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Abstract 

 Direct torque control became the most popular technique for induction motor 
control through the last two decades, because of its simple structure, accurate and fast 
torque response, but it has some drawbacks such as torque and stator flux ripples. 
Therefore, an accurate and fast estimation of stator flux and torque values is required.    
In this paper a proposed model for two Multi-layer Feed-Forward Neural Network 
(MFFNN) to simulate and train the direct torque control data of three phase induction 
motor for estimation of electromagnetic torque, stator flux, and flux angle at two 
different sampling frequencies. The feed-forward neural networks proposed consist of 
three layers. The input layer consists of four neurons (stator voltages and currents) 
and the output layer consists of three neurons (electromagnetic torque, stator flux and 
flux angle). Quick back-propagation algorithm is used to train the proposed networks. 
Simulation model is performed using MATLAB. The results have been compared 
according to computation time and accuracy. 
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 الخلاصة
 الѧشائعة الاسѧتخدام للѧسيطرة علѧى المحرآѧات الحثيѧة فѧي العقѧدين            تأصبحت سيطرة العزم المباشر مѧن المѧسيطرا       

 للعѧѧزم ة وذلѧѧك بѧѧسبب بѧѧساطة ترآيبهѧѧا ودقѧѧة المنظومѧѧـات التѧѧي تعمѧѧل مѧѧن خلالهѧѧا وسѧѧرعة الاسѧѧتجاب         ،الأخيѧѧرين
 خصوصا في حالات ،توجد بعض المشاآلإلا أنه في نفس الوقت   . الأخرىتمقارنة مع المسيطـرا ،المطلوب

 م فѧي فѧيض الѧساآن والعѧز         تموجѧات   بدء التشغيل والانتقال مѧن حالѧة تѧشغيل إلѧى أخѧرى، ممѧا يѧؤدي إلѧى حѧصول                    
  .  المطلوبملذا فهي تحتاج إلى دقة في معرفة وتخمين قيمة الفيض  ومن ثم  تحديد العزالناتج، 

لتنفيѧذ مѧسيطر العѧزم     ، بعѧدد اثنѧين    متعѧددة الطبقѧات    ةاصѧطناعي عѧصبية    ات شѧبك  ومحاآѧاة تم في هذا البحث تصميم      
 حثي ثلاثي الطور لغرض التخمѧين والѧسيطرة علѧى قѧيم العѧزم الكهرومغناطيѧسي وفѧيض الѧساآن                     كالمباشر لمحر 

 الطبقѧة  تتكѧون  مѧن ثѧلاث طبقѧات،     عѧصبية  ة آѧل شѧبك  حيѧث تتكѧون  ،  وعنѧد تѧرددي تقطيѧع مختلفѧين     وزاوية الفيض 
 ثѧلاث  مѧن   الطبقѧة الثالثѧة     تتكѧون  فѧي حѧين   ) فولتيات وتيѧار الѧساآن      (  أربع خلايا عصبية تمثل الإدخال       منالأولى  

تم استخدام الخوارزمية ).   وزاوية الفيض ،العزم الكهرومغناطيسي وفيض الساآن( خلايا عصبية تمثل الإخراج   
 نمذجѧة  تѧم    بعѧد ان  وتѧم تѧدريبها واختبارهѧا        ، المقترحة  العصبية ات في تدريب الشبك    المطورة ذات الانتشار العكسي  

  ѧѧية الخاصѧات الرياضѧѧادلات والعلاقѧال     ةالمعѧѧات الإدخѧѧى معلومѧصول علѧѧرض الحѧسيطرات لغѧѧن المѧوع مѧѧذا النѧبه 
 مѧن    وقورنѧت النتѧائج المتحѧصلة      ، MATLAB والمحاآѧاة باسѧتخدام المختبѧر الرياضѧي          النمذجة تتم. والإخراج

  .حيث سرعة التنفيذ والدقة
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1. Introduction 
 

Since the first developments of the Direct 
Torque Control (DTC) concept which is proposed 
in 1986 [1, 2]. DTC became most popular 
controller for controlling induction motor and it 
has been used in many ac drive applications 
including paper machines, traction, and mill drives 
[1]. 

This popularity comes from its simple 
structure, fast torque response, robustness against 
machine parameters variations, and absence of co-
ordinate transforms. The simple structure is due to 
using hysteresis comparators for both torque and 
flux, and its fast response is due to using switching 
table. However, a direct torque controlled motor 
has some drawbacks, such as torque and flux 
ripple (especially in a low speed ranges). This is 
because the fast response and the small back emf 
of the motor, and the switching frequency used 
varies according to the desired motor speed, and 
another disadvantage of DTC lies in the 
requirements of torque and flux estimation [2, 3]. 

In this paper, the use of neural network with 
direct torque control of induction motor has been 
investigated. In the next section, a brief 
introduction about DTC of induction motor has 
been presented. 

Neutral network based multi-layer feed-
forward has explained in section 3. The simulation 
model and results is presented in section 4. 
 
2. Direct Torque control  

 
           Direct Torque Control (DTC) Technique 
aims at controlling the flux directly rather than 
controlling the current as it's done in vector 
control technique [2]. Therefore, the basic idea of 
the DTC concept, whose block diagram is shown 
in Figure 1, is to choose the best vector voltage, 
which makes the flux rotates and produces the 
desired torque [1, 4]. 
 
 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Basic DTC block diagram. 
  
           During this rotation, the amplitude of the 
flux rests in a predefined band. With a three phase 
voltage source inverter, there are six non zero 
voltage vectors and two zero vectors as shown in 
Figure 2, which can be applied to the machine 
terminals. The developed electromagnetic torque 
in induction motors is the product of the 
magnitude of stator and rotor flux linkages and the 
angle between them [1].  

 
DTC controls the electromagnetic torque 

and flux directly and independtly. This enables the 
machine to achieve an excellent dynamic. 
Performance as the rotor time constant is much 
larger in a large cage induction machine, the rotor 
flux linkage can be assumed to be invariant in 
magnitude as well as in position, if it is observed 
for a small time interval. The magnitude of the 
stator flux linkage can be changed, or it can be 
rotated in forward or backward direction, by 
applying appropriate voltage to the stator winding, 
so that the angle between the stator and rotor flux 
linkages can be increased or decreased, this 
modifies the electromagnetic torque and hence can 
be adjusted to meet the load requirements [1, 4, 5, 
6]. 
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The circular trajectory of the stator flux is 
divided into six symmetrical sectors referred to 
inverter voltage vectors. For each sector or 
section, a proper vector set is proposed. The 
certain vectors are applied to motor so that 
amplitude of the flux and torque remain constant.              

The three switches used in the inverter 
generate 23=8 possible switching states. Therefore, 
there are eight voltage vectors (Six none zero 
vectors in the 3600 space, and two zero vectors) 
which can be applied to the machine terminals as 
shown in Figure 2 (the zero vectors are not shown) 
[1, 4, 5, 6]. 
 

  

  
  

 
 

Fig.  2. Voltage source inverter vector. 
 

In the DTC drive system the feedback 
signals can be calculated by using the following 
equations [6, 7]. 
The d-q components of stator voltage can be 
calculated as: 

)
2

SS
(S

3
V

v CB
A

dc
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+
−=                              (1) 
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qs
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Where Vdc is D.C link voltage of voltage source 
inverter, and SA, SB, and SC are the states of 
switching. 
The d-q components of stator currents can be 
calculated as: 

ads
isi =                     (3) 

)is*2(is
3

1
i baqs

+=        (4) 

Where isa and isb are stator current values of any 
two lines of the three power lines to which the 
motor is linked. 
Therefore, the d-q of stator flux can be calculated 
as: 

∫ −= )dti*R(vΨ
dssdsds

                  (5) 

∫ −= )dti*R(vΨ
qssqsqs

                  (6) 

Where Rs is the stator resistance.  
 The flux linkage phase angle is given by:    

 )
ds

qs1-
s ψ

ψ
(tanθ =                                               (7)                   

and the developed electromagnetic torque is given 
by: 

)ψ*iψ*(i*P*
2
3

Τ
qsdsdsqse

−=                (8)                  

Where P is the number of poles of the motor. 
 
3. Neural Networks Algorithm 
 

Artificial Neural Networks (ANN's) have 
been studied for many years desiring to reach 
human like performance [8, 9]. 

In the case of artificial net, the neuron is a 
node or processing element, which processes 
weighted inputs and produces outputs which might 
be used as inputs to other nodes.  These ANN   
models are classified based on the network, the 
activation function applied and the method for 
training [9-11]. 
  Artificial neural networks can be described 
as a universal approximation. They approximate 
complicated functions using several layers of 
neurons, structured in a similar way to the human 
brain. ANN’s posses the properties of learning 
capability and generalization. The learning 
capability makes ANN’s very powerful in control 
applications. In order to deal with the highly non-
linear behavior of induction motor, neural 
networks have been developed [8, 10, 11]. 
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Back-propagation training algorithm is the 
trainable layered neural networks employing the 
input data. In the case of layered network training,  
the error can be propagated into hidden layers so 
that the output error information passes backward. 
Themechanism of the backward error transmission 
is used to modify the synaptic weights of internal 
and input layers. It was designed to minimize the 
Mean Square Error (MSE) between the actual 
output of a multi-layer FFNN and the desired 
output [9, 13]. 

 
An approximation and modification of 

Newton's method for updating the weight of 
networks is called Quick or Marquardt-Levenberg 
back-propagation algorithm. This method is 
adopted for input/output data training in this paper 
[13, 14]. 
 
 
4. Description of Simulation Model and Results 

Simulation model of Direct Torque 
Control (DTC) of induction motor is developed. 
The model based on the equations of DTC 
mentioned in the section 2 from (1) to (8), to 
generate the required data for input/output for 
training process in the proposed design of neural 
networks. The stator flux is estimated using 
Forward Euler Method corresponding to equations 
(5) and (6). The input data of the model represent 
the stator voltage and current transformations (vds, 
vqs, ids, iqs), while the output data represent 
electromagnetic torque (Te), stator flux (ψs) and 
flux angle (Өs). The model was used to generate 
data over the possible operating zones of the 
motor. The simulation model is performed at two 
different sampling frequencies of 1 kHz, and 10 
kHz respectively, with wide range of operating 
points of the motor to show the effect of sampling 
frequency on electromagnetic torque, stator flux 
and flux angle values. Therefore, two neural 
networks must be designed in this paper for both 
cases.  Figures 3, 4, and 5 show the 
electromagnetic torque, stator flux, and flux angle 
responses respectively at sampling frequency of 1 
kHz. 
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Fig.  3.  Electromagnetic torque response at 1 kHz. 
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Fig.  4.  Stator flux response at 1 kHz. 
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Fig. 5. Stator flux angle response at 1 kHz. 

 
The first proposed feed-forward neural 

network consists of three layers. The first layer 
has four tansig input neurons (stator voltages and  
currents), the third layer has three purline neurons 
as output (electromagnetic torque, stator flux, and 
stator flux angle). The number of neurons of 
hidden layer was chosen randomly starting from 
the criterion of (2N+1) where N is the number of 
inputs of neuron. Therefore, by trail and error  
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procedure, the number of hidden layer neurons 
that meets the training goal reaches to twelve 
neurons. The generated data of input/output 
signals are normalized and converted in per unit 
form and then feed to the neural network, this 
process done to avoid the local minima 
phenomenon. Figure 6 shows the first proposed 
design of multi-layer feed-forward neural network. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. First FFNN of data training for DTC. 

 
 
Figure 7 shows the MSE as a function of number 
of epochs. 
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Fig.  7.  MSE as a function of number of epochs. 

 
Figure 8 shows the training performance between 
the actual and estimated output. 
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Fig. 8. Training performance between the actual 

and estimated output. 
 

The main parameters of the trained artificial 
neural network proposed in Figure 6 are shown in 
Table I. 

Table I 
 Parameters of the Trained Artificial Neural 

Network. 

 
The simulation model is performed at sampling 
frequency of 10 kHz and the responses of 
electromagnetic torque, stator flux, and stator flux 
angle is obtained, and input/output data are 
collected for the second neural network training. 
Figures (9), (10), and (11) show the 
electromagnetic torque, stator flux, and flux angle 

Input vds, vqs, ids, iqs (normalized), (p.u) 

Output Te, ψs, s (normalized), (p.u) θ
Maximum input 

value 
vds (max.)=3.80 (p.u), vqs (max.)=5.38(p.u) 
ids (max.)=1.56(p.u), iqs (max.)=2.22(p.u) 

Minimum input 
value 

vds(min.)=-3.80(p.u),  vqs(min.)=-5.38(p.u) 
ids(min.)=-1.56(p.u), iqs(min.)=-2.22(p.u) 

Maximum output 
value 

Te (max.)=5.64 (p.u), ψs (max.)=0.15(p.u) 
θ s (max.)=1.55(p.u) 

Minimum output 
value 

Te(min.)=-7.9(p.u), ψs(min.)=0(p.u) 
θ s(min.)=-0.155(p.u) 

Functions Tansigmiodal 

Hidden nodes 12 

Number of epochs 115 

Learning rate (η) 0.1 

Momentum 
coefficient(α) 

0.3 

Mean squared error 1*10-2 

ψs 

Te

Input layer  Hidden layer Output layer   

Өs 

2

3

1vds 

vqs 

ids 

iqs 
12 
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responses respectively at sampling frequency of 
10 kHz. 
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Fig. 9. Electromagnetic torque response at 10 kHz. 
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Fig.10. Stator flux response at 10 kHz. 
 
 

 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Tim t(sec)

S
ta

to
r F

lu
x 

A
ng

le
 (r

ad
)

Stator Flux Angle (rad) versus Time t(sec)

 
 

Fig.11. Stator flux angle response at 10 kHz. 

 
The second proposed feed-forward neural network 
consists of three layers. The first layer has four 
tansig input neurons (stator voltages and currents). 
The third layer has three purline neurons as output 
(electromagnetic torque, stator flux, and stator flux 
angle). The number of neurons of hidden layer 
was chosen with the same procedure of the first 
network Therefore, the number of hidden layer 
neurons that meets the training goal reaches to ten 
neurons.  Also the generated data of input/output 
signals are normalized and converted in per unit 
form and then feed to the neural network. Figure 
12 shows the second proposed design of 
multilayer feed- forward neural network. 
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Fig. 12. Second FFNN of data training for DTC. 

 
Figure 13 shows the MSE as a function of number 
of epochs. 
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Fig. 13. MSE as a function of number of epochs. 
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Figure 14 shows the training performance between 
the actual and estimated output. 
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Fig. 14. Training performance between the actual 
and estimated output. 

The main parameters of the trained artificial 
neural network   proposed in Figure 12 are shown 
in Table II. 
 

Table II 
 Parameters of the Trained Artificial Neural 

Network. 
 

 
After data training is completed, test program is 
performed for both networks in order to test the 

training success. It can be noticed that the 
sampling frequency effects the instantaneous 
values of electromagnetic torque, stator flux, and 
stator flux angle, while if the sampling frequency 
is increased the error values are likely to be 
reduced which means the torque and flux ripples 
decrease. Moreover the error between the actual 
and estimated trained values will be very small. 
 
5. Conclusion  
              
          Simulation model of Direct Torque Control 
(DTC) for induction motor has been investigated. 
The model is used to generate input/output data 
for two neural networks training based on the use 
of Multi-layer Feed-Forward Neural Network 
(MFFNN) with PC/ MATLAB at two different 
sampling frequencies. The use of neural networks 
with DTC show fast response for producing the 
estimated output signals of electromagnetic 
torque, stator flux, and flux angle with fast and 
high response. The estimated results are near to 
the actual values according to the value of mean 
square error based on the use of quick back-
propagation training algorithm. This simplifies the 
development with better performance and fast 
computations of such adjustable speed control 
drive when applying neural network in such 
highly non linear motor control applications. 
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Appendix (A) 

 
Induction Motor Parameters. 

 
 
 
 
 
 

 
 
 
 

Parameter Value 

Power 3(hp) 
Voltage 220(V) 

Frequency(Hz) 60(Hz) 
Number of poles 4 
Rated current(Is) 9.1 (A) 

Sartor resistance(Rs) 0.435(Ohm) 
Rotor resistance(Rr) 0.816(Ohm) 

Stator leakage inductance(Lls) 2(mH) 
Rotor leakage inductance(Llr) 2(mH) 
Magnetizing inductance(Lm) 69.31(mH) 

  
 


