

IJCCCE, VOL.7, NO.1, 2007

1

INTELLIGENT SINS NAVIGATOR BASED ON ANN

Dr. Salam A. Ismaeel *

Received on: 29 / 12 / 2005
Accepted on: 5 / 12 / 2006

1. Introduction

Navigation is the determination of a
physical body's position and velocity relative
to some reference coordinate frame or
coordinate grid [1]. Inertial instruments (i.e.,
accelerometers and gyros) do not rely on
detection of fields created external to the
vehicle. They are self-contained and rely on
only physical laws of motion. Therefore
navigation systems based on inertial
instruments are inherently more robust to
interference than other systems [2]. This
concept refers to inertial navigation systems
(INSs).

Since there is a lack of researches towards
the conceptual intelligent navigator, this paper
is devoted to develop an intelligent navigator

That consists of artificial neural networks
(ANNs) based on Terrestrial SINS

algorithm described in [3]. Ultimately, the
intelligent navigator is expected to overcome
or, at least,

Reduce the limitations of the conventional
Based SINS algorithms. As each of these
limitations contributes to certain amount of
positional error accumulation during
computational errors [4], therefore, the
proposed new algorithms are expected to

Abstract
Most of the positioning technologies for modern inertial navigation systems have been

available for the last 25 years that has focused on development of the Strap-down Inertial
Navigation Systems (SINS) because of its low cost.

This paper presents an intelligent navigator to overcome the limitations of existing SINS
algorithms. This algorithm is based on Artificial Neural Network (ANN).

Using window based weight updating strategy; the intelligent navigator was evaluated using
several SINS hypothetical field tests data and the results demonstrated superior performance to
traditional navigator in the position domain.

 الخلاصةالخلاصة
 ركّزتْ على تطويرِ ،سنة الماضية 25ـ لل (SINS)ان أغلب التطوير في منضومات الملاحة من النوع الثابت

 .بسبب كلفتها المنخفضة خوارزمية الملاحة الأرضية،
ستندة على هذه الخوارزمية م. (INS)الموجودة في خوارزمية الـ تقييدات الملاح ذكي للتَغَلب على البحثقدم هذه ي

 الإصطناعية الشبكة العصبية)ANN.(إستعمال إستراتيجيةَب لاح الذكي الشبكة، نِاوزأجديد تلَ النافذةالم مة بأستخدام قُيدع
 في مجالِ ةالتقليدي ةلملاحعلى خوارزمية اأداء متفوقَ بينتوالنَتائِجِ . (SINS)مطبقة على منظومة يةبيانات إختبارات

 .الموقع تحديد

IJCCCE, VOL.7, NO.1, 2007 Intelligent SINS Navigator Based on ANN

2

reduce the impact of these limitations by
reducing the positional error accumulation
during navigation phase. Figure (1)

Illustrates the core components of this
navigator.

2. ANNS Based SINS Architecture

Being inspired by figure (1), the first step
toward building an intelligent navigator is to
provide the SINS architectures that can be
applied to generate and acquire necessary
navigation knowledge. Consequently, two
ANNs based SINS architectures are discussed
in the following sections.

2.1 Velocity Update Architecture

The first SINS architecture is called the
Velocity Update Architecture (VUA) which
consists of a two layered feed-forward neural
network with Levenberg-Marqudrt and
conventional generalized Delta-Rule back

Propagation learning algorithms applied

for off-line and on-line learning [5],
respectively. It integrates the data from inertial
measurement unit (IMU) and mimics the
dynamical model of the vehicle to generate
navigation knowledge. Thus based on six
degree of freedom (6DoF) equations of motion
block shown in figure (2), designed in
SimuLink, acquired navigation knowledge can
be applied to predict the vehicle’s velocity
during IMU errors in real time.

The topology of the VUA is illustrated in
figure (3). The input neurons receive the
acceleration (AINS (t)) and angular velocity at
current epoch (AVINS (t)).

The number of hidden neurons is decided
empirically. The output neurons generate
velocity in the local level frame at the current
epoch in North, East, and Down velocities
(NVUA (t), EVUA (t), and DVUA (t)), respectively.
Thus, the navigation knowledge can be learnt,
stored and accumulated during the availability
of the INS signal. On the other hand, during
INS signal absence or IMU errors, the latest
acquired navigation knowledge can be
retrieved from the navigation information
database, see section three for more details, of

the intelligent navigator to predict the velocity
in real time.
2.2 Position and Velocity Update
Architecture

The second INS architecture is named the
Position and Velocity Update Architecture
(PVUA). It consists of two different two
layered feed-forward neural networks that
work in parallel. Similar to VUA, PVUA is
applied to generate navigation knowledge
which can be used to provide, in real time, the
vehicle's position and velocity during IMU
errors.

The topologies of PVUA are illustrated in
figure (4). In fact, PVUA is the combination of

a Velocity Update Architecture (VUA)

with a modified version of the PUA.
The input neurons of the PUA receive the

velocity (NVUA (t), EVUA (t), and DVUA (t)) from
VUA and time epoch (t). The output neuron
generates PUA estimated position (NPUA (t),
EPUA (t), and DPUA (t)).

During INS signal absence, similar to
VUA, the latest acquired navigation
knowledge obtained through use of the PVUA
can be retrieved from the database of the
intelligent navigator to predict the positions
(NPUA (t), EPUA (t), and DPUA (t)) in real time.
3. Navigation Information Database

The second step towards building the
intelligent navigator is to store the learnt
navigation knowledge provided by INS
algorithms presented in the previous section.
As a result, a navigation information database
(NAViBASE) that contains the acquired and
learnt navigation knowledge can serve as the
"brain" of the intelligent navigator. Therefore,
several issues regarding the NAViBASE are
addressed as follows:
 Content of NAViBASE: The database
consists of the training samples (input vectors
and desired output vectors) and estimated
synaptic weights during the availability of the
IMU signal. Thus, these components can be
regarded as the navigation knowledge. In other
words, the content of the database varies with
the topologies of different INS algorithm (i.e.,
according to navigation solutions that will be

IJCCCE, VOL.7, NO.1, 2007 Intelligent SINS Navigator Based on ANN

3

given by INS algorithm).
 Distributed navigation knowledge storage:
The content of NAViBASE becomes more
complicated with complicated INS
architectures. Therefore, considering the
efficiency of database maintenance and
retrieval, the navigation knowledge learnt by
each sub-component should be stored
individually in a distributed way, as shown in
figure (5).
 Off-line database maintenance: The
simplest way to reduce the storage requirement
is to remove any redundant training samples
that include inputs and their corresponding
desired outputs. As for the synaptic weights,
they should be kept without any change as
they are the core component of the navigation
knowledge. Using VUA as an example, a
simple procedure that can be applied prior to
navigation (i.e., during alignment) or after
navigation before shutting down the system, is
given below:
1. Regroup the training samples: Using

one of the training inputs (i.e., AINS (t) or
AVINS (t)) as the index; the training inputs
can be regrouped to increase the efficiency
for maintenance.

2. Locate redundant navigation
knowledge: Although it is difficult to locate
a pair of training samples that are exactly the
same, searching the most similar pairs of
training samples using threshold values then
deciding if they are redundant or not is
possible.

3. Remove the redundant navigation
knowledge.

The implementation of NAViBASE was
done with MatLab application. Up to now, the
intelligent navigator has been given the ability
to generate, and learn navigation knowledge
and it also has been given the "space" to store
navigation knowledge. However, there is still
one thing missing. It requires a way to
accumulate the acquired and learnt navigation
knowledge and store them for further
retrieving or generalization.

4. Window Based Weights Updating
Strategy

As the synaptic weights are the core
components of the navigation knowledge, the
final step towards building the intelligent
navigator is to develop a strategy to
accumulate the acquired navigation knowledge
by updating the synaptic weights whenever the
IMU signal is available (i.e., no sensor errors
or absence of signal).

In most of their applications, ANNs are
trained using some known training data set
(input/desired output) to obtain the optimal
values of the synaptic weights via off-line
training. For any other set of inputs, different
from those used in training, the synaptic
weights can then be applied to provide
prediction of the network outputs. It is worth
mentioning that ANNs weights are frozen after
completing the training procedure and no
further modification will be made during the
prediction process [6].

In fact, off-line training can work well in
case of slowly changing time sequences [7]. In
the case of INS navigation applications, it is
required to track direction changes and mimic
the motion dynamics utilizing the latest
available INS data. In other words, the
synaptic weights should be updated during the
navigation process to adapt the network to the
latest INS sensor readings whenever the INS
signal is available.

To implement such criterion, a window-
based weights updating strategy, which utilizes
the synaptic weights obtained during the
conventional off-line training procedure (or
probably from previous navigation missions)
is stored in the NAViBASE and is presented in
this research. This criterion utilizes the latest
available navigation information provided by
the INS signal window to adapt the stored
synaptic weights so that they can be applied to
mimic the latest motion dynamic. The
window-updated synaptic weights are stored
after each training stage. They are then used as
initial values for the weights to be estimated
during the next training window or for
prediction during INS signal absence. Prior to
looking into the details of the window based
weights updating strategy, several aspects of
traditional weights updating strategies are

IJCCCE, VOL.7, NO.1, 2007 Intelligent SINS Navigator Based on ANN

4

given. Traditional methods can be classified
as:
1. Sample-by-sample training, also

known as on-line or sequential training, that
modifies the weights for each input record
after computing the weights updates;

2. Batch training, which computes the
synaptic weight updates for each sample and
stores these values (without changing the
weights). At the end of the whole training
procedure, all the synaptic weight updates
are added together and then the weights are
modified with the accumulated synaptic
weight updates [7].

From an online operational point of view,
the sequential mode of training is preferred
over the batch mode since less local storage is
required. In addition, the random presentation
of the pattern makes it less likely for the
standard back-propagation algorithm to be
trapped in a local minimum if the sequential
mode of training is utilized. In contrast, the use
of batch mode provides a more accurate
estimate of the gradient vector, thus giving
more accurate estimation of the weights [7].

Another major advantage of sequential
training over batch training arises if there is a
high degree of redundancy in the data.

On the other hand, the sequential training
updates the weights after receiving each record
of the input samples. Therefore, it will not be
affected by such highly redundant data.
However, during batch training, the network
can learn more general relationships as it
utilizes most of the available training data at
the same time instead of sample by sample.
Both generalization and training efficiency are
very critical for INS applications, therefore,
developing a special weights updating strategy
that can preserve the generalization ability
without losing too much training efficiency is
very important.

4.1 Development of Window Based Weights
Updating Strategy

Although the stored weights might not be
able to provide accurate prediction during all
INS absence, it can be applied as the initial
weights at the beginning of a new navigation
mission. The INS window signal concept is

then applied to introduce new navigation
knowledge to modify stored synaptic weights
during navigation. In fact, this method
combines the advantages of both sequential
mode and batch mode of training in order to
make the training procedure suitable for real-
time processes. In addition, the weights of
each window are then updated via batch
training mode. In other words, the weights of
each window are updated sequentially. As
depicted in figure (6), the procedure of the
window-based weights updating method is
given below:
 Weights initialization: The initial weights
can be obtained using previously stored
weights that are stored in NAViBASE or
random initialization. In this work, the initial
weights were obtained using random
initialization. After that, the weights were
stored in NAViBASE after each navigation
mission could be applied as the initial weights
for the next mission.
 INS signal reception: At the next INS
window, INS (i+1), the stored weights or the
initial synaptic weights, W (i-1), are updated
utilizing the previous available INS
information (INS (i)). These weights are stored
as W (i) after training was completed. This
step is repeated until IMU signal blockage is
detected.
 INS Absence: As depicted in figure (6), in
case of a INS blockage (after INS (i)), W(i-l)
is first applied for real time prediction), the
prediction using W (i-1) and the training of W
(i) can be operated in parallel. For
simplification, the update procedure during
INS blockage can be paused thus W (i-1) is
applied to provide prediction during entire INS
blockage and it can be updated after the
reception of next available INS signal window.

Since the ANNs training procedure takes
time, updating the synaptic weights
immediately at the latest available sample of
INS signal before blockage is difficult.
However, the utilization of the proposed
method can still provide reasonable prediction
accuracy during INS blockage since it
provides the latest updated weights instead of
real time updated weights for real time
prediction. Therefore, failure in providing real

IJCCCE, VOL.7, NO.1, 2007 Intelligent SINS Navigator Based on ANN

5

time updated synaptic weights doesn't mean
the intelligent navigator is not able to provide
real time prediction. On the contrary, it can
utilize the latest acquired and learnt navigation
knowledge to provide real time solutions.
Combining the latest INS window signals,
stored weights can be adaptively updated to
follow the latest motion dynamics thus
improving the prediction accuracy during INS
blockage.

4.2 Training Procedures

The training samples acquired for the
window based weights updating strategy can
be arranged through using the following two
procedures:
 One step training procedure: The training
samples acquired for each INS window during
navigation are the combination of stored
training samples (T(NAViBASE)) and
available training samples obtained at the end

of each INS window ( 


n

i
iTW

1
, n is the nth

window). In other words, as the size of
training samples increases during navigation,
the size of NAViBASE grows during
navigation as well.

The advantage of the one step training is
that it can provide better generalization of the
navigation knowledge by incorporating stored
and previous training samples during
navigation. The one step training procedure is
recommended at the early stage for building
the intelligent navigator as the navigation
knowledge acquired by the navigator at this
moment might not be enough to provide
acceptable accuracy during INS blockages. As
the size of NAViBASE is quite small, the
incorporation of stored training samples
doesn't slow down the learning process during
each window; actually, it can provide better
generalization of the navigation knowledge,
but when the size of NAViBASE increases
this will slow down learning process.
 Two steps training procedure: The training
samples acquired for each INS window during
navigation are obtained at the end of each INS
window (TW(i)). After navigation, all the
training samples acquired during the
navigation are recalled and combined with the

stored training samples (T(NAViBASE)) then
fed into the navigator to improve the
generalization of navigation knowledge using
a conventional off-line batch training method.
This procedure is recommended for the regular
operational stage for building the intelligent
navigator. After several field tests, the
navigator might accumulate enough navigation
knowledge to provide navigation solutions
during navigation without incorporating stored
training samples. In other words, the size of
training samples is the same as the INS
window. Therefore, the training speed during
each window is expected to be faster than the
previous procedure.

After navigation, all the training samples
acquired during the current navigation are
recalled and combined with the stored training
samples first to remove redundant navigation
knowledge, and are then re-trained to improve
the generalization of the navigation knowledge
for future navigation missions. This will
ensure to keep NAViBASE at specific size to
avoid slowing down learning process.

The key factor that can accelerate the
learning is the generalization of navigation
knowledge. The perfect solution is to obtain
the most generalized navigation knowledge
that can then be fed into the navigator in one
field test. However, that is not the case for real
life applications. Therefore, the navigator must
have the ability to evolve during each
navigation mission to provide generalized
navigation knowledge for future missions.
Thus, using the proposed INS architectures,
NAViBASE, and window based weights
updating strategy, the intelligent navigator has
the ability to generate and accumulate the
navigation knowledge. In other words, it can
learn and evolve continually to provide
updated navigation knowledge and fill the gap
between INS blockages.
5. Performance Analysis of the Intelligent
Navigator

The evaluation and the performance of
ANN based SINS architectures, NAViBASE,
and the window based weight updating
strategy, will be discussed in the section.
 Prediction by NAViBASE

IJCCCE, VOL.7, NO.1, 2007 Intelligent SINS Navigator Based on ANN

6

The durations of both tests were about 350
seconds. During duration of the first test no
IMU signal blockage periods were
intentionally introduced for the purpose of
using trajectory to obtain the stored weights
for the estimation of the second field test. The
first trajectory in terms of position in three
directions North, East, and Down is shown in
the Figures (7a-c), respectively. During the
duration of the second test INS signal
blockage periods were intentionally introduced
for the whole navigation period (i.e., 350
second) in regular form.

VUA and PVUA were implemented as the
SINS architectures for the intelligent
navigator. IMU measurements obtained during
the 1st field test were fed into the VUA and
PVUA to obtain navigation knowledge (stored
synaptic weights) for the 2nd field test. Thus,
the NAViBASE was applied to fill the gap
between IMU signal blockages during the
second field test. In order to compare the
performance of the intelligent navigator
against ANN based INS technique (PVUA),
and conventional INS techniques, three
different periods were considered as gaps in
time domain at:
1. (50-100), 50 seconds,
2. (150-200), 50 seconds,
3. (250-275), 25 seconds.

These periods represent blockage of IMU
signal for three times.

It can be noticed from Figures (8a-c), the
intelligent navigator provided stable solutions
along the whole test of 350 seconds.

Although the redundant navigation
knowledge resulted in several error peaks or
oscillations, intelligent navigator based on
both VUA, and PUVA demonstrated the
ability to reduce the impact of time growing
errors in the long term.

The last three Figures demonstrated the
prediction ability of proposed architectures. It
is a significant difference and improvement in
comparison with time growing error
characteristics of the conventional SINS
described in [4].
 Performance of the window based weight
updating strategy

To evaluate the performance of the
window based weight updating strategy, two
different window sizes were considered (5s,
10s). In addition, 70 windows, 35 windows
were implemented with stored weights
obtained via the 1st field test for each size
respectively. Data were then updated utilizing
the proposed method and 2nd field test data
with the availability of an IMU signal. In case
of an INS blockage, the latest updated weights
were applied to provide real time prediction, as
shown in figure (9).

The window based weights updating
strategy with stored weights can provide
alternative weight updating algorithms for INS
and can improve the position accuracy during
INS blockages. The preliminarily results
demonstrated the potential to incorporate the
intelligent navigator as the alternative
navigation algorithm for next generation of
navigation systems as it can overcome or
reduce the limitations of conventional
techniques.

6. Conclusions
The conclusions drawn from the results
presented in this paper are:
1. The parameters of the intelligent

navigator are included in the navigation
knowledge. Thus, they can be updated
without a human expert during navigation
whenever newly updated navigation
knowledge is acquired.

2. The PVUA architecture is
recommended as the INS architecture for
systems using a navigation grade IMU. It
can achieve high level positioning accuracy
requirement for real time prediction without
INS computation components.

3. The results presented in this work
strongly indicate the potential of including
the intelligent navigator as the core
navigation algorithm for the next generation
navigation system.

7. References
1. Kenneth R. Britting. (1971), Inertial

Navigation Systems Analysis, by Johan
Wiley and Sons, Inc.

2. Xiaohong Zhang. (2003): "Integration
of GPS with A Medium Accuracy IMU for

IJCCCE, VOL.7, NO.1, 2007 Intelligent SINS Navigator Based on ANN

7

Meter_Level Positioning", M.Sc. Thesis,
Department of Geometrics Engineering,
University of Calgary.

3. Salam A. Ismaeel. (2003): “Design of
Kalman Filter of Augmenting GPS to INS
Systems” Ph.D. Thesis, Computer
Engineering Dept., College of Engineering,
Al-Nahrain University.

4. Salam A. Ismaeel and Sameir A.
(2005): “Development of Six-Degree of

Freedom Strapdown Terrestrial INS
Algorithm”, Journal of Um-Salama for
Science, vol. 2, no.1, pp.155-164.

5. Matlab Toolboxes
6. Ham, F.M. and Kostanic, I. (2001):

Principles of Neuro Computing for Science
and Engineering. McGraw-Hill.

7. Saad, D. (1998): "On Line Learning in
Neural Networks", Cambridge University
Press.

 AINS (t) AVINS (t)

NVUA (t) EVUA (t) DVUA (t)

Figure 3: Topology of VUA

Output Neurons

Hidden Neurons

Input Neurons

 Figure 1: Core components of the intelligent

navigator

Figure 2: Six degree of freedom (6DoF) simulation

IJCCCE, VOL.7, NO.1, 2007 Intelligent SINS Navigator Based on
ANN

8

INS1 INS2 INS3 Blockage INS4 INS5 Blockage

Measurement
Domain

INSi Blockage

Time

Domain

INS Time Window Blockage Period Training Time

W(0)

W(INS2) W(INS1) W(INS3) W(INS3) W(INS5) W(INS4)

NAViBASE W(0)

W(0) W(INS1) W(INS2) W(INS3) W(INS3) W(INS4)

W(0) Stored Weights in NAViBASE W(INSi) Updated Weights at INSi window

Training Training

Training

Prediction Training

Training

Prediction

Solution
Domain

Figure 6: Window based weights updating strategy

NPUA(t)

Output Neurons

Hidden Neurons

Input Neurons

VUA c) Down

Figure 4: Topology of PVUA

EPUA(t)

DPUA(t)

DVUA(t)

EVUA(t)

NVUA(t)

NVUA(t)

EVUA(t)

DVUA(t)

AINS(t)

AVINS(t)

Figure 5: Distributed navigation knowledge storage

IJCCCE, VOL.7, NO.1, 2007 Intelligent SINS Navigator Based on
ANN

9

INS1 INS2 INS3 ………… INS9 INS10 Blockage

2nd field test

1st field test

NAViBASE

Figure 9: Window-based weights updating strategy

SINS
PUA

a) North direction

Figure 7: Position of the intelligent navigator (without
prediction) in a) North, b) East and c) down directions

b) East direction

c) Down direction Figure 8: Stable position prediction in the intelligent
navigator in a) North, b) East, and c) Down directions

a) North direction

b) East direction

c) Down direction

