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Abstract

In this paper, the structure of the controller is consists of a Modified Elman Neural Networks
MENN model that is learned on-line by using genetic algorithm teachings in order to achieve
required yaw rate and reduce lateral velocity in a short period of time to prevent vehicle from
sliding out the curvature. By using differential braking system and front wheel steering angle has
automatically controlled the vehicle lateral motion when the vehicle rotates the curvatures. The
robust feedback neural controller is achieving the excellent transient state output of the system by
minimizing the error between the model reference output and the model output of the system.
Where the model of the system is also MENN that learned by two stages off-line and on-line, in
order to guarantee that the model output accurately represents the actual output of the system by

using dynamic Back Propagation Algorithm (BPA).
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1-Introduction
hysical limit of adhesion bet the ti
The incorporation of vehicle stability and&:eyrs:;i .ian]:;: e e

c?nhanct:.mer!t systems.mto production vehicles emergency situations are those that the normal
Bagovingin po_pulanty. ithe PUFPOSE of these driver usually cannot handle, and often loses
systems is to actively control the vehicle under control of the vehicle [1]. A system, which
emergency situations where the car is at the automatically intervenes in such situations,
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allows the driver to keep control of the vehicle

and enhances the chance of avoiding an

accident. Naito, et.al. [2] cite three points that
an active safety system must address:

e A vehicle must provide good
controllability by responding quickly and
accurately (i.e. with the right amount of
change) to the driver’s operational inputs.

* A vehicle must provide good stability,
with little change in behavior in relation to
changes in driving conditions.

*  There must be an effective control loop
between the driver and the vehicle for
conveying operational inputs and the vehicle
response in order to ensure that the driver
can easily recognize present operating
conditions and also predict vehicle behavior.

There are various ways to address these control

issues. H. & A. Sabah [3] investigate the use of

independent front and rear wheel drive to
control the vehicle to track a desired lateral
velocity using fuzzy logic controller with
variable gain structures. A. Sabah [4] used
neural controller based genetic algorithm to
control the vehicle to track a desired lateral
velocity from front and rear steering angles.

The most prevalent method is by combining the

control of vehicle yaw rate and sideslip angle

[5]. Summarizes the work on road

vehicle motion control, with focus on different

strategies to achieve synergetic

effects for over-actuated systems [6]. A genetic

neural fuzzy antilock

brake system ABS controller is applied that

consists of a non-derivative neural optimizer

and fuzzy-logic components (FLC) as presented
by Y.Z. [7]. It is used (ABS) senses when the
wheel lockup is to occur, releases the

brakes momentarily, and then reapplies the

brakes when the wheel spins up again. The

organization of this paper is as follows:

Section two represents the 2 DOF vehicle

mathematical model. Section three describes

the use of feedforward neural networks to learn

(Modified Elman Recurrent Neural Networks)

as input-output model for system identification

is examined with the corresponding neural nets
and learning mechanism used for this purpose.

Section four represents the core of the present
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paper, and it is suggested using feedback robust
neural controller that will attain specific
benefits towards a systematic engineering
design procedure for neural control system. The
proposed algorithm for the Robust Feedback
Neural Controller type MENNSs described by
section five. Illustrative example, that clarify
the features of the proposed strategy are given
in sections two, three and four where an
example is discussed in detail. Finally, section
seven contains the conclusions of the entire
work.
2- Two Degree of Freedom Vehicle Model
The non-linear dynamics of vehicle lateral
motion depends on many parameters such as
vehicle speed, vehicle mass and tires state on
road. The independent control of lateral and
yaw motion requires at least one additional
control input, which is independent of the front
steering angle. There are three possible
solutions for these inputs * four wheel steering
system, braking forces, and torque driving
wheel” [3,4].
In this paper, the focus is on the vehicle yaw
rate and lateral velocity as the desired and the
differential braking and front steering angle are
the control action variables. The brake system
is a challenging control problem because the
vehicle-brake dynamics are highly non-linear
with  uncertain  time-varying  parameter.
Intelligent controllers, such as neural or fuzzy,
overcome these issues [8]. Neural controllers
have the benefit of not requiring a mathematical
model of the plant, while still being highly
robust. Also, certain neural control designs to
adapt themselves to improve its performance.
Because of these features, neural controllers
have been successfully implemented in the
automotive field for controlling both wheel
dynamics and vehicle dynamics [5].
The two DOF vehicle model as shown in figure
(1) is widely used for lateral control design and
has been shown to provide accurate response
characteristics compared to more complex
models for conditions up to 0.3 g lateral
acceleration.
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where y;=Vand y;=r
The linear dynamical model of vehicle lateral
motion [9] with interaction in multi-input
multi-output system are expressed as the state
space equations where
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Equation (1) represents linear mathematical
model of vehicle lateral motion with interaction
in multiple-input-multiple-output system (see
appendix 1) where V is lateral velocity, r is yaw
rate and both are system variable states.
&, Fy, represent front steering angle and brake

steer force respectively and they are inputs to
the system. Where the brake steer force can be
described as the equation (2) from figure (1):

iy

Mg =‘2‘(F_m -Fy)
@

Fps =Fy —Fy,

3)

where:

M . is brake steer moment.
F zand Fare front and rear longitudinal tire
forces.

3- Identification of Dynamical System
Using Neural Network Modeling

This section focuses on linear system
identification using multi-layered feedforward
Modified Elman Recurrent model neural
network, The neural network is trained using
Dynamic Back-Propagation ~Algorithm. A
feedforward neural network can be seen as a
system transforming a set of input patterns into
a set of output patterns, and such a network can
be trained to provide a desired response to a
given input. The network achieves such a
behavior by adapting its weights during the
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learning phase on the basis of some learning
rules.

3-1 Structure of Modified Elman Neural
Networks Model
The Elman neural network is a globally feed-
forward locally recurrent networks model. It
owns a set of context nodes to store the internal
states. Thus, it has certain dynamical
characteristcs over static neural networks, e.g.,
multilayer perceptrons and radial-basis function
networks. However, its training and
convergence speed are usually very slow and
not suitable for time critical applications, such
as on-line system identification and adaptive
control. Hence, an improved Elman neural
network, the modified Elman Neural Network
(MENN), was recently propsed and applied
successfully to dynamical system identification
[10]. The structure of MENN is given in figure
(2) is one of the simplest types that can be
trained using dynamic BPA and it used to
minimize the oscillation or even instabilities to
the training controller. The output of the
context unit in the modified Elman network is
given by:
h2(k)=ahl(k-1)+ Bh (k-1) (4)
where hl(k) and h_(k)are respectively the
output of the context unit and hidden unit and
« is the feedback gain of the self-connections
and fis the connection weight from the hidden
units (c’th) to the context units (c’th) at the
context layer. The value of a and S are
selected randomly between (0 and 1). From
figure (2) it can be seen that:
h(k)= F{V1U (k),V2h° (k)}
®)
O(k) =Wh(k)
©6)
where V1,V2 and W are weight matrices and F
is a non-linear vector function. The multi-
layered modified Elman neural networks shown
in figure (2) that is composed of many
interconnected processing units called neurons
or nodes. where:
¥ 1: Weight matrix of the hidden layers.
¥ 2: Weight matrix of the context layers.
7 : Weight métrix of the output layer.
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L : Denotes linear node.

H : Denotes nonlinear node with sigmoidal
function.

To explain these calculations, consider the
general j’th neuron in the hidden layer shown in
figure (3). The inputs to this neuron consist of
an ni — dimensional vector and (ni is the
number of the input nodes). Each of the inputs
has a weight V1 and V2 associated with it. The
first calculation within the neuron consists of
calculating the weighted sum ret , of the inputs

as [11]:
nh g

net; = ZVI/.' xU, +ZV2M‘ xh? )
i=1

=1
C and nh number of the context nodes and
hidden nodes. For the standard design recurrent
neural networks, the number of the context
nodes is equal to hidden nodes nh=C, then c=j.
Next the output of the neuron h,is calculated as

the continuous sigmoid function of the net ; as:
h= H(netj)
®)
2
U O e 1 )
1+

—net,

Once the outputs of the hidden layer are
calculated, they are passed to the output layer.
In the output layer, a single linear neuron is
used to calculate the weighted sum (neto) of its
inputs (the output of the hidden layer as in
equation (10)).

i

neto, = ZWh xh,
m

(10)
Where 17, is the weight between the hidden

neuron A, and the output neuron. The single

linear neuron, then, passes the sum (neto,)
through a linear function of slope 1 (another
slope can be used to scale the output) as:

O, = L(neto,)

1)

Thus the outputs at the output layer are yaw
rate and lateral velocity which are denoted by
01, O2 respectively.
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The learning (training) algorithm is usually
based on the minimization (with respect to the
network weights) of the following objective
(cost) function MSE mean square of error as
given in equation (12) by using dynamical back
propagation algorithm  with series-parallel
configuration learning.

:
E= L 310 -0+ 007 112)

where P is number of identification patterns
(from 1 to 1000), r'is the yaw rate of the
vehicle of each step and y}, is the model output

of the plant of each step and v'is the lateral
velocity of the vehicle of each step and ! ,is
the model output of the plant of each step.

4-Feedback Robust Neural Networks

Controller

The control of linear dynamical system is
considered in this section. The approach used to
control the system depends on the information
available about the system and the control
objectives. The information of the unknown
linear system can be known by the input-output
data only and the system is considered as
Modified Elman Neural Networks Model. The
first step in the procedure of the control
structure is the identification of the plant from
the input-output data. The feedback neural
controller is very important because it is
necessary to stabilize the tracking error
dynamics of the system when the output of the
system is drifted from the input reference.
The feedback neural controller based on the
minimization of the error between the model
reference & the model output system in order to
achieve good tracking of the reference signal
with minimum time and to use minimum effort.
In direct model reference adaptive controller
(MRAC) with parallel model reference used
here for the feedback neural controller, the
adjustable parameters of neural network
controller are adapted by genetic algorithm
technique [11].
The genetic algorithm with real coding rather
than binary is used as follows: Each
chromosome is considered as a list (or _
“vector”) of the total weights of neural”
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networks. The encoding is shown in figure (4)
and the weights are read off the network in a
fixed pre-defined order and placed in a vector.
Each “gene” in the chromosome is a real
number. To calculate the fitness of a given
chromosome, the weights in the chromosome
are assigned to the links in the corresponding
modified Elman networks, the network is run
on the training set, and an objective function is
returned. An initial population of weight
vectors was chosen to be 50 individuals, with
each weight being between —1 and +1. The
mutation operator adds a random value between
—0.75 and +0.75 to the selected weight on the
link. The crossover operator two mating vectors
and exchanges the information by exchanging a
subset their components. The result is a new
pair of vectors, each of which carries
components from both of the parent vectors.
The mean square of error (MSE) for multi-input
multi-output (MIMO) is used as an objective
function to be minimized with the GA:

L2 "
MSF;EZIOr..A(k)—yM(k» +0na (-,
k=1
(13)

where:
Ymri(k) is the first output of the linear
reference model at sample k.
Ymr2(k) is the second output of the linear
model reference at sample k.
np is the number of the training desired patterns
(1 to 50).
Since the GA maximizes its fitness function, it
is necessary therefore to map the objective
function (MSE) to a fitness function. The
following objective fitness transformation [4,
11] is used.

1

Sitness = MSE+

(14)

Where  is a constant chosen to avoid division
by zero.

The final integrated control structure that
consists of the reference model and neural
network controller with the robustness of
feedback can be shown in figure (5).
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5-The Proposed Algorithm For The Robust
Feedback Neural Controller Type MENNs

The following genetic procedure is
introduced for training the modified Elman
recurrent neural network controller for the
(MIMO) plant to track the reference model
trajectory:

Step 1: Initialize the genetic operators: the
crossover probability Pc, the mutation
probability Pm, the population size, and the
maximum number of generations.

Step 2: Generate the initial population
randomly.

Step 3: For each individual in the population,
compute the objective function MSE, and then
calculate the fitness function as in equation
(14), where g will be chosen as an input
coefficient equal to 1.

Step 4: Put in descending orders all the
chromosomes in the current population,
according to this fitness level.

Step 5: Select individuals using hybrid
selection method (Roulette Wheel plus
deterministic selection). The real coded genetic
operators of mutation and crossover (single
point) is applied.

Step 6: Stop if a maximum number of
generations of genetic algorithms are achieved,
otherwise increment the generations by one and
go to Step 3.

6- Case Study

In this section, the vehicle parameters as given
by appendix (2) is taken to clarify the features
of the neural controller explained in sections
three, four and applied the algorithm in section
five. Scaling function has to be added at the
neural network terminals to convert the scaled
values to actual values “where the differential
braking range is +5000N and front steering
angle is +0.1rad” and vice versa in order to
overcome a numerical problem that is involved
within real values. Therefore the signals
entering to the network have been normalized
to lie within (-1 & +1).

In this simulation, the proposed control scheme
is applied to the vehicle model and the real-
coded genetic algorithm is set to the following
parameters given in appendix (3).

7
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The training pattern (Np) was taken as 50 as the
desired trajectory. The modified Elman
recurrent neural networks are used to minimize
the performance error between the reference
model and the model output. The equation of
the reference model for the two outputs is taken
from [12] for more stability and without any

oscillation in the response:
ymi(k+1) _| 010 | ym(k) A Vs
ym2(k) e

Lm@(kﬂ)} 0 01
(15)
Convergence is achieved when the performance
error falls below a pre-specified value.
Im(k
Yook

en(k+1)] [1 0T ymrA(k+1)] [1
0 =0

0
emr2(k+1) lIyer(k +1)
(16)

where emrl(k) and emr2(k)is the reference
model error outputs.

The performance of the proposed controller is
evaluated using the closed-loop step lateral
velocity and yaw rate responses for linear
system. The desired lateral velocity must be
zero to over come the vehicle may rotate
around itself at high vehicle velocity. And
desired yaw rate must be verified:

1%
;)

09 0
0 09

0
1

(7

an
where R is curvature radius.

Case-1:

For off-line identification with series-parallel
configuration a model described by MENN as
shown in figure (2) where six nodes in the
single hidden layer and six nodes in context
layer.

BPA with learning rate 7 =0.1and the input-
output patterns (1000) as a learning set, then
after 3500 epochs for the Pseudo-Random
Binary Signal (PRBS) inputs as shown in figure
(6-a). The mean square of error (MSE) is equal
t01.35 x 10 ¢ After training the weights of the
hidden layer, context layer and output layer can
be shown in appendix (4).

Figure (6-b and c) compares the time response
of the model with the actual plant output for the
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random input as learning set. Step change
variable inputs as shown in figure (7-a) as
testing set and figure (7-b and c) compares the
time response of the model with the actual plant
output respectively.

An on-line updating of the weights of the neural
network will be carried out to ensure the output
of the model will be equal to that of the plant,

(k+3p] that calculation of the feedback control

(k+ ion will be fairly accurate.

e neural controller model described by
MENN as shown in figure (4) where three
nodes in the single hidden layer and three nodes
in context layer.

After training it can be observed that the actual

utput of the system is following the desired
rajectory (model reference) can be shown as
he figures (8-a & b), and the weights of the
hidden layer, context layer and output layer can
be shown in appendix (5).
Figure (8-a) is the lateral velocity response and
its  fast response  with very small
overshoot+2.5x 107, Steady-state error is
equal to zero and the transient time is
approximately equal to 0.1 sec when the vehicle
velocity is change as (15, 25, 35) m/sec with
fixed curvature radius equal to 100m.
Figure (8-b) is the yaw rate response and its fast
response with no overshoot. Steady-state error |
is equal to zero and the transient time is
approximately equal to 0.05 sec when the
vehicle velocity is change as (15, 25, 35) m/sec
with fixed curvature radius equal to 100m.
The robustness of feedback neural control
action will be kept the maximum amplitude of
the lateral velocity in the transient response is
equal to (£2.5x107 m/sec) when the velocity
of the vehicle is changed and achievement the
desired lateral velocity and yaw rate.

The yaw rate control and the lateral velocity

can be achieved by two feedback control action

brake steer force “differential braking” and
front steering angle as shown in figures (8-c & |

d). |

The error between the two desired outputs and

the two actual outputs of the system is very

small as shown in figure (8-e& f).

Case 2:

+1)
+1)
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When applying random input as a disturbance
S, that has maximum magnitude (2x 107 rad)

as shown in figure (9-a). The response of the
yaw rate of the vehicle is not drifted from the
desired and it has very small overshoot as
shown in figure (9-b) and also the lateral
velocity of the vehicle is very small oscillation
magnitude +4x107as shown in figure (9-c).
The differential braking and the front steering
angle can be shown in figures (9-d & ¢). And
the error between the desired yaw rate and
actual output for this case can be shown in
figure (9-f & j).
Figure (10) is described the best objective
function MSE for the MIMO system.
7-Conclusions
The results of lateral motion simulation show
that the controlling on lateral velocity and yaw
rate by robust neural controller proposed have
been achieved at different velocity of the
vehicle by successfully simulated to multi-input
multi-output linear system. That is to be
completed by controlling front wheel steering
and differential braking system. The structure
of the controller is MENNs as an adaptive
controller with genetic algorithm learned.
Interviewing the results of simulations, the side
velocity is fluctuating around the desired during
the transient response. That means occur lateral
motion slightly. The vehicle moves from its
own path to lateral path. Thus later position
should be taken as variable state that must be
controlled to improve vehicle rotation stability.
For reason above, it is urgent need for
developing vehicle mathematical model of
lateral motion in order to appear a state of each
tire independently. It is also to be taken into
consideration the other variables input in
vehicle lateral motion control system such as
increasing or decreasing the front steering angle
as a disturbance effects to make lateral motion
more stability by robust feedback neural
networks.

Appendix (1

Nomenclature
a= distance from the center of mass to front
axle
b= distance from the center of mass to rear axle
T=vehicle track

Designing a Genetic Neural Controller of Differential Braking
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C,= tire cornering stiffness

g= acceleration of gravity

I= vehicle moment of inertia
M= vehicle mass

r= yaw rate

r,= desired yaw rate

R= curvature radius

U= vehicle velocity

V= lateral velocity

&= front steering angle

F 4 =brake steer force
&8, = front steering angle disturbance
M , is brake steer moment.

Fypand F, are front and rear longitudinal tire
forces.

Appendix (2)

Vehicle nominal parameters
M=1000Kg
a=lm
b=1.5m
T=1.5m
1=1500Kg m*
C,=55000 N/rad
C,=45000 N/rad
U= 15, 25 & 35 m/sec
R=100m

Appendix (3
The Real-Coded Genetic Algorithm

Population size (N, ) is equal to 50.

Crossover Probability (Pc) is equal to 0.8.
Mutation Probability (Pm) is equal to 0.05.
Maximum number of generations is 2000.

endix (4)
The weights of the identifier model MENN

0933 -322 237 0355
1.722  0.461 143 0212
-2.11 0.638 -1201 0393
#7_0343 0711 0657 -091
1.022° -0439 078 -0317

141
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-0.17 0345 0,788 1.09 3221029
-022 057 -001 051 -0.102 -1.67
—0.389 0.121 0.023 0.571 277 0.748
045 0023 034 -025 045 0754
0731 0331 1.05 -054 0.7 0387
0671 -027 037 -0366 -0.357 -0.33

0719 -0.521 0389 0223 0711 —0.103
MT-002 -1.89 0374 0451 0331 -0.023

W, =

Appendix (5)
The weights of the controller model MENN

0210 -0.345 -0.531 0.71
V1,=-0329 -0.703 -0.539 0.662
0.567  0.724  0.579 0.119
—0.439  0.665 0.102
V2,,=-019 -0331 -0.349
0.639  0.711  0.306
0.711 -0.541 0379

V. =
*70.662 0103 —0.709
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Fig (1): Two DOF Vehicle Model
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Fig (6-a): The PRBS inputs signal used to excite the plant
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