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Abstract 

The paper investigates many problems in quantum systems by using the 
modeling of optical components using Jones matrices. These methods  give high 
flexibility to choose perfect model and ideal measurements base of Alice and Bob. The 
simulated source uses polarization entangled photons from spontaneous parametric 
down-conversion. The proposed model of Ekert's quantum cryptography protocol, is 
also simulated based on modeling the optical components by Jones matrices. Bell's 
inequality is computed to detect the eavesdropper. The results show the effect of the 
eavesdropper on the Bit Error Rate (BER) and S factor of Bell's inequality. The 
eavesdropper affects more on the results of S and BER when he doesn't know the base 
measurements of Alice and Bob. 

 
  الخلاصة

أكتشف البحث عدد من المشاكل بأنظمة التشفیر الكمیة معتمدا على طرق تمثیل الأجزاء الضوئیة 
والتي توفر مرونة عالیة في أختیار التمثیل الأفضل والأختیار الأمثل لمستوى زوایا   Jonesبأستخدام مصفوفات 

  . Alice & Bob  قیاس الفوتونات المستقطبة من قبل
لتولید ازواج الفوتونات المتعاقده استقطابیآ وتم ) SPDC type II(اسبة لتمثیل مصدر فوتونات تم محاكاة الح

مستخدمآ تمثیل الاجزاء الضوئیھ  في النظام  باستخدام   Ekertمحاكاة الحاسبة لتنفیذ نموذج مقترح  لبروتكول 
و ) BER(ج تأثیر الاستراق على اظھرت النتائ. لكشف الاستراق   Bellوتم حساب متراجحة   Jonesممفوفا ت 

في حالة عدم )  S(و ) BER(فأن المسترق سوف یكون تأثیره كبیر وواضحآ  على ) Bellلمتراجحة  Sالمعامل (
 ).                     Bob(و ) Alice(معرفة المسترق لمستوى زوایا القیاس الذي یستخدمھ كل من 

 
 
 
 
1. Introduction 

Usually the encryption and 
decryption algorithms are publicly 
known, and the security of the 
cryptogram depends entirely on the 
secrecy of the key. This key should 
supply together with the plaintext as an 
input to the encrypting algorithm, and 
together with the cryptogram as an input 
to the decrypting algorithm [1]. In 
classical cryptography although there is 

truly unbreakable system (perfectly 
secure one time pad) there is a snag, it is 
called key distribution [2]. Once the key 
is established subsequent communication 
involves sending cryptogram over 
channel, even one which is vulnerable to 
total passive eavesdropping. In principle 
any classical key distribution can always 
be passively monitored, without the 
legitimate users being a ware that any 
eavesdropping has taken place. To solve 
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the key distribution problem, there are 
two very interesting solutions, one 
mathematical and one physical. The 
public key cryptography is the 
mathematical one. The physical one is 
referred to as quantum cryptography. 
Quantum cryptography ensures the 
perfect security based on the accepted 
natural laws of quantum mechanics. The 
origins quantum cryptography can be 
traced to the work of Wisner in the early 
1970s, who proposed that if single 
quantum states could be stored for long 
periods of time they could be used as 
counterfeit proof money.  
Quantum cryptography can be classified 
into two major categories: QC based on 
single photons and QC based on photon 
pairs. The well known concept for 
quantum key distribution based on single 
photon is the BB84 scheme. The BB84 
scheme uses single photons transmitted 
from Alice to Bob, who are prepared at 
random in four partly orthogonal 
polarization states 0  , 45  , 90  , and 
135   [3]. If Eve tries to extract 
information about the polarization of the 
photons she will inevitably introduce 
errors, which Alice and Bob can detect 
by comparing a random subset of the 
generated keys. Other protocols based on 
non orthogonal quantum states uses 
single photons transmitted from Alice to 
Bob [4, 5]. The security of these 
protocols relies on the impossibility of 
measuring the wave function of a 
quantum system without imposing a 
back action on the state. This back action 
will usually result in an increase in errors 
across the communication channel. 
In 1991, Ekert proposed the well known 
protocol that quantum key distribution 
could also be implemented using 
entanglement between quantum systems 
[6]. This scheme is based on the Bohm's 
well known version of the Einstein-
Podolsky-Rosen (EPR) gendanken 

experiment [7]. The generalized Bell's 
theorem (Clauser-Horne-Shimony-Holt 
inequalities) is used to detect the 
eavesdropping [8]. The idea of using 
entangled photons for quantum 
cryptography was extended by Bennett, 
Brassad, and Mermin to the two photon 
variant of BB84 [9]. In 1995, Kwiat 
proposed a new high-intensity source of 
polarization- entangled photon pairs. 
This source type II non collinear phase 
matching in parametric down conversion 
produces true entanglement. No part of 
the wave function must be discarded, in 
contrast to previous schemes. The new 
source allowed ready preparation of all 
four of the EPR- Bell states. Anton 
Zeilinger et al. utilizes this new source 
to establish highly secure keys by 
realizing a quantum cryptography 
system based on polarization entangled 
photon pairs. The naval key distribution 
scheme was implemented using Wigner's 
inequality to test the security of the 
quantum channel [10]. Kwiat used 
polarization-entangled photons from 
spontaneous parametric down 
conversion to implement Ekeret's 
quantum cryptography protocol. The 
presence of an eavesdropper is 
continually checked by measuring Bell's 
inequalities [11]. By using polarization 
entangled photons from spontaneous 
parametric down-conversion, the Ekert's 
quantum cryptography protocol was 
simulated based on modeling the optical 
components by Jones matrices. Bell's 
inequality is computed continually to 
check or detect the eavesdropper. 
 
2. Modeling of Optical Components 
Based on Ray Matrices 

The optical axis is commonly 
defined as the z direction is shown in    
Fig. 1. The analysis of rays which are in 
the same plane as the z-axis is sufficient. 
The distance of such a ray from this axis 
is w and its slope is w'. Both parameters 
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are function of z and can be combined 
into the ray vector Ray vector 


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Fig. (1) Beam characteristics of optical rays in geometrical optics 
 
 
 
 
When the rays are not in a plane with the 
z-axis, then the ray vector with four 
parameters is necessary as shown in Fig. 
2. The four parameters, two distances u, 
v and two slops u', v' are analogous to 
the two parameters, case collected in a 
ray vector 
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Fig. (2) Definition of parameters for rays not in planes with the  z-axis 
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Imaging and illumination with 
incoherent light can be calculated to a 
good approximation by determining the 
beam propagation of the optical rays. 
This can be done with ray tracing or for 
paraxial rays with ray matrices. In ray 
tracing fore large number of geometrical 
optical rays the propagation is calculated 

and then superimposed for determining 
the intensity distributions. When many 
optical elements are in the path, the 
method of ray matrices is very handy. In 
this formalism the optical path including 
all optical elements is described with a 
ray matrix M as shown in Fig. 3 

 
                                               
                                              
 
 
 
                    

 
 
 
 
 
 

Fig. (3) Optical ray passes optical elements with the total matrix M  
  
 
  
The ray vector behined a system of 
optical elements, including the optical 
paths in vacuum (or air), can be 
calculated from the incident ray vector 
and the total ray matrix M total as a 
simple multiplication 
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The light beams should be paraxial with 
sufficiently low divergence similar to the 
ray optics. Gaussian beams are 
characterized by the Gaussian shape of 
the transversal profile of the beam. The 
electric field is given by in the 
transversal x or y directions which are 
replaced by r and the propagation 
direction z as [12]: 
 

}Re{)},(Re{},( )2( zkvti
A erzErzE  

                 (7) 
Where 
            is the optical frequency 
         k  is the wave vector in free space 
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with a maximum E  at z = 0. 
The beam radius w (z) of Gaussian 
beams are completely determined by the 
position 

wz , the size of the waist w , 
wavelength   and material refractive 
index  n by [12]   

beam radius 2
2 )(1)(




nw

z
wzw w


  

                                
                                                             (9) 
 
Which can be written by using the 
Rayleigh length as [12] 
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               (10) 

where Rz  is the Rayleigh length of a 
Gaussian beam given by 
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               (11) 

with wave vector k and refractive index 
of material n. 
The shape of the phase fronts of the 
Gaussian beam can also be derived. 
They have a spherical shape their radius 
R (z) is given by wave front radius  

 2
2

)(1)(

nw

z
zzR   

               (12) 
 
The ray matrices can be used for 
theoretical propagation of simple rays in 
the sense of geometrical optics or for the 
propagation of diffraction limited 
Gaussian beams described by their beam 
parameter. Ray matrices can be derived 
by calculating the ray or beam 
parameters behind the optical element 
using Maxwell's equations or derived 
formulas and comparing the coefficients 
of these equations with the matrix 
elements. Fig. 4 represents the simplest 
case of ray propagation over length L in 
free space. 

 
 
 
 

 
 

 
 
 
 
 
 

Fig. (4) Ray propagation over length L in free space 
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The ray equations would be 
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and matrix multiplication 
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will lead to: 
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then a=1, b=L, c=0 and d=1 

 
 

Thus the matrix for any optical element 
can be developed as long as the light 
path through these elements is 
reversible. If light passes n optical 
elements each recognized by one matrix 
Mi as shown in Fig. 5. The total matrix is 
then simply given by the product of all 
these matrices in the right order: 
 

121 ............. MMMMM nntotal 
               
                                                           (16) 
It should be noted that the passed optical 
element  first, with the matrix M n   is the 
last  one  to  be   multiplied   as   given in 
formula above. 

 
  

 
 
 
 

 
 

Fig. (5) Light passing through a sequence of optical elements as described 
 by their matrices Mi 

 
  

For the description of linear, circular or 
elliptical polarized light with Jones 
vectors. Cartesian coordinates are 

assumed with z axis pointing in the beam 
propagation direction as shown in Fig. 6. 

 
 

Fig. 6 Components of the electric light wave field at a certain moment. 
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In the case of linear polarized light, these 
components can describe by: 
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and by using the total amplitude of the 
electric field Eo: 
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The linear polarization of this light beam 
can be described by the Jones vector J of 
linear polarized light as: 
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3. Schematic Simulation of QC System 
Based on Entangled Photons 

Fig. 7 represents the schematic of 
quantum cryptography system which  used 
in the proposed model  of Ekert  protocol 

 
 

  
 
 
 

 
 
 
 
 

 
 
 
 

  
 

  
 
 
 

Fig. (7) The schematic of proposed model of quantum cryptography system 
 
 

An Argon ion laser is used to pump two 
perpendicularly oriented nonlinear 
optical crystals (BBO), the resultant 
entangled photons are sent to Alice and 
Bob, where each analyze them in one of 
four randomly chosen bases. The photon 
pairs are then created in the maximally 

entangled state   . Alice's and Bob's 
analysis systems each consists of a 
randomly driven liquid crystal (LC) (to 
set the applied phase shift), a half wave 
plate (HWP) and Calcite Glan-
Thompson prism (PBS). The silicon 
avalanche photodiodes are used to detect 

Entangled 
Photon 
Source Ar+ 

Laser 
BBO 

EVE 

LC HWP 

PBS 
Bob 

Alice 

1 

1
 

2
 

2 
PBS 

HWP LC 

     = 60, 90, 150, 180 (Random) 
 

 = 0, 30, 90, 120 (Random) 

  

  



IJCCCE, Vol.6, No.2, 2006                                                        Modeling and Simulation of Schematic Quantum    
                                                                                                    Cryptography System Based Entangled Photons 

  

  133

the photons from the horizontal and 
vertical polarization output of the prism. 
This version is simulated using Jones 
matrices for HWP and LC polarizer as 
shown  in Table 1. 
 

Table 1. Jones matrices for some 
optical components are used in the 

schematic quantum system 
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In the proposed model, Alice and       
Bob  each    receive     one   photon   of a  

polarization-entangled pair in the state 

)(
2

1
2121 VVHH   where H 

(V) represents horizontal (vertical) 
polarization. Each, respectively, measure 
the polarization of their photons in the 
bases   

2211 VeHandVeH ii   , 
 
where  and  are randomly taken 
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Then they disclose by public discussion 
which bases used are disclosed, but not 
the measurement results. For the 
state  , the probabilities for a 
coincidence between Alice's detector 2 
or 2', which detects the orthogonally 
polarized photons and Bob's detectors 1 
(1') are given by    [11], 
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                          (20)  
Completely correlated results will be 
available, when 180  , which then 
constitute the quantum cryptography 
key. Only 1/4 of data actually contribute 
to the raw cryptography key. As 
indicated in Table 2, the results from 
other combinations are revealed and 
used in two independent tests of Bell's 
inequalities, to check the presence of 
eavesdropper ("Eve"). In particular, the 
Bell parameters [8] 
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The R's are the various  coincidence  count   

 
between   Alice's   and      Bob's   detectors. 

 
 

Table    2.   Distribution of Data dependent on Alice's and Bob's respective 
phase setting  α i  and βj 

 Alice   
601   902   1503   1804   

 
 
Bob 

01      S   NU      S   Key 
 302      NU    S'     Key    S' 
 903      S    Key      S     NU 

1204      Key       S'       NU     S' 

 
 
 
There are 1/2 of data used to test Bell's 
inequalities. The quantum mechanically 
expected values of ', SS   are 22  for 

the combinations of  and  . For 

any local realistic theory ', SS 2 . 

Because     of    high   values   of   S have  
been       observed       in     this    system, 
 the     presence     of    an   eavesdropper  
could   thus   be   detected   in   very  fast 
 time in the data collection. The 
simulated    eavesdropper    thus    makes  
 

the projective measurement XX . The 
effects on the measurement of S and S' 
and BER depend strongly on what 
eavesdropping basis X  is used [4]. 
Figs (8 and 9) show the effect of the 
eavesdropping on S and BER for the 
attack base VH  sincos  . 

The eavesdropper in this attack base 
does not know the plane of measurement 
bases of Alice and Bob and causes 
average BER equal 32% and average 
value of  S is equal to  0.7.  
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Fig.(8) The effect of the eavesdropper on S when the  attack's base  
VH  sincos 
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Fig (9) The effect of the eavesdropper on the BER when the attack base is 
VH  sincos   

 
 
When the eavesdropper know the plane 
of measurement of Alice and Bob (the 
attack base VeH j ). As shown in  

 
 
Figs. (10 and 11) the eavesdropper 
causes BER equal to 25% and S value 
equal  to 1.4. 
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Fig.(10) The effect of the eavesdropper on S when the  attack's base  
 .VeH j  
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Fig (11) The effect of the eavesdropper on the BER when the attack base is 
.VeH j  
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From the results we can improve the 
security and detect the eavesdropper at 
fast time if the eavesdropper doesn't know 
the measurement  bases  of Alice and Bob.  
We can build new strategy that satisfies 
this  idea  by  used  variant    measurement  
 

bases   in  the   same  time of transmission. 
If the remain four combination in Table 2 
used to calculate the factor NU, since 

27090 or   in these 

combinations, therefore  

 
4/1),(),(),(),( '122'1'2'112   PPPP  

              Then 

               
0

),(),(),(),(),( '122'1'2'112


  PPPPE  

               

0
),(),(),(),( 43342112


  EEEENU                   

                                                                                                                                      (23)
  
 
From simulation for noiseless channel 
and no eavesdropper NU = 0. 
If the eavesdropper present we observed 
NU > 0, the exact value is unknown and 
cannot calculate from the formula of 
coincidence counts between Alice's and 
Bob's detectors, therefore these 
combinations are not used in the test of 
eavesdropping or in producing a 
cryptography key. 
 
Conclusion 

This paper presented proposed 
model of Ekert protocol based entangled 
photons. The modeling of optical 
components based Jones matrices are 
used to simulate the proposed model. 
This system is more secure if the 
eavesdropper does not know the base 
measurement of Alice and Bob. The 
average value of S is lower if the 
eavesdropper does not know the base 
measurement, and at the same time the 
BER is higher by comparison with the 
case when the eavesdropper knows the 
base measurement. By using variant 
measurement base of Alice and Bob in 
the time of transmission we can built 
more secure system.  
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