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Abstract 

A neural network-based self-tuning PID controller is presented. The scheme of 

the controller is based on using a modified Elman recurrent neural network as a self-

tuner for (PID) controller. The proposed method has the advantage of not necessarily  

using a combined structure of identification and decision, common in a standard self-

tuning controller, because it uses a genetic algorithm based model reference. The paper 

explains the algorithm for a general case, and then presents a specific application on 

non-linear dynamical plant. 
  الخلاصة

  
شبكة أيلمن المعدلـة الراجعـة    والذي أساسه الشبكة العصبية  ذات التنغيم التلقائي ه PID المسيطر إن

  .  PID كون المسيطر المنغم للعناصرياستخدم ل

من حيث عملية  PIDتمتلك الطريقة المقترحة فائدة بعدم استخدام الهيكلية الثابتة لعملية تنغيم عناصر المسيطر و 

  .وذلك باستخدام الخوارزمية الجينية التي أساسها النموذج المرجع ،التعريف للمنظومة

   .خطيةلا طبق هذه الخوارزمية على منظومة ذات ديناميكية يذا البحث الخوارزمية لحالة عامة ثم هيشرح و

 

 

 

1-Introduction 

In recent years, there has been an 

increasing interest in developing 

alternative methodologies for design of 

the industrial PID control such as auto-

tuning, self-tuning, pattern recognition, 

fuzzy logic, neural network and genetic 

algorithm. The reason of study by the 

researchers is motivated by simplicity to 

implement the PID control in the 

industrial environment, by easiness of 

utilization by engineers and process 

operators, and by acceptance in the 

industrial sector. Some approaches 

proposed in the literature for deriving 

PID controllers are using self-tuning 
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control techniques based on recursive 

parameter estimation, others are using 

automatic control techniques, or 

intelligent control techniques [1]. 

Despite the huge development in control 

theory, the majority of industrial 

processes are controlled by the well-

established proportional-integral- 

derivative (PID) control. The popularity 

of PID control can be attributed to its 

simplicity and to its good performance in 

a wide range of operating conditions. 

However, PID controllers present as 

disadvantage the need of retaining 

whenever the processes are subjected   to  

some kind of disturbance or when 

processes present complexities (non-

linearities). So, over the last few years, 

significant development has been 

established in the process control area to 

adjust the PID controller parameters 

automatically, in order to ensure 

adequate servo and regulatory behavior 

for a closed-loop plant [2,3,4]. The self-

tuning PID control algorithms in a 

particular case of the minimum variance 

controller and predictive design have 

shown several difficulties to the process 

engineers and researchers. These self-

tuning control algorithms need 

information about the process to be 

controlled, utilize a parametric 

mathematical model and require an on-

line identification procedure (complex 

engineering) [5,6]. The application of 

intelligent techniques to control systems 

has been a matter of wide study in recent 

years. These methods are used to solve 

complex problems that, in many cases, 

do not have an analytical solution. 

Neural networks (NN), due to their 

ability to learn, have become a powerful 

tool in the development of the control 

systems. In fact, a new branch in control 

theory has arisen nowadays: neuro 

control. This discipline studies the 

design of control systems aided by NN. 

Although in the process industry simple 

conventional controllers, such as the 

PID, have largely been extended, and 

show good performance for many tasks, 

when the plant or the process under 

control is complex or has high non-

linearities, the control performance 

degrades notably [7]. The objective of 

this paper is to highlight a tuning method 

that utilizes a unified approach and 

yields consistent performance subject to 

that achievable over a wide range of 

process models. To achieve this 

objective, a Genetic Algorithm (GA) 

will be utilized. The GA approach is an 

intuitive and mature search and 

optimization technique based on the 
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principles of natural evolution and 

population genetics. In this way, genetic 

algorithms have been shown to be 

capable of locating high performance 

area in complex domains without 

experiencing the difficulties associated 

with high dimensionality or false optima, 

as may occur with gradient descent 

techniques. The (GA) has been 

recognized as a powerful tool in many 

control applications such as parameter 

identification and control structure 

design [8,9]. 

 The paper consists of the following 

sections: Section two describes the use 

of Recurrent Neural Networks (RNNs)- 

type modified Elman network structure 

of the PID neural controller taught on-

line by using genetic algorithm 

mechanism. Section three represents the 

core of the present paper and suggests 

using of self-tuning PID neural 

controller based model reference. 

Section four represents the proposed 

algorithm for self-tuning PID type 

modified Elman. Illustrative example 

that clarifies the features of the proposed 

strategy is given in section five, where 

the example is discussed in detail. 

Finally, section six contains the 

conclusions of the entire work.   

2-Recurrent Neural Networks/Genetic 

Algorithm Learning  

Recurrent neural networks 

(RNN) have one or more feedback 

connections, where each artificial neuron 

is connected to the others [10]. The RNN 

structures are suitable to channel 

equalization and multi-user detection 

applications, since they are able to cope 

with channel transfer functions that 

exhibit deep spectral nulls, forming 

optimal decision boundaries which are 

less computationally demanding than 

MLP networks for these applications 

[11]. Among the available recurrent 

networks, modified Elman networks, as 

shown in figure (1), are one of the 

simplest types that can be trained using 

genetic algorithm and it is used to 

minimize the oscillation or even 

instabilities to the training controller. 

The output of the jth context unit in the 

modified Elman network is given by: 

)1()1()( −+−= khkhkh j
o
j

o
j α             (1)                         

where )(kho
j  and )(kh j are respectively 

the output of the jth context unit and jth 

hidden unit and α  is the feedback gain 

of the self-connections. The value of α  

adopted is the same for all self-

connections and is not modified by the 

training algorithm. The value of α  is  
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between 0 and 1. A value of α  nearer to 

1 enables the context unit to aggregate 

more pattern outputs. The input and 

output units interact with the outside 

environment, while the hidden and 

context units do not. The input units are 

only buffer units “Scales” while the 

output units are linear units, which sum 

the signals fed to them. The hidden units 

can have nonlinear such as sigmoidal 

activation functions. The context units 

are used only to memorize the previous 

activation of the hidden units and can be 

considered to function as one-step time 

delays. From the figure (1) it can be seen 

that the following equations: 

)}(2),(1{)( khVkUVFkh o=                (2) 

)()( kWhkO =                                       (3) 

where V1,V2,W are weight matrices and 

F is a non-linear vector function. The 

multi-layered modified Elman neural 

networks shown in figure (1) are 

composed of many interconnected 

processing units called neurons or nodes.  
 
where: 

V 1: Weight matrix of the input units. 
V 2: Weight matrix of the context units. 
W : Weight matrix. 
L : Denotes linear node. 
H :Denotes nonlinear node with 
sigmoidal function.  

As it can be seen, the net consists of 

three layers: An input layer (buffer layer 

as scales), a single hidden layer and a 

linear output layer. The neurons in the 

input layer simply store the scaled input 

values. The hidden layer neurons 

perform two calculations. To explain 

these calculations, consider the general 

j’th neuron in the hidden layer shown in 

figure (2). The inputs to this neuron 

consist of a ni–dimensional vector (ni is 

the number of the input nodes). Each of 

the inputs has a weight V1 and V2 

associated with it. The first calculation 

within the neuron consists of calculating 

the weighted sum jnet  of the inputs as: 

o
iij

ni

i
iijj hVUVnet ×+×= ∑

=
,

1
, 21      (4)                   

Then the output of the neuron jh is 

calculated as the continuous sigmoid 

function of the jnet  as: 

jh = H( jnet )                                      (5)      

H( jnet )= 1
1

2
−

+ − jnete
             (6)                

Once the outputs of the hidden layer are 

calculated, they are passed to the output 

layer. In the output layer, a single linear 

neuron is used to calculate the weighted 

sum (neto) of its inputs (the output of the 

hidden layer as in equation (7)). 

neto k  = ∑
=

×
nh

j
jjk hW

1
,                           (7) 
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where nh is the number of the hidden 

neuro (nodes) and kjW  is the weight 

between the hidden neuron jh  and the 

output neuron. The single linear neuron, 

then, passes the sum (neto k ) through a 

linear function of slope 1 (another slope 

can be used to scale the output) as: 

)( kk netoLO =   where   L(x)=x           (8) 
Thus the outputs at the output layer are 

Kp, Ki, & Kd which are denoted by O1, 

O2, & O3 respectively. 

In this work as in [12], the GA with real 

coding rather than binary is used as 

follows: Each chromosome is considered 

as a list (or “vector”) of the total weights 

of neural networks. The encoding is 

shown in figure (3) and the weights are 

read off the network in a fixed pre-

defined order and placed in a vector. 

Each “gene” in the chromosome is a real 

number. To calculate the fitness of a 

given chromosome, the weights in the 

chromosome are assigned to the links in 

the corresponding modified Elman 

networks, the network is run on the 

training set, and an objective function is 

returned. An initial population of 

weights vectors was chosen to be 50 

individuals, with each weight being 

between –1 and +1. The mutation 

operator adds a random value between –

0.5 and +0.5 to the selected weight on 

the link. The crossover operator two 

mates vectors and exchanges the 

information by exchanging a subset of 

their components. The result is a new 

pair of vectors, each of which carries 

components from both of the parent 

vectors. The mean square of error (MSE) 

is used as an objective function to be 

minimized with the GA: 

∑
=

−
=

Np

k

pmr

Np
kyky

MSE
1

2)]()([
              (9)                                 

where: 

Yp(k) is the output of the plant at sample 

k. 

Ymr(k) is the output of the linear model 

reference at sample k. 

Np is the number of the training patterns. 

Since the GA maximizes its fitness 

function, it is necessary therefore to map 

the objective function (MSE) to a fitness 

function. The objective-to-fitness 

transformation is of the form [12, 13,14]. 

µ+
=

unctionobjectivef
fitness 1         (10)                    

Where µ is a constant chosen to avoid 

division by zero. 

 

3-Self-Tuning PID Type Modified 

Elman Recurrent Neural Networks 

Controller 

The control of nonlinear plants is 

considered in this section. The feedback 

neural controller is important because it 
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is necessary to stabilize the tracking 

error dynamics of the system when the 

output of the plant is drifted from the 

input reference. The approaches used to 

control the plant do not depend on the 

information available about the plant. 

The feedback neural controller is used 

having based on the minimization of the 

error between the model reference & the 

actual output plant in order to achieve 

good tracking of the reference signal and 

to use minimum effort. In direct model 

reference adaptive controller (MRAC) 

with parallel model reference used here 

for the feedback neural controller, the 

adjustable parameters of (PID) controller 

are adapted by genetic algorithm 

technique, so that, the output of the plant 

follows the output of the predefined 

desired model reference [15]. Thus, the 

integrated control structure that consists 

of the model reference and a self-tuning 

PID controller type modified Elman 

recurrent neural networks brings 

together the advantages of the neural 

model with the robustness of feedback. 

The general structure of the neural 

controller type can be given in the form 

of the block diagram shown in figure (4). 

The PID control configuration is 

illustrated in figure (5), where Kp is the 

proportional gain, Ki is an integral gain, 

and Kd is the derivative gain, which are 

adjusted to achieve the desired output. 

The proposed control structure for the 

self-tuning PID using GA is used to 

minimize the error function by adjusting 

the PID gain. The discrete-time version 

of PID controller is described by [16]: 

2)]-e(k1)-2e(k-Kd[e(k)         
e(k) Ki1)]-e(k-Kp[e(k)1)-u(kU(k)

++
++=

                                    

                                                          (11) 

Where Kp, Ki, & Kd denote the PID 

gains. 

e(k)=ydes(k)-yp(k)               (12)                       

ydes(k) is a desired output. 

yp(k) is an actual output. 

In order to apply the proposed algorithm 

of the self-tuning PID neuron-controller, 

a cost function MSE should be 

minimized and it is defined as equation 

(9) in section two. 

 

4-The Proposed Algorithm For Self-

Tuning PID Type Modified Elman 

Recurrent Neural Networks 

Controller 

The following genetic procedure 

is introduced for training the modified 

Elman recurrent neural network 

controller for the plant to track the 

reference model trajectory: 

Step 1: Initialize the genetic operators: 

the crossover probability Pc, the 
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mutation probability Pm, the population 

size, and the maximum number of 

generations. 

Step 2: Generate the initial population 

randomly. 

Step 3: For each individual in the 

population, compute the objective 

function MSE, and then calculate the 

fitness function as in equation (10), 

where µ will be chosen as an input 

coefficient equal to 1. 

Step 4: Put in descending orders all the 

chromosomes in the current population. 

Step 5: Select individuals using hybrid 

selection method (Roulette Wheel plus 

deterministic selection). The real coded 

genetic operators of mutation and 

crossover (single point) is applied. 

Step 6: Stop if a maximum number of 

generations of genetic algorithms are 

achieved, otherwise increment the 

generations by one and go to Step 3. 

 

5- Case Study 

In this section, an example is 

taken to clarify the features of the neural 

controller explained in section three and 

apply the algorithm in section four.  

Mathematical Model of the CSTR 

System: 

In this example, the controller structure 

is applied to the Continuous Stirred Tank 

Reactor (CSTR) process that is described 

by the following two nonlinear ordinary 

differential equations [17]. Where C a (t) 

is the product (effluent) concentration, 

T(t) is the reactor temperature, q is the 

feed flow-rate (assumed to be constant), 

and q c (t) is the coolant flow-rate. The 

remaining model parameters are defined 

in nominal operating condition as given 

in appendix. 

))t(TT(e1)t(q
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The (CSTR) considered is one in which 

an irreversible exothermic reaction A       

B takes place, the heat of reaction is 

removed by a coolant medium that flows 

through a jacket around the reactor 

figure (6). The objective is to control 

C a (t) which can be done by introducing 

a coolant flow-rate q c (t) (the 

manipulated variable) so the temperature 

can be varied and hence the product 

concentration is controlled [17]. For the 

open loop, the response of the CSTR for 

step changes in the coolant flow-rate is 

shown in figures (7-a & b) respectively. 

(13) 
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As shown both the damping and the 

steady-state gains of the plant vary 

considerably, depending on the set point, 

which gives an indication of the highly 

nonlinear dynamic behavior of the plant. 

From figures (7-a & b) the signals 

entering to or emitted from the network 

have been normalized to lie within (-1 & 

+1) in order to overcome numerical 

problems that is involved within real 

values. Scaling function has to be added 

at the neural network terminals to 

convert the scaled values to actual values 

and vice versa.   

Simulation Results: 

In this simulation, the proposed control 

scheme is applied to the CSTR model. 

The real-coded genetic algorithm is set 

to the following parameters: 

Population size )( POPN is equal to 50. 

Crossover Probability (Pc) is equal to 

0.8. 

Mutation Probability (Pm) is equal to 

0.05. 

Maximum number of generations is 

1500. 

A continuous time model representation 

is adopted to be numerically solved 

using the Runge Kuta fourth order 

method where the time constant is equal 

to min1  and the simulation step size for 

this purpose h=0.1min. The training 

pattern (Np) used was taken as 350 as 

the desired trajectory. The modified 

Elman recurrent neural networks are 

used to minimize the performance error 

between the model reference and the 

actual output. The equation of the model 

reference is taken from [17] for more 

stability and without any oscillation in 

the response: 

)1(7.0)(3.0)1( ++=+ kykyky desmrmr                                    

                                                           (14) 

Convergence is achieved when the 

performance error falls below a pre-

specified value. 

)1()1()1( +−+=+ kykyke pmrmr                       

                                                           (15) 

where )(kemr  is the model reference 

error.  

After training it can be observed that the 

actual output of the plant is following the 

desired trajectory (model reference) that 

can be shown as in figure (8), and the 

feedback control action as shown in 

figure (9). Moreover, the gains of the 

PID self-tuning neural controller as scale 

function are shown in figures (10-a, b, & 

c) Kp, Ki, & Kd respectively. The error 

between the desired output and the 

actual output of the plant is very small as 

shown in figure (11). Figure (12) 

describes the best objective function 

MSE. 
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6- Conclusion 
The structure of the modified 

Elman recurrent neural network as a 

self-tuning adaptive PID controller with 

genetic algorithm is shown as the 

proposed structure of controller and is 

successfully simulated to nonlinear 

system in the example. PID feedback 

controller with self-tuning neural to 

adjust the parameters (Kp, ki, Kd) of the 

controller is used. The output of the 

plant follows the output of the 

predefined and desired input “model 

reference”, and genetic algorithm is used 

to give the controller minimum time and 

more stability and exclude oscillation 

with best parameters of the controller.  

The proposed control structure has 

shown the ability to minimize the error 

between the desired output model 

reference and the actual output of the 

plant as well as the control action, and 

has also shown excellent set point 

tracking, as it was clear when applied to 

the example. 

Appendix 
Nominal CSTR Operating Condition 

Para-
meter 

Description Nominal Value 

q  Process flow-
rate 100 lmin 1−  

afC  Intel feed 
concentration 1 mol l 1−  

fT  Feed 
temperature 350K 

cfT  Inlet coolant 
temperature 350K 

vol Reactor volume 100 l 

ah  Heat transfer 
coefficient 

10107 × cal 
min 1− .K 1−  

ok  Reaction rate 
constant 

10102.7 × min 1−  

R
E  Activation 

energy 
31095.9 × K 

H∆  Heat of 
reaction 

5102×− cal 
mol 1−  

c,ρρ  Liquid 
densities 1000 g l 1−  

pcp C,C
 

Specific heats 1 cal g 1− . K 1−  

cq  Coolant flow-
rate 103.41 l.min 1−  

T Reactor 
temperature 440.2K 

aC  Product 
concentration 

21036.8 −× mol 
l 1−  

Note: 
Process time constant= 

min1
min.l100

l100
q

Vol
1

==
−
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Fig (2): Neuron j in the hidden layer. 
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Fig (7-a): The open loop response of the CSTR 
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  Fig (7-b): The step changes in the coolant flow-rate 
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Fig (8): The response of the plant & the set-point 
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Fig (9): The feedback control signal of the PID self-tuning controller 
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Fig (10-a): Kp gain of the PID Controller 

Fig (10-b): Ki gain of the PID Controller 

Fig (10-c): Kd gain of the PID Controller 
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    Fig (11): Output error between the set point desired & the actual output 
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Fig (12): The best mean square error 


