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Abstract

Direct torque control became the most popular technique for induction motor
control through the last two decades, because of its simple structure, accurate and fast
torque response, but it has some drawbacks such as torque and stator flux ripples.
Therefore, an accurate and fast estimation of stator flux and torque values is required.
In this paper a proposed model for two Multi-layer Feed-Forward Neural Network
(MFFNN) to simulate and train the direct torque control data of three phase induction
motor for estimation of electromagnetic torque, stator flux, and flux angle at two
different sampling frequencies. The feed-forward neural networks proposed consist of
three layers. The input layer consists of four neurons (stator voltages and currents)
and the output layer consists of three neurons (electromagnetic torque, stator flux and
flux angle). Quick back-propagation algorithm is used to train the proposed networks.
Simulation model is performed using MATLAB. The results have been compared
according to computation time and accuracy.
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1. Introduction

Since the first developments of the Direct
Torque Control (DTC) concept which is proposed
in 1986 [1, 2]. DTC became most popular
controller for controlling induction motor and it
has been used in many ac drive applications
including paper machines, traction, and mill drives
[1].

This popularity comes from its simple
structure, fast torque response, robustness against
machine parameters variations, and absence of co-
ordinate transforms. The simple structure is due to
using hysteresis comparators for both torque and
flux, and its fast response is due to using switching
table. However, a direct torque controlled motor
has some drawbacks, such as torque and flux
ripple (especially in a low speed ranges). This is
because the fast response and the small back emf
of the motor, and the switching frequency used
varies according to the desired motor speed, and
another disadvantage of DTC lies in the
requirements of torque and flux estimation [2, 3].

In this paper, the use of neural network with
direct torque control of induction motor has been
investigated. In the next section, a brief
introduction about DTC of induction motor has
been presented.

Neutral network based multi-layer feed-
forward has explained in section 3. The simulation
model and results is presented in section 4.

2. Direct Torque control

Direct Torque Control (DTC) Technique
aims at controlling the flux directly rather than
controlling the current as it's done in vector
control technique [2]. Therefore, the basic idea of
the DTC concept, whose block diagram is shown
in Figure 1, is to choose the best vector voltage,
which makes the flux rotates and produces the
desired torque [1, 4].
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Fig. 1. Basic DTC block diagram.

During this rotation, the amplitude of the
flux rests in a predefined band. With a three phase
voltage source inverter, there are six non zero
voltage vectors and two zero vectors as shown in
Figure 2, which can be applied to the machine
terminals. The developed electromagnetic torque
in induction motors is the product of the
magnitude of stator and rotor flux linkages and the
angle between them [1].

DTC controls the electromagnetic torque
and flux directly and independtly. This enables the
machine to achieve an excellent dynamic.
Performance as the rotor time constant is much
larger in a large cage induction machine, the rotor
flux linkage can be assumed to be invariant in
magnitude as well as in position, if it is observed
for a small time interval. The magnitude of the
stator flux linkage can be changed, or it can be
rotated in forward or backward direction, by
applying appropriate voltage to the stator winding,
so that the angle between the stator and rotor flux
linkages can be increased or decreased, this
modifies the electromagnetic torque and hence can
be adjusted to meet the load requirements [1, 4, 5,
6].
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The circular trajectory of the stator flux is
divided into six symmetrical sectors referred to
inverter voltage vectors. For each sector or
section, a proper vector set is proposed. The
certain vectors are applied to motor so that
amplitude of the flux and torque remain constant.

The three switches used in the inverter
generate 2°=8 possible switching states. Therefore,
there are eight voltage vectors (Six none zero
vectors in the 360° space, and two zero vectors)
which can be applied to the machine terminals as
shown in Figure 2 (the zero vectors are not shown)
[1,4,5,6].

Fig. 2. Voltage source inverter vector.

In the DTC drive system the feedback
signals can be calculated by using the following
equations [6, 7].

The d-q components of stator voltage can be
calculated as:

-5, -2—5 1
Ve =5 i ) (1)
Ve s, — S, )
vV =—— —
o 3 BTOC

Where Vdc 1s D.C link voltage of voltage source
inverter, and Sy, Sz, and Sc are the states of
switching.

The d-q components of stator currents can be
calculated as:
I =Iis

ds a )
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Where is, and is; are stator current values of any
two lines of the three power lines to which the
motor is linked.
Therefore, the d-q of stator flux can be calculated
as:

v = - R *i )dt 5

ds J.(vds s lds) )

v oo=[(v —R *i )dt (6)
qs qs s gs

Where R; is the stator resistance.
The flux linkage phase angle is given by:

1 v s
0 =tan ' (—L) (7)
S
l//ds
and the developed electromagnetic torque is given

by:
3 . :
T =—*P*@i *y —i *y ) (8)
e ) qs ds ds qs

Where P is the number of poles of the motor.

3. Neural Networks Algorithm

Artificial Neural Networks (ANN's) have
been studied for many years desiring to reach
human like performance [8, 9].

In the case of artificial net, the neuron is a
node or processing element, which processes
weighted inputs and produces outputs which might
be used as inputs to other nodes. These ANN
models are classified based on the network, the
activation function applied and the method for
training [9-11].

Artificial neural networks can be described
as a universal approximation. They approximate
complicated functions using several layers of
neurons, structured in a similar way to the human
brain. ANN’s posses the properties of learning
capability and generalization. The learning
capability makes ANN’s very powerful in control
applications. In order to deal with the highly non-
linear behavior of induction motor, neural
networks have been developed [8, 10, 11].
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Back-propagation training algorithm is the
trainable layered neural networks employing the
input data. In the case of layered network training,
the error can be propagated into hidden layers so
that the output error information passes backward.
Themechanism of the backward error transmission
is used to modify the synaptic weights of internal
and input layers. It was designed to minimize the
Mean Square Error (MSE) between the actual
output of a multi-layer FFNN and the desired
output [9, 13].

An approximation and modification of
Newton's method for updating the weight of
networks is called Quick or Marquardt-Levenberg
back-propagation algorithm. This method is
adopted for input/output data training in this paper
[13, 14].

4. Description of Simulation Model and Results

Simulation model of Direct Torque
Control (DTC) of induction motor is developed.
The model based on the equations of DTC
mentioned in the section 2 from (1) to (8), to
generate the required data for input/output for
training process in the proposed design of neural
networks. The stator flux is estimated using
Forward Euler Method corresponding to equations
(5) and (6). The input data of the model represent
the stator voltage and current transformations (vgs,
Vgs» lds, lgs), while the output data represent
electromagnetic torque (T.), stator flux (ys) and
flux angle (O;). The model was used to generate
data over the possible operating zones of the
motor. The simulation model is performed at two
different sampling frequencies of 1 kHz, and 10
kHz respectively, with wide range of operating
points of the motor to show the effect of sampling
frequency on electromagnetic torque, stator flux
and flux angle values. Therefore, two neural
networks must be designed in this paper for both
cases. Figures 3, 4, and 5 show the
electromagnetic torque, stator flux, and flux angle
responses respectively at sampling frequency of 1
kHz.
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Fig. 3. Electromagnetic torque response at 1 kHz.
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Fig. 4. Stator flux response at 1 kHz.

Stator Flux Angle (rad) versus Time t(sec)
T T

T
|
|
4 - —
|
|
=+ —
|
|

Stator Flux Angle (rad)

I
0.14 0.16 018 0.2
Tim t(sec)

Fig. 5. Stator flux angle response at 1 kHz.

The first proposed feed-forward neural
network consists of three layers. The first layer
has four tansig input neurons (stator voltages and
currents), the third layer has three purline neurons
as output (electromagnetic torque, stator flux, and
stator flux angle). The number of neurons of
hidden layer was chosen randomly starting from
the criterion of (2N+1) where N is the number of
inputs of neuron. Therefore, by trail and error
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procedure, the number of hidden layer neurons
that meets the training goal reaches to twelve
neurons. The generated data of input/output
signals are normalized and converted in per unit
form and then feed to the neural network, this
process done to avoid the local minima
phenomenon. Figure 6 shows the first proposed
design of multi-layer feed-forward neural network.

Output layer

Input layer Hidden layer

Fig. 6. First FFNN of data training for DTC.

Figure 7 shows the MSE as a function of number
of epochs.

Performance is 0.00984446, Goal is 0.01
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Fig. 7. MSE as a function of number of epochs.

Figure 8 shows the training performance between
the actual and estimated output.
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Fig. 8. Training performance between the actual
and estimated output.

The main parameters of the trained artificial
neural network proposed in Figure 6 are shown in
Table I.

Table I
Parameters of the Trained Artificial Neural
Network.
Input Vds» Vgs» lds, 1gs (normalized), (p.u)
Output Te, v, O (normalized), (p.u)

V.ds (max.):3'80 (p-u), qu (max.)zs'3 S(Pu)
14s (maLxA):1 56(pu); lqs (maxA):2-22(p'u)

Maximum input
value

Minimum input Vasmin)=-3.80(p.1), Vgsmin)=-5.38(p.u)

value ids(min,):' 1 56(pu)9 iqg(min.):'2~22(p~u)
Maximum output Te (max)=5.64 (P.1), Ys (max)=0.15(p.u)
value e s (maxA):l 55(pu)

Minimum output Te(miny=-7-9(p-1), Ws(min)=0(p-u)

value e s(min.):_o‘ 1 55(pu)
Functions Tansigmiodal
Hidden nodes 12
Number of epochs 115
Learning rate (1) 0.1
Momentum 0.3
coefficient(a)
Mean squared error 1¥107

The simulation model is performed at sampling
frequency of 10 kHz and the responses of
electromagnetic torque, stator flux, and stator flux
angle is obtained, and input/output data are
collected for the second neural network training.

Figures (9), (10), and (11) show the
electromagnetic torque, stator flux, and flux angle
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responses respectively at sampling frequency of
10 kHz.

Electromagnetic Torque Te(Nm) versus Time t(sec)
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Fig. 9. Electromagnetic torque response at 10 kHz.
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Fig.10. Stator flux response at 10 kHz.
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Fig.11. Stator flux angle response at 10 kHz.
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The second proposed feed-forward neural network
consists of three layers. The first layer has four
tansig input neurons (stator voltages and currents).
The third layer has three purline neurons as output
(electromagnetic torque, stator flux, and stator flux
angle). The number of neurons of hidden layer
was chosen with the same procedure of the first
network Therefore, the number of hidden layer
neurons that meets the training goal reaches to ten
neurons. Also the generated data of input/output
signals are normalized and converted in per unit
form and then feed to the neural network. Figure
12 shows the second proposed design of
multilayer feed- forward neural network.

Hidden layer

Output layer

Fig. 12. Second FFNN of data training for DTC.

Figure 13 shows the MSE as a function of number
of epochs.
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Fig. 13. MSE as a function of number of epochs.
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Figure 14 shows the training performance between
the actual and estimated output.

Estimated output

Fig. 14. Training performance between the actual
and estimated output.
The main parameters of the trained artificial
neural network proposed in Figure 12 are shown
in Table II.

Table 11
Parameters of the Trained Artificial Neural
Network.

Input Vds Vgs» 1ds 1gs (NOrmalized), (p.u)

Output Te, ¥s, O (normalized), (p.u)

Maximum input
value

V.ds (max.):3 .80 (p‘u)a .Vqs(max,):5 3 8(Pu)
Lds (max,):1 56(pu): lgs (maX-):z'zz(p'u)

Minimum input Vds(miny=-3-80(P.1), Vgs(min)=-3.38(p.u)

value Lgs(ming=-1.56(p.1), igsiminy=-2.22(p.u)
Maximum output Te (max)=5.08(p.1), Ys (max)=0.135(p.u)
value

e s (max.):1 5 (pu)

Minimum output Te(miny=-7-15(p-1), Wsmin)=0(p.u)

value 0 miny=-1.55 (p.u)
Functions Tansigmiodal
Hidden nodes 10
Number of epochs 44
Learning rate (1) 0.1
Momentum 0.4
coefficient()
Mean squared error 1*10~

After data training is completed, test program is
performed for both networks in order to test the

7
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training success. It can be noticed that the
sampling frequency effects the instantaneous
values of electromagnetic torque, stator flux, and
stator flux angle, while if the sampling frequency
is increased the error values are likely to be
reduced which means the torque and flux ripples
decrease. Moreover the error between the actual
and estimated trained values will be very small.

5. Conclusion

Simulation model of Direct Torque Control
(DTC) for induction motor has been investigated.
The model is used to generate input/output data
for two neural networks training based on the use
of Multi-layer Feed-Forward Neural Network
(MFFNN) with PC/ MATLAB at two different
sampling frequencies. The use of neural networks
with DTC show fast response for producing the
estimated output signals of electromagnetic
torque, stator flux, and flux angle with fast and
high response. The estimated results are near to
the actual values according to the value of mean
square error based on the use of quick back-
propagation training algorithm. This simplifies the
development with better performance and fast
computations of such adjustable speed control
drive when applying neural network in such
highly non linear motor control applications.
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Appendix (A)

Induction Motor Parameters.



