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Abstract

A multi-layer, multi-input/ multi-output feed-forward back propagation neural
network will be used to identify the model of proportional directional control valve with
the addition of its nonlinearities. An electro-hydraulic training test bench is used to
 vollect data for training the neural network. Using MATLAB, SIMUILNK the electro-
hydraulic controlled system is tested, by applying a variable reference stroke position. A
PI controller is tuned to get a stroke response with minimum overshoot and minimum
steady state error. Modeling results were very satisfied and were very close to the
experimental one with an error less than 107" This work can be generalized by
| applying the same idea to any nonlinear valve.
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Nomenclature

A, : Acztive area of piston annulus,
m

B : Bulk modulus, N/m*

dVas : Rate of change of volume of
chamber A, B, m’/s

F., : Coulomb friction coefficient, N

Foo : Viscous friction coefficient,
N/m/s

Ky, : Load stiffness, N/m

Kp . Proportional gain of PI
controller

K; . Integral gain of PI controller

Kians : Displacement transducer

) constant, V/m

M,  :Mass of actuator piston and
load, Kg

P; : Supply pressure from hydraulic
pump, Pa

Pa.s : O1l pressure in actuator port A,
B, Pa

PL : Load pressure, Pa

Py : Tank pressure, Pa

Qa.s : Oil flow at valve control port A,
B, m’/s

QL : Total oil flow though the load,
m'/s

Qpump : Maximum oil flow capacity of
pump, m*/s

X . Total stroke of piston, m

\2 : Volume of trapped oil between
pump and valve, m®

U : Output controlled voltage to
valve, V

U, : Command Reference, V

Uy : Qutput of displacement
transducer, V

Umax : Maximum controller output

voltage, V

1-Introduction

Hydraulic systems are widely employed
in many industrial applications due to their
ability to
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Economically convert mechanical energy
into fluid energy. It can be regulated to
provide speed, force, and direction of
control with the help of some simple
components. It is used in industry like
construction, aircraft, mining, ...etc.

However, hydraulic systems
provide high force requirements with
considerably greater power/weight ratio
than other power transmission systems. No
other type of power transmission system
provides the range of control over speed,
force and direction that could be obtained
through fluid power. Although, hydraulic
systems include various nonlinearities in
static and dynamic characteristics of their
components. Consequently, a variety of
nonlinear phenomena occur in the system.

In the context of hydraulic servo
systems, flow control valves fall broadly
into two main categories: proportional
valves and servo valves. Proportional
valves use direct actuation of the spool
from an electrical solenoid or torque
motor. Whereas servo-valves use at least
one intermediate hydraulic amplifier stage
between the electrical torque motor and
the spool.

When modeling complex servo-
valves, it is sometimes possible to ignore
any inherent nonlinearities and employ a
small perturbation analysis to derive a
linear model which approximate the
physical system. Such models are often
based on classical first or second order
differential equations. So, in order not to
lose accuracy, it is necessary to model the
servo-valve dynamics as a nonlinear
model [8].

Many researchers deal with the
modeling and control of hydraulic
systems. Papadopoulos [6] focused on
modeling and parameter estimation of
electro-hydraulic actuation system of an
articulated forestry machine. Barton et al,
[1] presented a simple method to estimate
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the parameters of a proportional valve
such as spring constant, while Vaughan
and Gamble [10] presented linear models
o various configurations of control valves
and  hydraulic  linear models of
proportional valves. Furthermore, the
fundamental smooth nonlinearity which
arises from geometric imperfections of the
valve and spool in hydraulic valve model
was described by Margolis and Hennings
[3]. Moreover, Norgaard [4] discussed the
linear modeling of hydraulic actuator that
is used for controlling the position of a
carne arm. Also, Schwartz [9] proposed a
nonlinear model which includes the
physical phenomena that exerts a
significant influence on the performance
of this hydraulic component, such as
friction. Joshi [2] investigated the effects
of servo valve nonlinearity, actuation
compliance  and  friction  related
nonlinearity on the dynamics of a flight
control surface, during its displacement
through an electro-hydraulic actuation
system.

[t can be concluded that most of
the researchers and designers of
hydraulic systems had chosen one
particular type of modeling and control,
depending on their machine type,
applications and cost of the system. They
supposed the hydraulic valve as a linear
model type.

This paper studies the dynamic
behavior of electro-hydraulic system. It
also discusses the approach of using a
neural network to model a nonlinear
Proportional Directional Control Valve
(PDCV). This nonlinear model can be
used as a valuable tool in the analysis
and  control of electro-hydraulic
actuation systems. Neural networks
Toolbox of MATLARB package will be
used to train the neural network.
SIMULINK will be used to simulate the
electro-hydraulic control system. This
approach will be extended to be used to
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tune the controller of nonlinear electro-
hydraulic valve. It includes
manufacturing systems, materials test
machines, active suspension systems,
mining machinery, paper machines,
injection molding machines, steel and
alumimum mill equipment and flight
simulation.  Also, electro-hydraulic
systems are common in aircrafts, where
their high power-to-weight ratio and
precise control make them an ideal
choice for actuation of flight.

2- Modeling Of Electro-Hydraulic
System

A typical position controlled
electro-hydraulic system consists of a
power supply, electronic controller,
proportional directional control valve,
linear  actuator and  displacement
transducer, as shown in Fig. (1) [5]. The
controller compares the signal from the
feedback displacement transducer with a
reference input to determine the position
error, and produces a command signal to
drive the control valve. The control
valve adjusts the flow of pressurized oil
to move the actuator until the desired
position is attained. A SIMULINK
model of the position controlled electro-
hydraulic is shown in Fig. (2), The
model consists of sub-models that
represent the elements of position
controlled electro-hydraulic system , as
follows:

2-1 Hydraulic Power Supply

All hydraulic systems require a
supply of pressurized fluid, usually a
form of mineral oil. The behavior of the
hydraulic power supply may be modeled
by applying the flow continuity equation
to the volume of trapped oil between the
pump and control valve. In this case, the
input flow is held constant by the steady
speed of the pump motor, and the
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volume does not change. The equation of
the model is [8]:

PS = _gJQpLunp KX Ql)dt (l}

This equation takes into account the load
flow (Qu) drawn from the supply by the
control valve, and accurately models the
case of a high actuator slew rate
resulting in a load flow which exceeds
the flow capacity of pump. The action of
the pressure relief valve may be modeled
using a limited integrator to clamp the
system pressure to the nominal value.
However, the SIMULINK model of the
hydraulic power supply is shown in Fig.

3).

2-2 Electronic Controller

The electronic
continuously — monitors  the  input
reference input position (U;) and
compares 1t against the actuator position
(Uy) measured by displacement
Jransducer to yield error signal (e= U,-
Uy )

controller

Most  conventional  electro-
hydraulic servo-systems use a PI or PID
controller. In this work, the aim is to
reach the reference position with
minimum steady state error. So, it will
be assumed that a PI controller is used as
an electronic controller. The equation of
the controller in s-plane is [5]:

K
U.(s) =K, .E(s) +— (2)
S
where Kp and K are the proportional and
integral constants of PI controller

respectively. However, the SIMULINK
of PI controller is shown in Fig. (4).

2-3 Linear Actuator

A hydraulic actuator is a device
which converts the hydraulic energy into
mechanical force or motion. Linear
actuators are those with linear movement
(sometimes called rams, cylinders or
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jacks). They may be divided into those
in which hydraulic pressure is applied to
onc side of the piston only (single
acting), and those in which pressure is
applied to both sides of the piston
(double acting), and therefore capable of
controlling movement in both directions.
Moreover, linear actuators may be
classified as a single-ended or double-
ended type. The model of the linear
actuator is divided into two sub-systems:

2-3-1 Cylinder Chamber Pressure
The relationship between valve
control flow and actuator chamber is
important because the compressibility of
the oil creates a spring effect in the
cylinder chambers which interacts with
the piston mass to give a low frequency
resonance. The effect can be modeled
using the flow continuity equation which
relates the net flow into a container to
the internal fluid volume and pressure

[9]:

dv. VvV dpP _
.- =t —— 3

2.0, =20 @ B (3)

Equation (3) can be re-arranged to find

the instantaneous pressure in chamber A

as follows [8][9]:

p dVi
P, =— —-—=)dt -
A Vr _[QA dt ) ( )
This equation can also represent

chamber B. The SIMULINK of chamber
A or B is shown in Fig. (5).

2-3-2 Piston Dynamics

The net force acting on the piston
(Fp) can be computed by multiplying the
area of the piston annulus (Ap) by the

differential pressure between two
chambers A and B [8]:
F, = (P, =Py).A; )

By applying Newton's second law, an
equation of forces for piston motion can
be established. It will be assumed that
the piston delivers a force to a linear
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spring load with stiffness (K;), which
will allow us to investigate the load

capacity of the actuator. The effect of

friction between the piston and oil seals
at thc annulus and end caps is also
included. The total friction force
depends on piston velocity, driving force
(Fp), oil temperature and possibly piston
position. One method of modeling
friction is as a function of velocity, in
which the total frictional force is divided
into static friction, Coulomb friction and
viscous friction. Assuming that the
viscous and Coulomb friction
components dominate, equation of force
will be [8][9]:
2
P V[PB‘ * Fm-gﬁ\' F
ar (6)
Feo .Slgn(:j—() + K, x

where viscous and Coulomb friction
cocfficients are denoted by Fyp and Feo
respectively. It will be assumed in this
model that the leakage effects are

neglected. The SIMULINIK model of

piston dynamics is shown in Fig. (6).

2-4 Displacement Ransducer

Position transducers are usually
used with the actuator. The transducer is
often attached directly to the piston rode.
Various types of feedback transducer are
in use, including increment or absolute
encoders, LVDT, and RVDT. In
industrial applications employing linear
displacement control, the LVDT is a
common use of feedback transducer due
to its accuracy and robustness [8]. The
conversion factor of the transducer is
assumed to be a constant (Kins).

2-5 Modelingof Roportional Control
Valve '

A major
wroportional valves is that they are
unaffected by changes in supply pressure
and oil viscosity. However, the relatively

advantage  of
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large armature mass and large time
constant associated with the coil means
that these valves generally have poor
dynamic performance compared with
servo-valves  of  equivalent  flow
characteristics. In recent years, "servo-
proportional” valves have begun to
appear with shorter spool displacements
and lighter spools. giving dynamic
performance which approaches that of
true servo-valves but much lower cost.

In  many advanced control
schemes, it is necessary to have a
mathematical model of the valve in order

to define an appropriate control
algorithm. Central on the modeling
process is the measurement or

assignment of the valve parameters or
coefficient values. The manufacturer can
often specify some of the parameter
values such as spring constants, spool
mass, spool areas, ...etc. However,
friction, flow reaction force. and spool
metering area values,...etc, are very
difficult to define or measure and must
be approximated in some fashion [1].

Neural networks are
computational models of the brain.
There are many types of neural networks
representing the brain's structure and
operation with varying degrees of
sophistication. Neural networks consist
of a number of inter connected
processing units, (PEs), or neuron. How
the inter-connections are arranged and
the nature of the connections determine
the structure of a network. How
strengths of the connections are adjusted
or trained to achieve a desired overall
behavior of the network is governed by
its learning algorithm.

One type of neural networks is
the feed-forward neural network. In this
type, the neurons are generally grouped
Into layers. Signals flow from input layer
through to the output layer via
unidirectional connections, the neurons
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being connected from one layer to the
next, but not within the same layer.
However, the task of system
identification is essentially to find
suitable mappings which can
approximate the mappings implied in a
dynamic system. So, feed-forward neural
networks can identify linear or nonlinear
system models They are effective for
identification of dynamic systems that
are difficult for conventional theories to
deal with. A number of highly nonlinear

systems  have  been successfully
identified by neural networks with
sigmoidal nonlinear PEs [7]. When

linear system is to be identified, only
linear PEs are used in the neural network
identifier, while nonlinear PEs are
adopted for the hidden layer of the
neural network when the system to be
identified is nonlinear.

In this paper, in order to identify
the model of proportional directional
control valve with the addition of its
nonlinearities, a multi-layer, multi-input/
multi-output feed-forward back
propagation neural network will be used.
In order to model the nonlinearities of
the valve, the PEs used in the hidden
layer are taken to be hyperbolic tangent
sigmoid, type, while the PEs of the
output layer are of lincar type. The
inputs to the network are the supply
pressure (Pg), control voltage (Uc), and
pressures of chamber A and B (P4 and
Ps), while the outputs of the neural
network are the Oil flow at valve control
ports A and B (Q4 and Qg). In order to
train the neural network. the Levenberg-
Marquardt back propagation algorithm
will be used. A general block diagram of
the back propagation feed-forward
neural network that represents  the
proportional directional control valve is
shown in Fig. (7).

3-EmerimentalandSimulaﬁon Results
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In order to implement the
algorithm of modeling a proportional
directional control valve using neural
network, an electro-hydraulic training
test bench of model type Hydroprax 2
prop is used. The valve used in this
clectro-hydraulic system is a PDCV of
model type 4WREG081X/24Z4M. This
valve is controlled by an amplifier card
of model type VT5003. The actuator
used is of double acting, single-ended,
linear type of model 70F40/25-
300Z11/01HCDMI1I1T. The photograph
of the test bench is show in Fig. (8),
while the schematic diagram of the
system is shown in Fig. (9). Moreover,
the details of the values of the
parameters of the electro-hydraulic test
bench are listed in Table ( 1k

To collect data that are needed to
model the valve in the test bench, a
constant Ps of 30%¥10° pa was supplied by
a hydraulic pump. The contro] voltage
produced by the electronic amplifier
(Uc) was changed within a range of (6
V) and the values of (P4 , Py Qa ) and
(Qs) where measured experimentally,
Many tests where made with and without
the addition of the weight (load). Every
test was made many times and the data

were  averaged to get dependent
measuring  values.  However, the
characteristics of the valve which

represent the relationship between the
control voltage (Uc) Vs. the oil flow in
valve (Q) is shown in Fig. (10). By using
curve fitting done by MATLAB toolbox,
the characteristics equation of the valve
shown in figure is fitted to a 4™ order
nonlinear equation:

Qu.c ==3.9655*10*U; -
7-8825%10°UZ +1.1987*107° U2
+3.3127*107° U, +4.5143%10°

(7N
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A MATLAB file was written that
contains the measured data. A feed-
forward neural network with one hidden
layer was generated with the help of
neural networks MATLAB toolbox. The
activation functions of the hidden layer
were taken to be hyperbolic tangent
Sigmoid, (tansig), type, while the
activation functions of the output layer
were taken to be a linear type, (purelin).
Using trial and error, with the help of
Levenberg-Marquardt back propagation
algorithm, (trianlm), it was found that by
selecting five nodes in the hidden layer
with a learning rate of 0.05 and after 300
epochs, the neural network was trained
with a training error of less than (10°'°).
The trained neural network was
simulated by applying an input data for
the tests and draw the relationship
between controlled voltage and oil flow
in valve. The next step was by
generating a SIMULINK sub-block that
represents the neural network. This
block was replaced by the proportional
valve block shown in Fig. (2).

Using the same data of the
clements of eclectro-hydraulic system
mentioned in table (1). SIMUILNK of
the electro-hydraulic controlled system
was lested, by applying a variable
reference stroke position of (0-0.1)m.
Using trial and error, the PI controller
was tuned to get a minimum overshoot
with minimum steady state error. The
best values were obtained to be Kp=450
and Ky=0.011. The responses of the
stroke position and reference position are
shown in Fig. (11). It can be shown from
the figure that the steady state error is
less than 0.3%. The PI controller tries to
compensate the change in reference
input by changing the controlled voltage
as shown in Fig. (12). However, the
change in controlled voltage will change
the oil flow rate though the valve, and as
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a result the pressure in chambers A and
B are changed as shown in Fig. (13).

4-Conclusions and Future Work

In this work the modeling of
electro-hydraulic ~ controlled  systems
were discussed. These systems were
globally used in many industrial
applications. In many advanced control
schemes, it is necessary to have a
mathematical model of the valve in order
to define an appropriate control
algorithm. However, there are many
parameter values related to the valve that
are very difficult to define or measure
and must be approximated in some
fashion.

In order to identify the model of
proportional directional control valve
with the addition of its nonlinearities. a
multi-layer, multi-input/  multi-output
feed-forward back propagation neural
network was used. An electro-hydraulic
training test bench was used to collect
model data for training the neural
network.  Using neural network
MATLAB toolbox, a feed-forward
neural network with one hidden layer
was generated. The SIMULNIK of the
electro-hydraulic controlled system was
tested, by applying a variable reference
stroke position of (0-0.1)m.

The results of obtaining the
neural network model were very
satisfied and were very close to the
experimental one since the error of
training the neural network was less than
10" A SIMULINK Sub-block of the
neural  network  was  generated.
Furthermore, the SIMULINK of the
electro-hydraulic controlled system with
the addition of PI controller was built.
The PI controller was tuned to get
minimum overshoot and minimum
steady state error (less than 0.3 %).

This work can be generalized by
applying the same idea to any nonlinear
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valve. The person can do simple tests
and collect the data that represents the
valve. After that, the data are used to
train the feed forward neural network.
The trained neural network can be used
as a nonlinear mode! of the valve.

In this model, the leakage effects
were neglected. As a future work. to get
a more accurate hydraulic model, the
leakage effects must be added. Also,
since these models are nonlinear, it is
Preferred to use an intelligent controller
instead of a classical Pl controller, such
as fuzzy logic controller.
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