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ABSTRACT

The concept of generalized compactness is useful and essential not only in general
topology but also in other advanced branches of pure and applied mathematics. The
influence of topological spaces is evident in computer sciences, digital topology,
computational topology for geometric and molecular design particle physics, high-energy
physics, quantum physics, and superstring theory. Therefore, in this study, new concepts
of generalized compact spaces, namely, wsg-compact and nearly w;sg-compact spaces,
based on new generalized w-open sets are presented in topological spaces. Various
essential characterizations related to these generalized compact spaces are investigated.
Furthermore, the relationships among some kinds of generalized compact spaces are
discussed. Some illustrative examples are also provided to highlight the realized
improvements. The discoveries in this article are expected to aid scientists in conducting
research on general topology to establish a general framework for their practical

applications in all advanced branches of mathematics and other sciences.
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1- Introduction

The notion of generalized compactness is useful
and fundamental in general topological spaces and other
advanced branches of mathematics and sciences. In
previous years, various generalizations of open and
closed sets, such as semi-open, a-open, pre-open, semi-
pre-open, b-open, J-R-open, and E-open sets, have been
considered. These sets play a vital role in the
generalization of continuity in topological spaces. The
concepts of w-open and w-closed sets were studied by
Hdeib [1]; he presented in [2] the notion of ®-
continuous maps. Al-Zoubi and Al-Nashef [3]
established the family of each w-open set in X’ —form
topology on X. Novel ideas of extended closed sets
called w-closed sets and regular extended and w-
continuous maps were provided by Al-Omari [4].
A new concept of extended open sets called J-R-open
was introduced by Hatir and Noiri [5], along with -3
continuity. Meanwhile, Aljarrah et al. [6].
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presented an extended wg-closed set. Al Ghou
[7] presented the concept of w, irresoluteness as a
strong form of wg continuity and reported that wg
irresoluteness is independent of continuity and
irresoluteness. Recently, Waqas and Ali [8] investigated
an extended form of continuous maps called contra wpre-
continuous maps by utilizing the notion of wye-Open
sets. Sasmaz and Ozkoc [9] introduced the notion of J,,-
open sets and proved various types of continuity.
Additionally, Abdulwahid and Al. Jumaili [10] studied
new ideas of extended continuous maps by using a novel
extended open set. Compactness is important in other
advanced branches of mathematics. The theory of
compact spaces was presented by Alexandroff and
Urysohn [11]. Balachandran et al. [12] studied the GO
compactness of topological spaces and verified some
product theorems of compact spaces. In other literature,
various types of generalized paracompactness, such as S
[13] and P; paracompactness [14], have been
investigated. Some classical results regarding compact
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and Lindelof spaces were generalized to A-compact
spaces by Namdari and Siavoshi [15]. Meanehile, J. H.
Park and J. K. Park [16] presented a new class of
compact spaces related to some new generalized
continuous functions. Later, Patil [17] introduced a new
kind of compact space, namely, ®,-compact space, and
some characterizations were obtained. Evidently, many
researchers [18-23] have investigated various
fundamental properties of compactness in topological
spaces.

The main objective of this study is to investigate
new concepts of generalized compact spaces called w;g-
compact and nearly ws.-compact spaces on the basis of
new generalized ®-open sets in topological spaces.
Some essential characterizations related to these types of
generalized compact spaces are introduced. Vital
properties related to E-Lindelof spaces are also obtained.

2- Prerequisites

Throughout this  manuscript, (X,7T)and (Y, T%)
(X&Y ) are used. In this part, several definitions and
essential results that play a major role in our work are
presented.

Definition 2.1: [1] Assume that X is a topological-sp.
with K € X . Thus,

(@) p € X is called the condensation of X if each
N eT&p € N, NNXK is uncountable.

(b) K is said to be w-open if and only if V p € X 3N €
T(s.t) p € V, with ¥ — K being countable.

(c) w-closure and w-interior, denoted
Cl, (%) and Int, (K), respectively, are described as
(1)-Cly(K) = N{A S X: A is w — closed with K <
A};

(2)-int,(K) = U{B S X:Bisw — open with B C
K}

Remark 2.2:“The family of all w-open sets of X
indicating 7;, or wX(X,T) forms a topology that is finer
than 7.

Definition 2.3: [24] A subset % < X is §-open if for all
x €EK3Iopen N(s.1),x € NV € int(CL(N)) € K.
Definition 2.4: [5] A subset K of X is J-B-open if

K<l (Int(Cl,g(.‘K))).The complement of an &-B-

open set is J-B-closed, the intersection of each J-R3-
closed containing K is the o-R-closure of F and
indicated by Cls_z(¥),and the union of all J-B-open
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sets of X contained in X is the J-B-interior of X and
indicated by Ints_g (¥).

Remark 2.5: The collection of each o--open(resp.o-R3-
closed) subset of X containing p € X is defined by
§ —BE(X,p) (resp.6 — C(X,p). Each o-R-open-
(resp.o-R-closed) subset of X is indicated by & —
BI(X,T)(resp.6 —BC(X,T)).

Proposition 2.6: [5] The following statements hold for
X.

(a) The union of any collection of J--open sets in X is
an J--open set.

(b) The intersection of the arbitrary family of 5-3-closed
in X is an o-R-closed set.

Lemma 2.7: [5] Assume that ,D € X. If K is open
and D is J-B-open, then K ND is o-R-open.

Definition 2.8: [25] N <€ X is called the J-B-
neighborhood of p € X if3 J-B-open K of X(s.t)
PEKCN.

Definition 2.9: (X, T) is said to be

(a) Nearly compact [26] if each regular open cover of X’
has a finite subcover;

(b) Compact (comp for short) [27] if each open cover
of X has finite subcover;

(c) o-R-compact [28] if every cover of X by oJ-R-open
sets has a finite subcover;

(d) w-compact [29] if each w-open cover of X has a
finite subcover.

Definition 2.10: [30] A map F: (D, =) — X from direct
set (D,=) to X+ @ is on X and indicated via
{MtepVA1EDIMEX I FA) =

3 Several Characterizations and Essential Properties
of wd-R-Compact Spaces

In this section, various characterizations and
fundamental properties related to w;g-compact spaces
based on wsg-0pen sets are obtained in topological
spaces.

Definition 3.1: A subset K of a space (X, T) is said to
be wsg-open if V p € K. There exists an ac-R-open
subset NV, € X containing p (s.t), where V,, — K is
countable.

Remark 3.2: The complement of the ws.;-0pen subset is
wsg-closed, and the collection of each w;gz-open
(resp.wsq-closed) subset of (X,T) is indicated by
ws_gZ (X, T)(resp. wgs_gC(X, T)).
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Definition 3.3: F: (X, T) — (Y,T") is said to be

(@) wsp-open if F(XK) is a wsg-open set in (Y, T ) for
all open subsets K of (X, T);

(b) wsg-closed if F(K) is a wsq-closed set of (Y,T™)
for every closed subset K of (X, T).

Definition 3.4: Let (X, T) be a topological-sp and K be
a subset of X. Then,

the w;.g-interior and w;.z-closure of subset K are denoted
by Int,, () and Cl,, ,(¥), respectively, and
described as follows:

(1) Inty,_(K) = U{B S X:Bisws_p —open& B <
X}
(2) Clyy, () = N{A S X: A is ws_g —

closed & KX € A}.

Definition 3.5: Subset XK of topological-sp (X,T) is
called

(a) Regular m;¢-open setif K=Int,, , (Clws_g(:l());
(b) Regular w;g-closed set if K=Cl,, ,(Intqs ,(¥)).
Definition 3.6: F:(X,T) — (Y,T™) is wsp-continuous
if F71(0) is wsg-open in X for all open O in Y.
Definition 3.7: A map F:(X,T) — (Y,T*) is called
w;g-irresolute if F~1(0) is wsg-open in X for each w;y-
open 0 inYy.

Definition 3.8: A space (X,T) is called ws-T,-space
if for each distinct point in p, g € X, 3 disjoint is an w;.
-open set U, V(s.1) p € U&k g E V.

Definition 3.9: A space X is called wsg-compact if
each ws.q-open cover of X has a finite subcover.
Remark 3.10:

(1) Each ws.z-comp-sp is comp.

(2) Each w-comp-sp is comp, but the opposite is not
necessarily true in general, as shown in the following
example.

Example 3.11: Assume X = R with 7 = {@, X, Q,Q0¢}.
X is comp-sp, but it is not wsg-comp because the
collection {Q U X — p & Q} is a wsg-0open cover of R.
Consequently, X =QuU Q¢ but it has no finite
subcover.

Definition 3.12: (X,T) is called nearly w;g-comp if
each ws.q-regular open cover of X has a finite subcover.
Remark 3.13: ¢-R-compact does not need to be w-
compact or wsg-compact, as shown in the next example.
Example 3.14: Assume that X’ =Z is an integer
number with 7 ={={@,X,2%,Z2"}. Thus, &§—

Journal of University of Anbar for Pure Science (JUAPS)

243

Open Access

RE(X,T)={K cX:0¢ KIU{X}. X is J-RB-comp
because wZ(X,T) = ws_gZ(X,T) ={K:K < X}, so
X is neither w-comp nor wmsg-comp.

Remark 3.15: w-comp does not need to be J-B-comp
nor ws.z-comp, as shown in the next example.

Example 3.16: Assume that D is uncountable and
X =DU{r}» D with T ={0,X {r}}. Hence,
wX(X,T) ={0, X, {r}}U{G < X:Gfinite}. X is -
comp because

§ —BE(X,T) = ws_gZ(X,T) = {{r,sks €D}, so X
is neither J-B-compact nor wsg-compact.

Remark 3.17: From the definitions and remarks above,
we derive the following implications.

&

Compact P R J-R-compact
S / S
/
/
£ >
w-compact | 7 ws.q-compact
Diagram (1): Relationships among diverse kinds of

compact spaces

Theorem 3.18: Let F: (X, T) - (Y,T*) be on a wsg-
continuous map. If (X, T)is wsg-compact, then Y is
compact.

Proof: Assume that {G,: o € A} is an open cover of Y,
so {F1(G,): a € A} is an w;z-open cover of X. Given
that X is wsp-comp, X has a finite
subcover {F~1(Gy,):i=1,2,..,n}, and G, €
{G,: a € A}. Therefore, {Go, 4 =1,2,...,n} is the finite
subcover of Y, and Y is comp.

Proposition 3.19: The following statements are
equivalent for topological-sp X .

(a) X is ws —comp.

(b) For each collection of wsg-closed sets {0;: 1 € U}
of X, (5. t) Nyey Oy =0, there exists finite subset
0,€0 (S. t) nlEUO OA = Q.

Proof: (a) = (b): Presume that X is wsz-comp, and
{0,: 4 € U} is a collection of wgs-closed subsets of X,
(s. 1) Niery 04 = @. Then, the collection {X — 0,;: 1 € U}
is the wsq-open cover of wsg-comp (X, T), and there
exists a finite subset U, of U. Hence, X = U{X —
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0:A€0U,} and P=X—-U{X—-0:1€V,} =
N{X — (X —0,):1€V,}=N{0;:1 €V}

(b) = (a): Suppose that V' = {N;: A € U} is a wsq-
open cover of (X,T). Thus, X —{N;:1 €0} is a
collection of w;gs-closed subsets of (X,T) and N{X —
N;: A € U} = @ via supposition. 3 is a finite subset U,
of U. N{X-Ni:1€eU.}=0, so X=X-
N{X —Ni:2€0,}=U{WN:1€0,}, and X is wsg-
comp.

Proposition 3.20: Let F:(X,T) = (UY,T*) be a wsq-
irresolute map. X is wsg-comp-sp, sO F(X) iS wsg-
comp.

Proof: Suppose that {D,: a € A} is a wss-open cover of
FX), and F(X) € UgeaDo (5. 1) FHFX)) €
:F_l(UaEADa) = UaEAT_l(Da) c X. ThUS, X =
UaeaF~1(D,) because D, is a wsg-open set in
Y,Va € A. Given that F is wsg-irresolute, F~1(D,) is a
wsg-0pen set in X, Va € A. {F71(Dy): a € A} is the w;.
g-open cover of X because X is a wsg-comp space
3oy, 0y, ..., 0, EA (s. t)
X = Uy FH(Dg,) , FXO) = UL, F(FH(Dg,)) €
U%=1Dq,- Consequently, F(X) is w;g-comp.

Definition 3.21: A subset D of X is called wsg-comp
relative to X if every cover of D via wsz-0open sets has a
finite subcover of D. The subset D is w;g-comp if it is
ws5-COMp as a subspace.

Theorem 3.22: The following statements are equivalent
for X.

(a) X is wsg-comp.

(b) For any collection J of wsgs-open sets, if no finite
subcollection of J covers X, J does not cover X.

(c) For any collection J of ws.s-closed sets, if ;J satisfies
the finite intersection condition, then N{¥: X € J} # @.
(d) For any collection J of subsets of X, if J satisfies
the finite intersection condition, then
N{Cly, (F):K € J} # 0.

Proof: (a) = (b) and (b) = (a) are apparent. Now,
(c) = (d). If J c P(X) satisfies the finite intersection
condition, then N{Cl,, . (¥): K € J} is a collection of
wsg-closed sets that perceptibly satisfies the finite
intersection condition.

(d) = (c): X =cCl
x.

ws_g (JO) for every wsg-closed set
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Proposition 3.23: If (Y,T™) is a wss-0pen subspace of
X and D € Y, then D is a wsg-comp set in Y iff D is ws.
g-comp in X.

Proof: Assume that D is a wsg-comp set in Y, with
{0,: 1 € U} being a wss-open cover of D in X. Then,
D S Ujpes0; because D S Y,D < U{YNO,:1 € U}
Given that YNO, is wsg-open relative to Y, {YNO,: 1 €
U} is a wsg-open cover of D relative to Y. We have
D S (YNOPU ...U(YNOy,), 50 D is wsg-comp in X
Conversely: Presume that D is a wsg-comp set in X,
with {V;: 1 € U} being a ws;g-0open cover of D in Y.
Then, D € UsepV; as a result 3 0, being w;g-0pen
relative to X, (s. t) M, =YNO,, VA€ V. Thus, D
Usew 01, Where {0;: 1 € U} is a wsg-open-cover of D
relative to X because D is wsg-comp in
X,344, 42, .., Ay €U (s. 1) 3D S U}, 0,,. Given that
D S Y,D S YN{0;,U0,,...,U0; } =

(YN0, )V, ..., U(YNo, ) and YN0, = N;, D is wsg-
compin{Y.

Theorem 3.24: The following statements are equivalent
for X.

(a) X is nearly wsg-comp-sp.

(b) Each wsg-open cover u = {0;: 1 € U} of X, 3 finite
subset U, € U (. t) X = Ujen, Ity (Clos_ (VD).
Proof: (a) = (b) Let u = {0;:1 € U} be a wsz-0pen
cover of X. Hence, {Int,,_,(Clys_,(02)): A € U} is the
wsg-regular open cover of nearly wsg-comp-sp X, and
there exists a finite subset U, €U (5. t) X =
Uzev, Inte;_,(Clos_,(01).

(b) = (a): wsg-regular open is ws.q-open.

Definition 3.25: A point p € X is called the wsg-Cluster
point of a net {n,},ea and frequently exists in each w;.q-
open set containing p. We indicate via ws;5-CP{n>}1ea
the set of each w;g-cluster point of {n;}1ea-

Theorem 3.26: A space X is w;g-comp if and only if
every {na}iea in X has at least one w;-cluster point.
Proof: Assume that X is wsg-cOomp-sp and
3 some net {ny }1ea , (5. t) ws5-CP{My}1ea is empty. Let
P EX,503G(p) € ws_gZ (X, p) is not frequent. As a
result, 3A(p) €A, (s. t) ps & G(p). When 6§ =>
A(p), 8 € A, the collection {G(p): p € X} is a cover of
X via wsg-open sets and has a finite subcover. {Gy: k =
1,2,..,n} (5. 1), G, = G(py) fork =12, ...,.n,{pr: k =
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1,2,..,nand y € A. Thus, A = Apk,Vk = 1,2, ...y, for
each €A (s. t) §=y. We have pd & Gp, k =
1,2,...,m, 50 ps & X is a contradiction.

Conversely: Suppose that X is not wsg-comp. Then,
3{G;:1 € A} is the cover of X via wsg-0pen sets and
has no finite subcover. Assume that P(A), the collection
of every finite subset of A with obvious (P(A),<),is a
directed setV 7 € 1. We select p, € X — U{G;:1 € I}

and consider {W};ep( N via supposition of ws.q-
CP{W};EP(A) to be nonempty. We presume p € w;p-
CP{W};EP(A) and let i, € A. Thus, p € G; via the

definition of the wss-cluster point v 4 € P(A). 3 4% €
P(A) (st) 74" and p;- € G, for j={i},35" €
P(A) (s. t) i, €7" with p;- € G;, but p; € X —
U{G;:i € 5} € X — G, is a contradiction. Therefore,
X is wsg-comp.

Next, we provide characterizations of wsg-comp by
means of filter bases. We recall a nonempty collection &
of subsets of X (called a filter base on X) if @ ¢ & and
each intersection of two members of & contains a third
member of &. Each chain in the family of every filter
base on X has an upper bound. The union of all
members of the chain is denoted by Zorn’s lemma, and
the collection of filter bases on X has at least one
maximal element. Likewise, the collection of filter bases
on X containing a given filter base § has at least one
maximal element.

Definition 3.27: A filter base & on (¢, 7) is called

(a) wsg-converge to p € X iff every wgsg-open NV
contains p,AD € F(s.t) D c V.

(b) wsg-accumulate at p € X if NND # @,V wsz-0pen
set V' contains p with VD € {.

Proposition 3.28: Let maximal filter base § be wsg-
accumulate at p € X. Then, § wsg-converge to p.
Proof: Assume that & is a maximal filter base with w;.q-
accumulate at p € X. If § is not wsg-converge to p,
there exists wsg-open set N, containing p, (s. t)
NND+0 & X -N)ND#@,VvDeEF Thus,
FU{N.ND:D € &} is a filter base that contains §,
which is a contradiction.

Theorem 3.29: The following statements are equivalent
for X.

(a) X is wsg-comp.
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(b) Each maximal filter base is ws.z-converge to some
points of X.

(c) Each filter base is w;g-accumulate at some points of
X.

Proof: (a) = (b) Assume that &, is a maximal filter
base on X and &, is not wsg-converge to an arbitrary
point of X. Then, on the basis of Proposition 3.28, &. is
not wsg-accumulate at an arbitrary point of X,V
p €EX,s03 is wsg-0pen set N, containing p with
D, €F,. Thus, N,ND, =@, and the collection
{NV,:p € X} is the cover of X via wsg-open and via
(a) 3 finite subset {p;, p,, ..., pn} Of X. Therefore,
X = U{N,,:k =1,2,...}. Given that §. is a filter base,
3D, cF. (5. 1) D.c N{D,:k=12,..,n}=X -
U{NV,,,:k =1,2,...},50 D, = @ is a contradiction.

(b) = (c) Assume that & is a filter base on X, and
there exists a maximal filter base &.. Thus, & € &, via
(b). &, is wsg-converge to some point p, € X. Assume
that DeFVIN €6 —RIX, p). As a result, 3Dy €
T (5. 1) Dyyc NV, so NnD = @. It contains the
member D ND of §,, S0 F wsg-accumulates at p..

(c) = (a) Suppose that {0;:1 € A} = @ is an arbitrary
collection of wsg-closed sets (s. t) N{0;:4 € A} = .
We establish that there exists a finite subset A, of A, so
N{0,:4 € A} via Theorem (3.22) (a). Assume that P(A)
is the collection of finite subsets of A and presume that
N{0;:i€J}=@ for each J € P(A)....**. Hence,
F={N{0,;:i € J}:J € P(A)} is a filter base on X via
(c), and & is wsg-accumulate to some point p, € X.
Given that {X — 0,:1 € A}is a cover of X,31, €A,
then p,€ X —0,;, (s. t) X -0, Iis ws;g-open and
contains p,, 0, € § with (X — 0,.)N 0;, = @, which is
in contradiction with the truth. & being wsg-accumulate
at p, indicates that (**) is untrue.

Conclusion

The concept of compactness is of paramount
importance in  mathematics and other sciences.
Therefore, new classes of generalized compact spaces,
namely, w;g-compact and nearly wsg-compact spaces,
based on other generalized w-open sets are investigated
in this study. Several essential characterizations related
to these kinds of generalized compact spaces are
discussed. We refer readers to [31, 32].
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