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Abstract

The integration of Global positioning system (GPS) and Inertial Navigation System (INS)
are continuously gaining interests in many positioning and navigation applications. Both systems
have their unique features and shortcomings. Their integration offers systems that overcome each of
their drawbacks and maximize each of their benefits.

An INS/GPS integration method based on Artificial Neural Networks (ANNs) to fuse INS
measurements and GPS measurements has been suggested. It is also provide high performance
INS/GPS integration with accurate prediction for position and velocity components during GPS
signal absence. Thus the integration of the two systems presents a number of advantages and
overcomes each systems inadequacy.

An ANN was adopted in this paper using position and velocity update architectures and
utilizing the window based weight updating strategy to updates the navigation knowledge in the
proposed INS/GPS integration system and improve the limitation of traditional weight updating
strategy using two data test IMU systems.
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Abbreviations

ANNs Artificial Neural Networks List of symbols

GPS Global Position System GPS (i) ith GPS window
INS Inertial Navigation System 00 activation function
IMU Inertial Measurement Unit W (1) synaptic weights
PUA Position Updates Architecture b bias

VUA Velocity Updates Architecture
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1. Introduction
It is well
Positioning System (GPS) can

established that Global
provide

position and velocity information of moving

platforms with consistent accuracy throughout
the surveying mission [1].

However, as GPS-based navigation
requires at least four satellites, a major
drawback of GPS-dependence navigation
systems is that their accuracy degrades
significantly with poor satellite geometry,
cycle slips, and satellite outages. Signal
outage is more significant for land vehicle
positioning in urban centers, which takes
place when encountering highway overpasses
or tunnels. On the other hand, an Inertial
Navigation System (INS) measures the linear
acceleration and angular rates of moving
vehicles through its accelerometers and
gyroscopes sensors, respectively. For short
time intervals, the integration of acceleration
and angular rate results in highly accurate
velocity, position and attitude with almost no
time lags. However, because INS position
outputs are obtained by integration, they drift
at low frequencies. To obtain very accurate
outputs at all frequencies, the INS should be

updated  periodically  using  external
measurements. For this purpose, INS
measurements are integrated with GPS

measurements to provide a navigation system
that has superior performance in comparison
with either a GPS or an INS stand-alone
system.

This paper looks at way in high
quality integration where low cost inertial
sensors are used to obtain improved
performance. Also, it is different from [2]
which  depend on strapdown inertial
navigation system (SINS) as a stand alone
navigation system. Where, the errors of a
stand-alone INS grow with time because of
residual bias errors in both accelerometers
and gyroscopes and need to be modeled as
done in this paper where the GPS is used to
update the navigation solution provided by
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the INS using the weight updated
strategy while the error growing through the
time in

position and velocity which provided
by the INS.

Artificial Neural Networks (ANNs)
have shown to be very efficient in modeling
complex dynamics in several engineering
problems. Due to the nonlinear nature of
ANNSs, they are able to express much more
complex phenomena than some linear
modeling techniques. In fact, ANN is a
powerful tool for solving nonlinear problems
that map input data to output data without
having any prior knowledge about the
mathematical process involved. Multi-layer
perceptron ANNs have been suggested for
fusing data from an INS and the GPS and
obtaining reliable navigation solutions. Two
ANN-based INS/GPS integration
architectures were investigated. These are the
Position Update Architecture (PUA) and the
Velocity Update Architecture (VUA). Both
architectures are briefly discussed later in this
paper.

2. Objectives

The objectives of this paper are to
develop an intelligent navigator to fuse an
INS data and GPS measurements utilizing the
Artificial Neural Network (ANN) to update
the synaptic weights as well as the GPS signal
is available, also to evaluate the performance
of the proposed ANN architecture using test
data of two different INS systems (tactical
and navigation grades IMU systems) by
comparing the two grades IMU systems.

3. INS/GPS integration based on Artificial
Neural Network

Artificial Neural Network (ANN) is
made up of many computational processing
elements called neurons or nodes. These
nodes operate in parallel and are connected
together in topologies that are loosely
modeled after biological neural systems. The
training of ANN is carried out to associate
correct output responses to particular input
pattern. Once trained properly, an ANN has
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the ability to generalize when similar, but not
identical patterns are introduced to the
network [3, 4].

3.1 Artificial Neural Network

In this paper, a Multi-Layer
Perceptron (MLP) network with the
architecture shown in figure (1) is considered.
The input layer of the network has two input
neurons for the INS position or velocity
components and the time, while the output
layer has only one output neuron for the
corresponding position in PUA or velocity in
VUA. We have also considered only two
hidden layers of six neurons as an optimum
compromise between network complexity and
performance. More complex  network
structures with more hidden layers and more
neurons in each layer can be adopted.
However, we have determined that the
network architecture shown in figure (1) is
appropriate enough for modeling the position
and velocity components and achieving the
desired accuracy.

The weights J# and the biases b are the
ANN parameters that are computed during the
training procedure and they determine the
input/output functionality of the network. The
weights are multiplied by the inputs to each
neuron while the biases are considered at each
neuron to limit or lower the input to the
activation function ¢ (-) [4]. A hyperbolic
tangent function (tansigmoid) is employed
inside the hidden neurons to model the non-
linearity in the input/output relationship.

A linear activation function is
considered at the neuron of the output layer to
perform as a linear superposition of the
outputs of the hidden neurons, table (1) and
(2) contain more details of the network
architecture and training parameters. It should
be highlighted that individual ANN module of
the form shown in figure (1) is designed for
each position and velocity components. These
types of networks are known as feedforward
backpropagation neural network. The forward
pass of the computation involves feeding the
inputs to the network starting from the input
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layer [4]. The output is obtained and
compared to the target (desired performance)
to determine the estimation error. This error is
propagated through the network in the

backward direction (opposite to the flow of
the input data) starting from the output layer
and is utilized to update the computation of
the network parameters. The forward and
backward computations are repeated until the
optimal values of the synaptic weights are
achieved, which corresponding to certain
objective mean square estimation errors. The
network weights are updated according to
certain learning rules to minimize the mean
square value of the estimation error. In this
paper, we have utilized the Levenberg-
Marquadrt learning rule, which provides the
fastest training algorithm among other
learning rules.

4. Window Based Weights Updating

Strategy

As the synaptic weights are the core
components of the navigation knowledge,
development a strategy to accumulate the
acquired navigation knowledge by updating
the synaptic weights whenever the GPS signal
is available (no GPS outages) is most
important.

In most of their applications, ANNs are
trained using some known training data set
(input/desired output) to obtain the optimal
values of the synaptic weights via off-line
training. For any other set of inputs, different
from those used in training, the synaptic
weights can then be applied to provide
prediction of unknown network outputs. It is
worth mentioning that ANNs weights are
frozen after completing the training procedure
and no further modification will be made
during the prediction process [4].

In fact, off-line training mode can work
well required to track direction changes and
mimic the motion dynamics utilizing the
latest available INS and GPS data. In other
words, the synaptic weights should be
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updated during the navigation process to
adapt the network to the latest INS sensor
errors and the latest dynamics condition
whenever the GPS signal is available.

To implement such criterion, a window-based
weights updating strategy, which utilizes the
synaptic ~ weights obtained during the
conventional off-line training procedure (or
probably from previous navigation missions)
is stored in the database. This criterion
utilizes the latest available navigation
information provided by the GPS signal
window to adapt the stored synaptic weights
so that they can be applied to mimic the latest
motion  dynamic. The window-updated
synaptic weights are stored after each training
stage. They are then used as initial values for
the weights to be estimated during the next
training window or for prediction during GPS
signal absence (outage). Prior to looking into
the details of the window based weights
updating  strategy, several aspects of
traditional weights updating strategies are
given. Traditional methods can be classified
as:

(1) sample-by-sample training, also known
as online or sequential training, that modifies
the synaptic weights for each input record
after computing the weights updates;

(2) Batch training, which computes the
synaptic weight updates for each sample and
stores these values (without changing the
weights). At the end of the whole training
procedure, all the synaptic weight updates are
added together and then the weights are
modified with the accumulated synaptic
weight updates [3]. One major difference
between the sequential training approach and
the batching training approach is that the
sequential approach keeps the system weights
constant while computing the error associated
with each input sample. In contrast, the
sequential training approach is constantly
updating its weights. From an online
operational point of view, the sequential mode
of training is preferred over the batch mode
since less local storage is required. In
addition, the random presentation of available
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training patterns makes it less likely for the
backpropagation algorithm to be trapped in a
local minimum if the sequential mode of
training is utilized. In contrast, using the batch
mode of training provides a more accurate
estimate of the gradient vector, thus giving
more accurate estimation of the weights [3].

Another major advantage of the
sequential training over the batch training
arises if there is a high degree of redundancy
in the data [5]. For example, suppose that a
vehicle moving along a circular trajectory
with a constant velocity under an ideal
condition for ten runs. The whole training
data set is ten times larger than a single run
but contains a high level of redundancy. As a
result, the batch training approach takes ten
times longer than the sequential training
approach to get the optimal values of network
weights. On the other hand, the sequential
training approach updates the weights after
receiving each record of input samples.
Therefore, it will not be affected by such
highly redundant data. However, using the
batch training approach, the network can learn
more general relationships than using the
sequential training approach as it usually
utilizes most of the available training data at
the same time instead of sample by sample.
Both generalization and training efficiency
are very critical for INS/GPS integration
applications; therefore, it is very important to
develop a weight updating method that can
preserve the generalization ability without
losing too much training efficiency. However
in this paper a sequential training updates
algorithm is used.

4.1. Development of Window Based
Weight Updating Strategy

The window_based weight updating
strategy considers the previously stored
weights as the ‘long term memory’. Although
the stored weights might not be able to
provide accurate prediction during a long
GPS outage, they can be applied as the initial
weights at the beginning of a new navigation
mission. The GPS window signal concept is
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then applied to introduce the new information,
‘fresh memory’, and modify the stored
weights during navigation. In fact, this
method combines the advantages of the
sequential mode and the batch mode of
training in order to make the training
procedure suitable to real-time navigation
applications. The proposed method attempts
to enlarge the sample applied by the
sequential training approach to fit a certain
window length. In addition, the weights of
each window are then updated using the batch
training approach. In other words, the weights
of each window are updated sequentially. As
depicted in figure (2), the window_based
weight updating strategy can be explained as
follows:
(1) Weight initialization. The initial weights
can be obtained using previously stored
weights or a random initialization procedure.
In this paper, the initial weights were obtained
using random initialization at the first time
when the ANN based INS/GPS architectures
were set up. Consequently, the weights are
stored after completing one navigation
mission and are applied as the initial weights
for the next mission. Accurate initial weights
may significantly reduce training time.
(2) GPS signal reception. Within the first
GPS window (i = 1), GPS(i), the weights are
not updated, thus the stored weights are still
the initial weights W(i — 1) (i.e., #(0)).
(3) GPS signal reception. At the next GPS
window, GPS(i + 1), the stored weights, (i
1), are updated utilizing the presently
available GPS information (GPS(i)). These
weights are stored as (i) after training is
completed. Steps 2 and 3 are repeated until a
GPS signal blockage is detected.
(4) GPS outage. As depicted in figure (3), in
the case of a GPS outage (after GPS(i)), (i —
1) is first applied for real time prediction and
then W/(i) is then utilized to replace W(i — 1)
and carry on real-time prediction during the
remaining GPS outages.

Since the ANN training procedure
takes time because of utilizing a
backpropagation algorithm, updating the
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weights immediately at the latest available
sample of GPS signal before outage is
difficult. However, the utilization of the
proposed strategy can still provide reasonable
prediction accuracy during GPS outages since
it provides the latest updated weights instead
of real-time updated weights for real-time
prediction. Therefore, failure in providing
real-time updated weights does not mean the
proposed strategy is not able to provide real
time prediction. In contrast, it can utilize the
latest updated and stored weights to provide
real-time solutions. Combining the latest GPS
window signals, the stored weights can be
adaptively updated to follow the latest
dynamics condition and INS errors, thus
improving prediction accuracy during GPS
outages.

5. PUA and VUA integration architectures

utilizing of window_based weight updating

strategy
Both the PUA and VUA utilize multi-

layer  feed-forward NNs with a
backpropagation  training  algoritim  to
integrate the data from an INS and GPS and
mimic the dynamical model of the moving
vehicle carrying both systems, After training
the network, it can then operate in the
prediction mode to provide the vehicle’s
position and velocity during GPS signal
blockage (outage) or INS error.

Figure (3) shows the configuration of
PUA and VUA. As long as the GPS signal is
available, the position and velocity of GPS
solutions are applied as the desired outputs for
training the network and are also considered
as the outputs to the PUA and VUN
respectively. On the other hand, during GPS
outages, the NN parameters are used in
prediction mode for providing estimates of
the position and velocity components utilizing
the information derived from INS algorithm
mechanization.

As long as the GPS signal is available,
the GPS position and velocity and the INS
outputs are used as the inputs to the PUA and
VUA.
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The training processes continue to
improve estimation error in order to obtain the
optimal values of NN parameters. During
GPS outages, the NN parameters are, then,
used in the prediction mode for providing
estimates for the position and velocity
components.

As indicated in figure (3), no filtering
algorithm is applied to process either the INS
or GPS data. Both the PUA and VUA receive
their inputs and the desired outputs (GPS
position and velocity components) directly
from the INS mechanization and GPS
solutions,  respectively. Not like the
integration as in [6] were wavelet denoising
algorithm was used to filter the GPS and INS
outputs.

To evaluate the performance of the
proposed window_based weight updating
strategy, the NN work in prediction mode for
this evaluation. In addition, a GPS window
was implemented and continually slid over
the GPS signal for window size duration,
which equivalent to a number of GPS
windows, as shown in figure (4). The stored
weight obtained from the first field test data
were updated for each GPS window (during
the availiality of GPS signal). In the case of a
GPS outage, the latest updated weights stored
in database were applied to provide real time
prediction, as shown in figure (4). Due to the
nonlinear nature of neural networks, the PUA
and VUA showed their capability of reducing
the impact of uncompensated measurement
errors. Table (3) lists the MSE in the
prediction mode for the position and velocity
in all directions. The results illustrated that
the utilization of the proposed method to
update the previously stored synaptic weights
improved the prediction accuracy (for the
GPS outage period).

Figure (5) shows the learning curves
of the position and velocity components.
From these figures it was found that the error
in position is easier to predict than the
velocity components.

Figure (6) shows a comparison
between position and velocity difference for
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the two IMU grades the tactical and
navigation grades. As shown in the figures
that the position and velocity errors were in
general didn’t contain any long-term growth.
In addition, the PUA and VUA for the
navigation IMU grade provided the most
stable and accurate solutions if compared to
the tactical IMU grade which is needed a
filtering process to denoising the GPS and
INS outputs.

The results also demonstrated that
using the PUA and VUA with a navigation
grade IMU provided acceptable positioning
and velocity accuracies. Than using it with a
tactical grade IMU. In other words, the PUA
and VUA are suitable for integrating GPS
measurements with a navigation grade IMU.
In general, the proposed ANN-based
architectures have provided positioning and
velocity accuracies far better than can be
expected from a tactical grade IMU.

6. Conclusions

The conclusions drawn from the
results presented in this paper are:

a. The parameters of the intelligent
navigator are included in the
navigation knowledge. Thus, they can
be updated without a human expert
during navigation whenever newly
updated navigation knowledge is
acquired.

A window_based weight updating
strategy was introduced to use with
ANN's for integrating GPS and INS
systems in  vehicular navigation
application.

The stored synaptic weights can be
adaptively updated to follow the latest
motion dynamics and INS error
characteristics.

The PUA and VUA architecture are
recommended as the INS/GPS
integration system using navigation
grade IMU. It can achieve high level
positioning accuracy requirement for
real time prediction without INS
computation components during GPS
outages.
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Figure (1): Architecture of a two hidden-layer MLP network for INS/GPS integration.
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Table (1): Network Architecture specifies.

Layers Number of Neurons Transfer Function
1 2 Hyperbolic Tangent
2 6 Hyperbolic Tangent
3 6 Hyperbolic Tangent
4 1 Linear
Table (2): Network Training Parameters.

Network Architecture Feed Forward

Performance Function Mean Square Error

Training Function Levenberg-Marquadrt Backpropagation

Epochs 500

Momentum Rate 0.001

Goal 0.0000000001

Measurement
Domain 3

Time Domain

CRTTEL]

=4

Solution
Domain |,

Figure (2): Window_Based Synaptic Weight Updating strategy.
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Figure (3): Configuration of the position and velocity update architecture.
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Figure (4): Window based-weight updating strategy.
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Table (3): Performance of the intelligent INS/GPS navigator.
e s
Work.: Direction ;

-0.0148 -0.0318 -0.0582

VUA STD 0.1548 0.6918 1.1009
(m/s) MSE | 3.6615*10~(-4) -0.0671 0.0153
PUA STD 0.4648 0.4388 0.2976
(m) MSE | 7.4082°107(-4) -0.0010 -0.0132
VUA STD 0.0500 0.0346 0.1350
(m/s) MSE -5.5059%107(-5) | -1.0502*107(-4) | 0.0122

[
g sl W

Figure (5): The learning curve of the networks in position and velocity for the tactical and navigation grades.
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Figure (5): Continued.
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Figure (6): Comparison between Position and Velocity error difference for the two IMU grades.
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