
IJCCCE, VOL.5.NO, 2.2005 Design and Implementation of Real-Time
 Executive (RTDM) for Multitask System

*Computer Sciences Dept. College of Mathematics and Computer Science University of Mosul.
** Computer Engineering Dept. College of Engineering University of Mosul.

52

Design and Implementation of Real-Time Executive (RTDM) for
Multitask System

*Dr. Dhuha Basheer Abdullah **Dr. Basil Shukur Mahmmod

Received on: 13/ 2 / 2005

Accepted on: 30/ 6/2005

Abstract

The purpose of this paper is to design an efficient, reliable, fast, easy to extend, and
small size experimental real-time operating system kernel for uniprocessor multitask
system. It is a kernel with an underlying formal model based on periodic and sporadic tasks
with guaranteed response time requirements to tasks and shared software resources. It is
distinguished by the programming model it supports and its use of a new processor
scheduling and resource allocation.The kernel represents a nucleus of supervisory software
to perform the required real–time functions. It logically runs and coordinates concurrent
and physically asynchronous activities. It offers appropriate synchronization and task
communication mechanism among tasks.

 الخلاصة
الغرض من هذا البحث هو تصميم نواة تجريبية لنظام تشغيل زمن حقيقي يستعمل لنظـام أحـادي المعـالج
ومتعدد المهام على أن تكون هذه النواة كفوءة وسريعة ومن السهل توسيعها وصغيرة الحجم ويمكن الاعتماد عليها ،

وتعاقبية باستجابة مضمونة لمتطلبات الـزمن للمهـام وهذه النواة تحتوي على نموذج رسمي مبني على مهام دورية
والنواة المقصودة تتميز بنموذج البرمجة الذي تسنده واستعمالها لجدولة جديـدة للمعـالج . ومصادر برمجية مشتركة

 .وحجز المصادر
نفـذ منطقيـا هذه النواة تمثل نواة لمراقبة برمجية للقيام بوظائف الزمن الحقيقي اللازمة وهي بذلك ت نكما أ

 . وتنسق الفعاليات المتزامنة وغير المتزامنة فيزيائيا ، كما تقدم ميكانيكيات مناسبة للتزامن والاتصال بين المهام

1. Introduction
A real-time computer system is required to
provide timely responses to external
events occurring in its operating
environment. The performance of such a
system is directly related to its ability to
adhere to timing constraints placed by
these external events and the strictness of
these constraints[4, 5, 9, 11, 12]. Based on

the nature of these constraints, real-time
systems can be broadly classified into hard
and soft real-time systems. Hard real-time
systems are required to meet every timing
constraint without fail[1, 2, 10]. The
performance of hard real-time systems
must be predictable in a deterministic
sense. In contrast, temporal correctness
requirements in soft real-time systems

IJCCCE, VOL.5, NO, 2.2005 Design and Implementation of Real-Time
 Executive (RTDM) for Multitask System

53

are less stringent (i.e., failure to meet
every timing constraint does not affect
the correctness of the system) [6, 7]. The
scope of this work is soft real-time
system.

With the rapid advances in
computing and communication
technology, software driven
computerised control is being widely
employed in many real-time systems[8,
11] . Software implementation of such
real-time systems offers many
advantages - it permits more complex
control operations in a responsive
manner, and can also be made to
dynamically adapt to changes in the
operating environment through the use
of appropriate control structures. The
increasing complexity and the
sophisticated demand of such systems in
terms of safety, reliability, and
performance requires for both functional
and temporal (real-time) aspects of the
system[3, 9].

The real-time system can be
characterised by the following [10]:-
1- A real-time system is any system
 that responds in a timely manner.
2- Many real-time systems are

embedded systems, i.e., they are
components of a larger system that
interacts with the physical world.

3- Real-time system software must also
be concurrent[8].

4- Many real-time systems are
dependable.

5- As a result, real-time systems must
often be highly reliable (i.e., they
must perform correctly), and available
(i.e., they must operate continuously).
In this paper, we consider the
problem of real-time system design
from a temporal perspective, which is
what makes real-time system design
inherently different from other forms
of system design. That is, real-time
system design must explicitly

consider the timeliness aspects, so
that the desired real-time behaviour
can be predictably met in the final
system. The designed real-time kernel
is called Real-time Deadline
Multitask (RTDM) and the following
sections show the complete RTDM
structure.

2. RTDM Layers
The kernel RTDM consists of

three layers :-
 - application layer
 - scheduling layer
 - machine layer
The application layer is a layer on which
user interaction programs and
application are supported and integrated.
The upper layer functions are divided
into six groups (table 1). These groups of
functions handles :
task management, time management,
task synchronization, task
communication, system initialization,
and system management. This layer is
written in C++ objected oriented
language. The second layer is divided
into six groups that represent the main
functions used to manage and control the
over all system (table 2). It handles and
manages lists, queues, software traps,
hardware interrupts, task state transition,
events, and scheduling and dispatching
tasks. This layer is written in C++ object
oriented language. While the machine
layer is used to carry out low level
functions and machine dependent
programs (table 3). It consists of three
groups that are used to carry out context
switching, enable and disable interrupts,
clearing and restoring flags, initializing
registers and to provide I/O drivers of
RTC and DUART. The third layer is
written in PentiumШ assembly
language.

The data structures of the RTDM
contain blocks, tables, lists, and queues.
Blocks, lists, and queues are

IJCCCE, VOL.5, NO, 2.2005 Design and Implementation of Real-Time
 Executive (RTDM) for Multitask System

54

implemented using “struct” and “typdef”
C++ declaration types. Kernel tables are
implemented using arrays of integer data
type.
The designed kernel (RTDM) in this
research has been written using a mix of
high level language and assembly
language. C++ object oriented
programming language is used in the
implementation of all machine
independent functions. Assembly
language is used for writing dependent
subroutines and device drivers. C++ is a
well-known efficient programming
language which combines high level
language with factionalism of assembler.
Interfacing C++ language to assembly
language is implemented either by in
line coding in C++ programs using the
‘#asm’ and ‘#endasm’ directive or
linking the previously assembled
relocatable file (s) with the compiled
C++ programs.

Table (1) Application Layer Functions

Summary.
Tasks Management
RTD_CreateTask() : create a new task.

RTD_TerminateTask() : terminate a complete running
task.

RTD_BlockTask() : block a task and put it in wait
state.

RTD_ResumeTask():resume a waiting task and put it
in ready-to-run list

RTD_SleepTask() : put calling task to sleep.

Time Management
RTD_GetTime() : get time.

RTD_SetTime() : set time.

RTD_CreateTimer() : create a logical timer for
specified task.

RTD_CancelTimer() : delete a logical timer.

Task Synchronization
RTD_CreateSem() : create semaphore.

RTD_CloseSem() : delete semaphore.

RTD_WaitSem() : wait on a semaphore.

RTD_SignalSem() : signal a semaphore.

RTD_WaitSemTimeout() : wait on a semaphore with
timeout.

Task Communication
RTD_Send() : send a message to a task queue.

RTD_Receive() : obtain a message from one of it’s
event queue.

RTD_Reply() : reply a message to a task queue.

System Initialization
RTD_InitTaskTable() : initialize task table.

RTD_Initkernel() : initialize RTDM kernel.

RTD_InitRTC() : initialize real time clock.

DTR_InitLogicalTimer() : initialize logical timer.

DTR_InitIDT() : initialize interrupt descriptor table.

System Management
RTD_GetTaskState() : get task state.

RTD_SetTaskState() : set task state.

RTD_GetTaskPriority() : get priority of a specified
task.

RTD_SetTaskPriority() : set priority of a specified
task.

Table (2) Scheduling Layer Functions
Queue Management
RTD_Enqueue() : add object to the end of queue.

RTD_Dequeue() : remove object from front of the
queue.

RTD_remove() : remove object from whatever
queue it is currently in.

Scheduling and Dispatching
RTD_Relinqush() : give up the processor.

RTD_Reschedule() : scheduling tasks.

Task Handling
RTD_AddReady() : add task p to the list of ready-
to run tasks.

RTD_RemoveReady() : remove task p from the list
of ready-to-run tasks.

RTD_addNewtask() : increment the scheduler
count of tasks.

RTD_RemoveTask() : reduce the count of active
tasks by one.

Interrupt Handler
RTD_SystemIntHand() : system interrupt handler.

RTD_RTCIntHand() : RTC interrupt handler.

RTD_IOIntHand() : I/O interrupt handler.

IJCCCE, VOL.5, NO, 2.2005 Design and Implementation of Real-Time
 Executive (RTDM) for Multitask System

55

Table (3) Machine Layer Functions

Summary.
Initialization and Context Switching
RTD_InitStackBase() : initialize stack.
RTD_InitRegs() : initalize registers.
RTD_ASMContextSwitch():context switching.
Interrupt Management
RTD_EnableInts() : enable interrupts at the
processor.
RTD_DisableInts() : disable interrupts at the
processor.
RTD_RestoreFlages() : update processor flags
register.
I/O Driver
RTD_SerialDriver() : serial driver.
RTD_RTCDriver() : RTC driver.

3. RTDM Data Structure

Four different data structures are
defined in this kernel TD, TB, DD, and
IOD :
1- Task Descriptor (TD): Is a template that
 describes the status of each task within
 the real-time system. It represents the
 control point through which the kernel
 defines the actions of a task. Its fields
 are:-
Task name;
Task priority;
Task release time;
Task deadline time;
Task state;
Task time out;

Task cost;
Task register
Task list of resources;

2- Time Block (TB) : used to implement
 software logical timers and time delays,
 its fields are :-
Associated TD;
Task control flag;
Repetition interval;
Time of expiration;

3- Device Descriptor (DD): It is used
 for each I/O device. Each DD
 describes the characteristics of a
 device in a standard form, its fields
 are:-
Device name;
Device state;
Vector number;
Read entry;
Write entry;
IOD entry;
Getstate entry;
Set state entry;
Terminate entry;

4- Input/Output Descriptor (IOD) :
 IOD is used to describe an individual
 I/O operation. All IODs for a device
 are linked together in a queue pointed
 to by the DD for the device, its fields
 are :-
 Associated TD;
 Device name;
 Data address;
 Data count;
 Status field;

4. RTDM Program Structure

The general steps of operation of
the RTDM system is given by the
flowchart shown in figure (1)

I/O Handler
RTD_WritetoIO() : write to I/O device.

RTD_readIO() : read from I/O device.

RTD_GetSTIO() : get status of a specified I/O
device.

Time and event handler
RTD_TimerISR() : timer handler.

RTD_InterHand() : Interrupt handler.

IJCCCE, VOL.5, NO, 2.2005 Design and Implementation of Real-Time
 Executive (RTDM) for Multitask System

56

4.1 System Initialization
 The main initialization activities
are :
. Defining the allowable task states and
priorities.
. Initialization of the data structures.
. Initialization of Queues, lists, and other
data types or structures.
. Initialization of real-time clock.
. Initialization of logical software timers.
. Initialization of standard I/O devices.
. Redefining Interrupt Descriptor Table
entries.
. Redefining of UART.
. Initializing the kernel RTDM.
The initialization steps of the kernel
RTDM are shown in figure(2).

4.2 Start Multitasking

 This function makes the idle task
active task not by performing a context
switch but in such a way specialized for
this function. The idle task then
relinquishes the processor, and because
the main task is ready to run, RTDM
kernel performs a context switch to this
task. The RTDM program is now a
multitasking system. Figure (3) shows
the algorithm for this function.

4.3 Task Management
 For any task in the Real-time

system, the RTDM kernel defines its
state according to the diagram shown in
figure (4). The probable state of any task
is one of the following :-

Figure (1) General Steps of the
RTDM system.

 RTD_InitializeKernel()

 {
 create scheduler instance;
 initailize the sleep queue;
 initialize the stack;
 create the idle task;
 add idle task to ready
 queue; create semaphore
 mutex;
 }
Figure (2) Function to initialize
 the kernel.

 RTD_Start_Multitasking()
 { remove the idel task from the
 ready queue;
 change idle task status to active;
 RTD_Relinquish(); }

Figure (3) Start Multitasking
 algorithm.

Stop when all real-time
application tasks are

terminated

Start multitasking

Create application tasks

Create main kernel task

Initialize the RTDM kernel

Initialize the system

start

IJCCCE, VOL.5, NO, 2.2005 Design and Implementation of Real-Time
 Executive (RTDM) for Multitask System

57

. Ready : the task is ready to run (there
may be several tasks in this
state).

. Active : the task is currently running
(i.e. the task which has a

 control on the CPU and it is
normally the task that has the
highest priority among the
ready tasks).

. Blocked : the task is blocked on a
semaphore.

. Sleep-Blocked : the task is blocked on
a sleep queue.

. Queue-Blocked : the task is blocked on
an event queue.

. Sem-Timed-Blocked : the task is
blocked on a semaphore with
time out.

. Queue-Timed-Blocked : the task is
 blocked on an event
 queue with time out.
. Terminated : the task is terminated.

 Only one task can be in the
active state and other tasks must be in
some state other than the active state.

Figure (4) : RTDM’s Task State Diagram.

IJCCCE, VOL.5, NO, 2.2005 Design and Implementation of Real-Time
 Executive (RTDM) for Multitask System

58

The RTDM kernel calls
RTD_CreateTask() function to form a
new task. A task descriptor (TD) is
being created to store information
about the task. Each task has a
separate (TD). One task is active at
any time, consequently, one TD
corresponds to the currently executing

task, while all other TDs contain
information about the tasks that are
either ready to run or blocked. The
algorithms that perform task creation,
task sleeping, task blocking, task
resuming, and task termination are
shown in figures (5-9).

RTD_CreateTask()

{

 disable interrupts;

 allocate a task descriptor object; // an instance of class task descriptor

 initialize the stack for the task;

 initialize task registers;

 save the task’s states;//priority, release time, deadline,…

 initialize the task’s event queues;

 change task stater to ready;

 request from scheduler to add this task to its list of ready-torun task;

 enable interrupts;

 returns a pointer to the new task descriptor object;

 }
Figure (5) Task Creation Algorithm.

 RTD_SleepTask()

 {

 disable interrupts;

 if time tick of the system timer >0 then {

 change task state to task-sleep-Blooked;

 insert the task in the sleep queue;

 RTD_Reschedule(); }

 enable interrupts;

 }

Figure (6) Task Sleeping Algorithm.

IJCCCE, VOL.5, NO, 2.2005 Design and Implementation of Real-Time
 Executive (RTDM) for Multitask System

59

 RTD_BlockTask()

 {

 save the current state of the CPU in a TSS table;

 test the action;

 if wait-sem then insert task in the Blocked Queue

 else if wait-sem with timeout then insert task in

 sem-time Blocked Queue

 else if wait-an event then insert task in queue

 Blocked

 else if wait-an event with time out then insert task in queue-

Timed Blocked

 else if task-sleep then insert task into sleep-Blocked queue;

}

Figure (7) Task Blocking Algorithm.

 RTD_ResumeTask()

 {

 remove the task from the Blocking queue;

 insert it in the Ready queue;

 }

Figure (8) Task Resuming Algorithm.

 RTD_TerminateTask()

 { reduce the count of active tasks by one;

 change task state to terminated;

 remove logical timer of this task;

 free the memory space allocated to this task;

 If count =1 then terminate multitasking and exit

 else RTD_Reschedule(); }

Figure (9) Task Termination Algorithm.

IJCCCE, VOL.5.NO, 2.2005 Design and Implementation of Real-Time
 Executive (RTDM) for Multitask System

*Computer Sciences Dept. College of Mathematics and Computer Science University of Mosul.
** Computer Engineering Dept. College of Engineering University of Mosul.

60

4.4 Time Management
The RTDM kernel uses the Real-

time Clock RTC to perform the following
functions :
- Returns the current time to the caller.

- Setting the time by passing new values.

- Creating logical timer.

- Cancel logical timer.
The algorithms for these services are

shown in figures (10-13).

 RTD_GetTime()

 {

 do {

 check RTC ready bit;

 if RTC is ready then {

 read current time of day from RTC;

 transfer the current time to required format; }

 } while RTC will be ready;

 return current-time;

}

Figure (10) Getting Time Algorithm.

 RTD_SetTime()

 {

 set RTC to new passing value;

 call RTD_Gettime();

 if setting value = reading value then

 return message “the setting time is passed”

 else

 return the message “the setting time is failed”;

 }

Figure (11) Setting Time Algorithm.

IJCCCE, VOL.5, NO, 2.2005 Design and Implementation of Real-Time
 Executive (RTDM) for Multitask System

61

4.5 Task Synchronization

The RTDM kernel offers a
counting semaphore for task
synchronization because it is easy to
implement, and well understood by most
programmers. RTDM semaphore
considers : an integer counter, two
operations called wait and signal
operations, and list of tasks that organized
as first-in, first-out queue. When a task

requests a wait operation and the
semaphore count is 0, the task is blocked
(by being placed at the tail of the
semaphores’ queue). If the semaphore
counter is positive, wait operation
decrements the counter and the task
continues executing. The signal operation
complements wait. Signaling a semaphore
causes the blocked task at the head of the
semaphore queue to be removed from the

 RTD_CreateTimer()

 {

 allocate memory space for new time block;

 if the allocation is succeeded then

 {

 get the address of current task descriptor;

 store the address of TD, repetition interval, expiration time,

and task control flag;

 insert the new time block in the TB queue;

 }

 else return out of memory;

 }

Figure (12) Creating Timer Algorithm.

 RTD_CancelTimer()

 {

 remove time block from TB queue;

 cancel all logical operation associated with this time block;

 free memory space allocated with time block;

}

Figure (13) Canceling Timer Algorithm.

IJCCCE, VOL.5, NO, 2.2005 Design and Implementation of Real-Time
 Executive (RTDM) for Multitask System

62

list; that task is now eligible to run. The
semaphore counter keeps track of a
number of signal operations that occur
when no task is blocked on the semaphore.
If a semaphore’s queue is empty when it is
signaled, the semaphore counter is
incremented by one. In the RTDM kernel
five functions calls are available for
semaphore, these are :-

RTD_CreateSem : create a semaphore as

shown in Fig (14).

RTD_ColseSem : delete semaphore.
RTD_SignalSem : signaling a semaphore
as shown in Fig (15).
RTD_WaitSem : waiting on this
semaphore as shown in Fig (16).

 RTD_WaitSemTimeout : Waiting on this
semaphore with time out as shown in
Fig(17).

 RTD_CreateSem()

 { disable interrupts;

 initialize the semaphore-count;

 allocate a new sem object;

 enable interrupts;

 return a pointer to the object; }

Figure (14) Creating a Semaphore Algorithm.

 RTD_SignalSem()

 {

 disable interrupts;

 if semaphore-queue is empty then

 increase the semaphore-count by one

 else {

 remove the task from the front of the semaphore queue;

 if the task specified a timeout remove the task from sleep

queue;

 make the removing task ready;

 RTD_Relinquish(); }

 Enable interrupts;

}

Figure (15) Signaling a Semaphore Algorithm.

IJCCCE, VOL.5, NO, 2.2005 Design and Implementation of Real-Time
 Executive (RTDM) for Multitask System

63

4.6 Task Communications

Inter-task communication in the
RTDM is fulfilled via message passing.
Semaphores are relatively low-level
mechanism for coordinating tasks.

 Sometimes a task must respond to
several different events, but the order in
which the events will occur can not be
determined a head of time. Allocating a
specific semaphore for each event is not
the best approach; that is because when a

 RTD_WaitSem()

 {

 disable interrupts;

 if semaphore count > 0 then

 decrease count by one

 else {

 make the active task blocked moving it to the semaphore

queue;

 RTD_Reschedule();

 enable interrupts;

 }

Figure (16) Waiting on a Semaphore Algorithm.

 RTD_WaitSemTimeout()

 {

 disable interrupts;

 if count then decrease count by one

 else if timeout = 0 then status = Timed_out

 else {

 add a pointer of calling task to the sleep queue;

 change active task status to SemaphoreTimedBlocked;

 RTD_Reshedule(); }

 enable interrupts;

}

Figure (17) Waiting on Semaphore with Timeout Algorithm.

IJCCCE, VOL.5, NO, 2.2005 Design and Implementation of Real-Time
 Executive (RTDM) for Multitask System

64

task is waiting on a semaphore for an
event, another event arrives at another
semaphore, then the execution of that task
will not be resumed.

The RTDM provides an event
queue as a facility for task
communication. The event queue permits
data to be transferred from one task to
another. This kind of interprocess
communication is known as message
passing. A message is sent to a task by
depositing the message in one of the
tasks’s event queues. Sending a message
to an event queue is similar to signaling an
event queue, in that neither operation
requires the sender to wait. A process
retrieves a message by removing it from
the queue. Receiving a message from an
event queue is similar to waiting for a
signals in that it may cause the task to
wait. If there are no message in the event
queues, receiving task will wait until a
message arrives. Thus, event queues
provide an asynchronous messaging.

Messges are sent to a task by calling
RTD_Send() function :

 RTD_Send (destination, queue,
msg, ack-queue)
The function arguments are as follows :

. destination - the task identifier of the
recipient of the message.

. queue – the event queue where the
message will be deposited.
. msg – the message.

 . ack-queue – the queue where the sending
task will expect to receive a reply().

To obtain a message from one of it’s
event queues, a task calls RTD_Receive()
function :

 Queue = RTD_Receive (msg,
correspondent, ack-queue)

This kernel function searches the
task’s unmasked event queues for a
message and removes it from the head of a
queue. If all the queues are empty, the task
waits until a message arrives in one of the
unmasked queues. Four pieces of
information are returned by
RTD_Receive() :
. queue – the queue from which the
message was removed.
. msg – the received message.

. correspondent – the task identifier of the
task that sent the message.

 . ack-queue – the queue where the
correspondent task will expect to receive a
reply.

Figures (18) and (19) show the
algorithms used for sending and receiving
a message.

IJCCCE, VOL.5, NO, 2.2005 Design and Implementation of Real-Time
 Executive (RTDM) for Multitask System

65

RTD_Send()

{ if queue < 0 or queue >= Max-Queues then return

 else {

 disable interrupts;

 allocate memory for the message;

 // the active task is being now the correspondent task.

 insert message to event queue

 if state = Queue-Blocked or state = Queue-Timed-Blocked then {

 make the task ready;

 add this to the ready queue;

 if priority > active task-priority then {

 make activer task ready;

 insert it to ready queue;

 RTD_Reschedule(); } }

 enable interrupts; }

Figure (18) Sending a message algorithm.

RTD_Receive()

{

 disable interrupts;

 for I= 0; I<max-Queue, I+1 {

if event-queue[I].mask = unmasked && event-queue[I].empty()

{

 remove a node from event-queue;

 make message node;

 delete node;

 enable interrupts;

 return I; } }

}
Figure (19) Receiving a message algorithm.

IJCCCE, VOL.5, NO, 2.2005 Design and Implementation of Real-Time
 Executive (RTDM) for Multitask System

66

 4.7 Timeout Mechanism
Real-time systems operate in an

unreliable world. So in addition to
correctly responding to expected events
and dealing with anticipated events, real-
time programs must be able to cope when
expected events fail to occur. In previous
sections, a point is being considered that
how tasks wait for events to arrive at
semaphores or event queues. But because
a waiting task remains blocked until an
event happens, it will wait for ever if the
anticipated event never occur. To avoid
this, the RTDM kernel provides a timeout
mechanism. Tasks must wait for events to
occur, but if a waiting task does not
receive an event before a specified length
of time has elapsed, it is unblocked with
an indication that a timeout happened. The
task can then take whatever steps are
appropriate to recover.

4.8 RTDM Scheduler

The scheduler represents the master
program of the RTDM kernel which is
responsible for sharing the processor
between tasks. RTDM provides
preemptive, dynamic priority-based task
scheduling depending on the Earliest
Resource Release and Deadline First
(ERRDF) algorithm. This object maintains
RTDM’s queue of ready-to-run tasks.
Ready list is an array of queue (one queue
for each task priority level); Task priorities
range from 0 (lowest priority) to n (the
highest priority), where n is 16. Each
element queue is a task descriptor object
for a task that is eligible to run. When a
task becomes eligible to run, its TD object
is added to the queue associated with its
priority levels and during scheduling by

kernel function (RTD_Reschedule()), the
task at the head of the highest-priority,
nonempty queue is selected for execution.
While this task executes, it is referred to as
the current task or active task. Figure (20)
shows the algorithm of
RTD_Reschedule(). The active task
continues to run until it relinquishes the
processor by calling a kernel function
(RTD_Relinquish) that blocks the task (in
other words, the task gives up the
processor until RTDM is informed that a
particular event has occurred and makes
the task eligible to resume execution).
Another way for an active task to
relinquish the processor is to call kernel
function that makes a higher-priority task
eligible to run. When this happens, the
active task remains eligible to run. Finally,
an active task will be preempted when a
real-time event causes a higher-priority to
become eligible to run. Figure (21) shows
the algorithm of RTD_Relinquish()
function.

RTD_Reschedule()

{

 select the next ready-to-run tasks from the ready queue;

 if calling task is ready and is the highest priority then

 {

 make this task active;

 return;

 }

 make the selected task from queue active;

 perform context switch to that task;

}

Figure (20) The Scheduling Algorithm.

IJCCCE, VOL.5, NO, 2.2005 Design and Implementation of Real-Time
 Executive (RTDM) for Multitask System

67

 RTD_IntrHandler()

 {

 save general registers values in

appropriate area;

 if the required action indicate an I/O

device Dependent request then {

 locate the DD for the device;

 determine the address of the

service subroutine; }

 else

 determine the address of the

Figure (22) Interrupt Handling

When RTDM performs a context

switch between two tasks, it must first
save enough information about the active
task so that its execution can eventually
resume exactly where it left off, suspend
the active task, and transfer control to the
other task. To do this, RTDM first stores
copies of the task registers in the TSS
table of the active task’s TD. The register
contents will change when the next task
executes, so RTDM must save their
current values while the active task is still
executing. Next, RTDM loads the registers
from the second TSS table of the task’s
TD, which causes control to transfer to
that task.

4.9 Interrupt Handling

The RTDM kernel handles I/O
devices interrupt according to their data
transfer mode (fast or slow). It provides
two possibilities for managing external

events. The first strategy uses
conventional interrupt services routines.
Here the activities initiated by the
interrupts are executed with disabled
interrupts. Therefore, this method is only
appropriate for short and high priority
interrupt. Another strategy serviced
interrupt in concurrency with other tasks
(i.e. consider interrupt service routine as a
new task). This strategy is suitable for
long task with low interrupt rate and
priority. Figure (22) shows the algorithm
that explains the main steps which are
required to perform interrupt handling.

4.10 Time Interrupt Handler

Servicing interrupts from RTC and
processing the expired logical timers. The
time interrupt handler is shown in figure
(23).

 RTD_Relinquish()

 {

 disable interrupts;

 change the active task status to ready;

 add this task to ready queue;

 RTD_Reschedule();

 enable interrupts;

 }

Figure (21) Relinquishing the Processor
Algorithm.

IJCCCE, VOL.5, NO, 2.2005 Design and Implementation of Real-Time
 Executive (RTDM) for Multitask System

68

 RTD_TimerISR()

 {

 disable interrupts;

 if timeout then {

 remove a task from the sleep queue;

 wakeup = pointer to this task;

 while wakeup != Null

 {

 if state = Sem-Timed-Blocked {

 remove the task from the Sem queue; }

 make task ready;

 add this wakeup task to ready-to-run list

 if wakeup-> priority > active-priority then

 contextswitchneeded = true;

 remove a task from the sleep queue

 wakeup = pointer to this task;

 }

 if (contextswitchneeded) then

 {

 change the state of active task to ready state;

 add the active task to the list of ready-to-run

task;

 RTD_Reschedule();

 }

 RTD_Restoreflag;

 }

Figure (23) Time interrupt handler algorithm.

IJCCCE, VOL.5, NO, 2.2005 Design and Implementation of Real-Time
 Executive (RTDM) for Multitask System

69

5. RTDM Test and Evaluation
 Three tasks were taken into account

with the following parameters in table (4).

The function of task1 is to display the

message “Task1 is now active” ten times.

Task2 displays the message “Task2 is now

active” five times. Task3 displays the

message “task3 is now active”. It is

obvious from table (4) that task2 has the

highest priority, task3 has the medium

priority, and task1 has the lowest priority.

The source code for this example is

illustrated in figure (24). The three tasks

(programs) are linked with the kernel

RTDM and then the whole project (real-

time system) starts executing under

Windows Millennium. Practically it is

proved that all these three tasks meet their

stated deadline.

Task
number

Task
name

Release time
in

microsecond

Cost
In

microsecond

Relative
deadline in

microsecond

Priority

1 Task1 1 10 25 3

2 Task2 4 5 20 1

3 Task3 2 1 16 2

task task1
release 1
cost 10
relative deadline 25
body
 for (i=0, i<10, i+1)
 DH(cout<<”task1 is now active”);
endbody
task task2
release 4
cost 5
relative deadline 20
body
 for (i=0, i<5, i+1)
 DH(cout<<”task2 is now active”);
endbody
task task3
release 2
cost 1
relative deadline 16
body
 DH(cout<<”task3 is now active”);
endbody

Figure (24) : The source code of displaying

messages application

Table (4) Parameter for displaying messages application.

IJCCCE, VOL.5, NO, 2.2005 Design and Implementation of Real-Time
 Executive (RTDM) for Multitask System

70

6. Conclusions
The area of real-time computations

has a strong practical grounding in
domains like operating systems, databases,
and the control of physical tasks. Besides,
these practical applications however
research in this area is primarily focused
on formal methods (specifically, on
reasoning about the correctness of
programs) and on communication issues in
real-time systems. By contrast, little work
has been done in the direction of the
design and analysis of algorithms for real-
time computations.

A real-time multitasking executive
RTDM for uniprocessor system has been
designed. RTDM kernel is designed to be
small in size, fast in speed, modular in
structure, reliable in use and adaptable to
new requirements. RTDM offers many
features :

- System Initialization
- Task management
- Time Management
- Task dispatching and

 scheduling using ERRDF algorithm.
- Semaphores as a tool for

 task-to-task signaling, synchronization
 and mutual exclusion.

 - Message passing for task
 communications.

In this work, a look is being given to

the problem of real-time software design.
A two design styles (time-driven and
event-driven) have been presented and
showed how the two issues are addressed
in them.

It is concluded that it is not a
convenient way for multitask kernels
designed for real-time applications to use
time slicing. Time slicing means the
kernel schedules tasks in a round-robin

fashion, allowing each task to run for a
fixed amount of time. Instead for these
kernels, a suggestion is to rely on real-time
events to make tasks ready to run and
preemption of lower-priority tasks to
ensure that tasks that need processor time
urgently get it.

References
[1] Alur, R., Courcoubetis, C., & Dill,
 D.L, 1990, “ Model-Checking for
 Real-Time Systems”. Proc. Symp. on
 Logic in Comp. Sc., Pages 414–425.
[2] Chak raborty S., Erlebach T., Kunzli

S., Thiese L., 2002, "Schedulability of
Event-Driven Code Blocks in Real-
time Embedded Systems", Computer
engineering and networks laboratory
Swiss Feederal Institute of Technology
(ETH) Zurich.

[3] Fowler S., Wellings A.J., 1996,
“Formal Analysis of a Real-Time
Kernel Specification”, Fourth
Symposium on Formal Techniques in
Real-Time and Fault Tolerant
Systems, Sweden.

[4] Gerber R. and Kang D. , 1995, “End-
to-End Design of Real-Time
Systems”, John Wiley & Sons Ltd.

 [5] Jin M., Baker J. W., Meilander W. C.,
2002, "The power of SIMDs Vs
MIMDs in Real-time Scheduling",
http:// www.cs.kent.edu/~ parallel
/papers/ jinot.pdf .

 [6] Krishna, C. M. and Shin K. G., 1997,
“Real Time System”, McGraw-Hill
Companies, Inc.

[7] Peter A. Nee, 1997, “Experimental
Evaluation of Two-Dimensional
Media Scaling Techniques for Internet
Videoconferencing”, Ph.D Thesis,
University of North Carolina at Chapel
Hill.

http://www.cs.kent.edu/~

IJCCCE, VOL.5, NO, 2.2005 Design and Implementation of Real-Time
 Executive (RTDM) for Multitask System

71

[8] Regehr J., Reid A., Webb K., Parker
M., Lepreau J., 2003, "Evolving real-
time systems using hierarchical
Scheduling and Concurrency
Analysis", In Proceeding of the 24th
IEEE Real-time Symposiam, pp. 25-
36.

[9] Saksena M., 1998, “Real-Time Design
: A Temporal Perspective”, proc. of
IEEE Canadian conference on
electrical and computer engineering,
waterloo, may 1998.

 [10] Saksena M. and Selic B., 1999,
 “Real-Time Software Design – State
 of the Art and Future Challenges”,
 IEEE Canadian Review, PP. 5-8.

[11] Saksena M. and Wang Y., 2000,
“Scalable Multi-Tasking using
Preemption Thresholds”, IEEE Real-
Time Technology and Applications
Symposium, work-in-progress
session.

[12] Sanfridson M., 2004, "Quality of
control and real-time Scheduling-
allowing for time-variations in
computer control systems", PhD
thesis, Department of Machine
Design, Royal Institute of
Technology, Stockholm, Sweeden.
KTH Machine Design.

