.Journal, Vol.34,Part (B), No.2,2016 Design and Implementation a Server receiving Data in both

 forms TCP and UDP through the same port and its

 Impact on the Network Performance

323

 Figure(4). Bandwidth of the iproxy server using windows 8 operating system

 TUS server performs with higher bandwidth when using the direct connection to the UDP or

TCP clients, mentioning that the operating system used can change the results but still the

difference is not very big, for example, the Data transfer in an open source operating system is

higher than using windows 8 [12]. The maximum data transfer the TUS server is using is

11.9Mbytes as shown in table4. From figure 5, we can notice that the bandwidth of the TUS is

stable and all the nodes are served in parallel.

 Table (4). Client TUS Server Data Transfer using windows 8 operating system

 In some cases, the server receives the data encrypted for security reasons, and the server has

to decrypt the data to manipulate it as required and in some cases the server has to check the

authorization of the user, like checking the user name and password, and sometimes the

password is generated from two or more functions and all of that needs more time to check [13],

or recognizing a fingerprint using gabor filter [14]. So encryption and decryption or

authentication process will involve the CPU, that’s why it depends on the hardware

specification to process the data. The performance of encryption and decryption will not be

evaluated in this experiment.

Item Interval Transfer Bandwidth

1 0.0- 1.0 sec 11.9MBytes 12.45Mbyte/sec

2 1.0- 2.0 sec 11.8 MBytes 11.81Mbyte/sec

3 2.0- 3.0 sec 11.6 MBytes 11.80Mbyte/sec

4 3.0- 4.0 sec 11.5 MBytes 11.79Mbyte/sec

5 4.0- 5.0 sec 11.3 MBytes 11.67Mbyte/sec

6 5.0- 6.0 sec 11.2 MBytes 11.69Mbyte/sec

7 6.0- 7.0 sec 11.1 Mbytes 11.70Mbyte/sec

8 7.0- 8.0 sec 11.1 Mbytes 11.81Mbyte/sec

9 8.0- 9.0 sec 11.2Mbytes 11.81Mbyte/sec

10 9.0- 10.0 sec 11.2 Mbytes 11.80Mbyte/sec

11 10.0- 11.0 sec 11.2 MBytes 11.78Mbyte/sec

12 11.0- 12.0 sec 11.2 MBytes 11.79Mbyte/sec

13 12.0- 13.0 sec 11.2 MBytes 11.79Mbyte/sec

14 13.0- 14.0 sec 11.1 MBytes 11.84Mbyte/sec

15 14.0- 15.0 sec 11.2 MBytes 11.79Mbyte/sec

16 15.0- 16.0 sec 11.1 Mbytes 11.82Mbyte/sec

17 16.0- 17.0 sec 11.1 Mbytes 11.76Mbyte/sec

18 17.0- 18.0 sec 11.2Mbytes 11.81Mbyte/sec

19 18.0- 19.0 sec 11.2 Mbytes 11.81Mbyte/sec

20 19.0- 20.0 sec 11.2 Mbytes 11.80Mbyte/sec

21 0.0- 10.0 sec 113 Mbytes 11.8Mbyte/sec

Eng. &Tech.Journal, Vol.34,Part (B), No.2,2016 Design and Implementation a Server receiving Data in both

 forms TCP and UDP through the same port and its

 Impact on the Network Performance

324

The higher bandwidth shows the perfect performance of the TUS because the TUS does not

interfere with the session layer and many communication transfer protocols [2].

Figure (5). Bandwidth of the TUS server using windows 8 operating system

 When time increases the value of bandwidth is reduced between 0-2 seconds and the

bandwidth becomes fluctuate until the interval time between 8-20 second becomes stable

because of the multithreading technology added to the TUS and receiving requests on the same

port, as shown in Figure (5).

 In order to do a comparison study between the designed server and the iproxy server usually

used, we must calculate the average bandwidth of both servers, as shown in Table (5). The

results show that bandwidth is always higher when the TUS server is used as a server receiving

the clients request and to transfer the data. These results prove two things, first the performance

of the TUS is faster than the standard server, and second, whether or not the specification of the

hardware is higher such as CPU, memory or hard disk, it is not a key indicator of the

performance of bandwidth and data transfer.

Table(5). Overall data at server with windows been captured first

CONCLUSION

 The time needed to transfer the data received from one form to another at the server area has

been indispensable because the TUS server receives both types of data (TCP and UDP) both

through the same path. The TUS operates at the application level of the network to avoid time

Item Server type Interval Data

Transfer

Bandwidth

1 Standard server 0.0- 20.0.sec 66.53 MBytes 3.39 Mbyte/sec

2 TUS server 0.0-20.0 sec 113 MBytes 11.8 Mbyte/sec

Sat.26.Sep.2014

Time SEC

B
a
n
d
w

id
th

 K
b
it

/
Se

c

Eng. &Tech.Journal, Vol.34,Part (B), No.2,2016 Design and Implementation a Server receiving Data in both

 forms TCP and UDP through the same port and its

 Impact on the Network Performance

325

consuming. The server is applicable to many kinds of operating system and hardware, and that

was gained by using the JAVA programing language that supplies the low level language that

provides the server with a compatible and interoperability with all kinds of software and hard

testbed. Each node in the network can obtain its own connection with the TUS server without

any delay or queue because of the multithreading technology added to the TUS server.

The time required to transfer the data from one form to another at the node is avoided, no

application needed for the data form transfer, now the node doesn’t need any time to do the data

transformation because the TUS server will receive the data regardless of its form. One port can

be used to do all the data talking between all the nodes and the server, and that will minimize

the port monitoring time required. Although the memory of the windows operating system is

high but the TUS server took the memory utility under consideration by terminating some the

threads needed to achieve server and client relationship are under some conditions, such as, long

time ideal, send a quit message, the connection caused an input/output problem if not handled

by the run time catch error at the server which is very rare.

A security level can be added to the Server according to the organization need and security level.

Such as encrypting the data at both sides of the connection, including a key needed for the

security or adding a user name and password as an authentication user level.

 A redirecting technology can be added to the server, to transfer the request of a client to

another server or another client, to solve the request, at this point transferring data from TCP to

UDP and vice versa is needed.

A supporting server can be added to the system, that can support the TUS server in case of some

over load at the peak time, by creating threads that direct the request of the client to the

supporting server, and sending the request results from the supporting server to the client

directly.

With different specifications of hardware in the test-bed of this experiment, we distinguished

that different hardware doesn’t influence the bandwidth that was captured in the results.

REFERENCES

[1] Calvert K. L., Donahoo M. J., TCP/IP Sockets In Java, Morgan Kaufmann Publishers, 2008.

[2] Noergaard T., Embedded Systems Architecture, Elsevier Inc., 2013.

[3] Hjorth T. S., Thorbensen R., Trusted Domain: A security Platform for home Automation

2010, Compute, 2010.

[4] Chappell L., Troubleshooting With Wireshark: Locate The Source of The Performance

Problems, James Aragon, 2014.

[5] Acton Q. A., Issues in Applied Computing, Scholarly Editions, 2013.

[6] Charlie H., Binu J., Java Performance, prentice hall, 2011.

[7] Kauclirz Jr. J., Brian B., Dan C., Michael S. J., Eric S. S., Wihelm T., NetCat Power Tools,

Syngress Publishing Inc., 2008.

[8] Darve G., Disaster Recovery, Course Technology, 2011.

[9] Rusty H. E., Java Network Programming, O’Reilly Media Inc., 2013.

[10] Jan G., An Introduction To Network Programming With Java, Springer Science and

Business Media, 2013.

[11] Doug L., Java All-In-One For Dummies, John Wiley and Sons Inc., 2011.

[12] Lee R., Barry W., Networked: The New Social Operating System, Massachusetts

InstiTUSe of Tecgnology, 2011.

[13] Hadi H., Two Factor Authentication Based Generated One Time Password, Eng. & Tech.

Journal. Vol.33. Part (B), No.3.2015.

[14] Ekbal H. A., Hussam A. A., Hanady A. J., Fingerprint Recognition Using Gabor Filter

with Neural Network, Eng. & Tech. Journal. Vol.32. Part (A), No.2.2015.

Eng. &Tech.Journal, Vol.34,Part (B), No.2,2016 Design and Implementation a Server receiving Data in both

 forms TCP and UDP through the same port and its

 Impact on the Network Performance

326

Appendix A

1 public class EchoServer {

2 ServerSocket m_ServerSocket;

3 public EchoServer() {

4 try

5 { m_ServerSocket = new ServerSocket(2001);

6 } catch(IOException ioe) {}

7 System.out.println("Listening for clients on 2001...");

8 int id = 0;

9 ClientServiceThread1 cliThread1 = new ClientServiceThread1();

10 cliThread1.start();

11 while(true)

12 { try

13 { Socket clientSocket = m_ServerSocket.accept();

14 ClientServiceThread cliThread = new ClientServiceThread(clientSocket, id++);

15 cliThread.start();

16 }catch(IOException ioe) {}

17 } //while

18 }

19 public static void main(String[] args) {new EchoServer();}

20 class ClientServiceThread extends Thread

21 { Socket m_clientSocket;

22 int m_clientID = -1;

23 boolean m_bRunThread = true;

24 ClientServiceThread(Socket s, int clientID)

25 { m_clientSocket = s;

26 m_clientID = clientID;}

27 public void run()

28 { DataInputStream in = null;

29 DataOutputStream out = null;

30 System.out.println("Accepted Client : ID - " + m_clientID + " : Address - " +

31 m_clientSocket.getInetAddress().getHostName());

32 try

33 { in = new DataInputStream(m_clientSocket.getInputStream());

34 out = new DataOutputStream(m_clientSocket.getOutputStream());

35 while(m_bRunThread)

36 { String clientCommand = in.readUTF();

37 if(clientCommand.equalsIgnoreCase("quit"))

38 {m_bRunThread = false;

39 System.out.print("Stopping client thread for client : " + m_clientID);}

40 else

41 {System.out.println("Client Says :" + clientCommand);

42 out.writeUTF(clientCommand);

43 out.flush();}} // while

44 } //try

45 catch(IOException e){e.printStackTrace();}

Eng. &Tech.Journal, Vol.34,Part (B), No.2,2016 Design and Implementation a Server receiving Data in both

 forms TCP and UDP through the same port and its

 Impact on the Network Performance

327

 46 finally

47 {try

48 { in.close();

49 out.close();

50 m_clientSocket.close();

51 System.out.println("...Stopped");}

52 catch(IOException ioe){ioe.printStackTrace();}

53 }}}

54 class ClientServiceThread1 extends Thread

55 { boolean m_bRunThread = true;

56 ClientServiceThread1(){}

57 public void run()

58 { try

59 { DatagramSocket serverSocket = new DatagramSocket(2001);

60 while(true)

61 { byte[] receiveData = new byte[1024];

62 byte[] sendData = new byte[1024];

63 DatagramPacket receivePacket = new

DatagramPacket(receiveData, receiveData.length);

64 serverSocket.receive(receivePacket);

65 String sentence = new String(receivePacket.getData()).trim();

66 if(sentence.equalsIgnoreCase("quit"))

67 {m_bRunThread = false;

68 System.out.print("Stopping client thread for client : " +

m_clientID);}

69 System.out.println("RECEIVED: " + sentence);

70 InetAddress IPAddress = receivePacket.getAddress();

71 int port = receivePacket.getPort();

72 String capitalizedSentence = sentence.toUpperCase();

73 sendData = capitalizedSentence.getBytes();

74 DatagramPacket sendPacket =

75 new DatagramPacket(sendData, sendData.length, IPAddress,

port);

76 serverSocket.send(sendPacket);

77 }

78 }

79 catch(IOException e){e.printStackTrace();}

80 finally

81 { try

82 {System.out.println("...Stopped");}

83 catch(Exception ioe){ioe.printStackTrace();}

84 }

85 }

