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1. Introduction 

Navigation is the determination of a 
physical body's position and velocity relative 
to some reference coordinate frame or 
coordinate grid [1]. Inertial instruments (i.e., 
accelerometers and gyros) do not rely on 
detection of fields created external to the 
vehicle. They are self-contained and rely on 
only physical laws of motion. Therefore 
navigation systems based on inertial 
instruments are inherently more robust to 
interference than other systems [2]. This 
concept refers to inertial navigation systems 
(INSs). 

Since there is a lack of researches towards 
the conceptual intelligent navigator, this paper 
is devoted to develop an intelligent navigator  

That consists of artificial neural networks  
(ANNs) based on Terrestrial SINS 

algorithm described in [3]. Ultimately, the 
intelligent navigator is expected to overcome 
or, at least,  

Reduce the limitations of the conventional  
Based SINS algorithms. As each of these 
limitations contributes to certain amount of 
positional error accumulation during 
computational errors [4], therefore, the 
proposed new algorithms are expected to 
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reduce the impact of these limitations by 
reducing the positional error accumulation 
during navigation phase. Figure (1)  

Illustrates the core components of this 
navigator.  

 
2. ANNS Based SINS Architecture 

Being inspired by figure (1), the first step 
toward building an intelligent navigator is to 
provide the SINS architectures that can be 
applied to generate and acquire necessary 
navigation knowledge. Consequently, two 
ANNs based SINS architectures are discussed 
in the following sections. 

 
2.1 Velocity Update Architecture 

The first SINS architecture is called the 
Velocity Update Architecture (VUA) which 
consists of a two layered feed-forward neural 
network with Levenberg-Marqudrt and 
conventional generalized Delta-Rule back  

 
Propagation learning algorithms applied 

for off-line and on-line learning [5], 
respectively. It integrates the data from inertial 
measurement unit (IMU) and mimics the 
dynamical model of the vehicle to generate 
navigation knowledge. Thus based on six 
degree of freedom (6DoF) equations of motion 
block shown in figure (2), designed in 
SimuLink, acquired navigation knowledge can 
be applied to predict the vehicle’s velocity 
during IMU errors in real time.  

The topology of the VUA is illustrated in 
figure (3). The input neurons receive the 
acceleration (AINS (t)) and angular velocity at 
current epoch (AVINS (t)). 

The number of hidden neurons is decided 
empirically. The output neurons generate 
velocity in the local level frame at the current 
epoch in North, East, and Down velocities 
(NVUA (t), EVUA (t), and DVUA (t)), respectively. 
Thus, the navigation knowledge can be learnt, 
stored and accumulated during the availability 
of the INS signal. On the other hand, during 
INS signal absence or IMU errors, the latest 
acquired navigation knowledge can be 
retrieved from the navigation information 
database, see section three for more details, of 

the intelligent navigator to predict the velocity 
in real time. 
2.2 Position and Velocity Update 
Architecture 

The second INS architecture is named the 
Position and Velocity Update Architecture 
(PVUA). It consists of two different two 
layered feed-forward neural networks that 
work in parallel. Similar to VUA, PVUA is 
applied to generate navigation knowledge 
which can be used to provide, in real time, the 
vehicle's position and velocity during IMU 
errors.  

The topologies of PVUA are illustrated in 
figure (4). In fact, PVUA is the combination of  

 
 
a Velocity Update Architecture (VUA) 

with a modified version of the PUA.    
The input neurons of the PUA receive the 

velocity (NVUA (t), EVUA (t), and DVUA (t)) from 
VUA and time epoch (t). The output neuron 
generates PUA estimated position (NPUA (t), 
EPUA (t), and DPUA (t)).  

During INS signal absence, similar to 
VUA, the latest acquired navigation 
knowledge obtained through use of the PVUA 
can be retrieved from the database of the 
intelligent navigator to predict the positions 
(NPUA (t), EPUA (t), and DPUA (t)) in real time. 
3. Navigation Information Database 

The second step towards building the 
intelligent navigator is to store the learnt 
navigation knowledge provided by INS 
algorithms presented in the previous section. 
As a result, a navigation information database 
(NAViBASE) that contains the acquired and 
learnt navigation knowledge can serve as the 
"brain" of the intelligent navigator. Therefore, 
several issues regarding the NAViBASE are 
addressed as follows: 
 Content of NAViBASE: The database 
consists of the training samples (input vectors 
and desired output vectors) and estimated 
synaptic weights during the availability of the 
IMU signal. Thus, these components can be 
regarded as the navigation knowledge. In other 
words, the content of the database varies with 
the topologies of different INS algorithm (i.e., 
according to navigation solutions that will be 
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given by INS algorithm). 
 Distributed navigation knowledge storage: 
The content of NAViBASE becomes more 
complicated with complicated INS 
architectures. Therefore, considering the 
efficiency of database maintenance and 
retrieval, the navigation knowledge learnt by 
each sub-component should be stored 
individually in a distributed way, as shown in 
figure (5). 
 Off-line database maintenance: The 
simplest way to reduce the storage requirement 
is to remove any redundant training samples 
that include inputs and their corresponding 
desired outputs. As for the synaptic weights, 
they should be kept without any change as 
they are the core component of the navigation 
knowledge. Using VUA as an example, a 
simple procedure that can be applied prior to 
navigation (i.e., during alignment) or after 
navigation before shutting down the system, is 
given below: 
1. Regroup the training samples: Using 

one of the training inputs (i.e., AINS (t) or 
AVINS (t)) as the index; the training inputs 
can be regrouped to increase the efficiency 
for maintenance. 

2. Locate redundant navigation 
knowledge: Although it is difficult to locate 
a pair of training samples that are exactly the 
same, searching the most similar pairs of 
training samples using threshold values then 
deciding if they are redundant or not is 
possible. 

3. Remove the redundant navigation 
knowledge. 

The implementation of NAViBASE was 
done with MatLab application. Up to now, the 
intelligent navigator has been given the ability 
to generate, and learn navigation knowledge 
and it also has been given the "space" to store 
navigation knowledge. However, there is still 
one thing missing. It requires a way to 
accumulate the acquired and learnt navigation 
knowledge and store them for further 
retrieving or generalization. 

 
4. Window Based Weights Updating 
Strategy 

As the synaptic weights are the core 
components of the navigation knowledge, the 
final step towards building the intelligent 
navigator is to develop a strategy to 
accumulate the acquired navigation knowledge 
by updating the synaptic weights whenever the 
IMU signal is available (i.e., no sensor errors 
or absence of signal ). 

In most of their applications, ANNs are 
trained using some known training data set 
(input/desired output) to obtain the optimal 
values of the synaptic weights via off-line 
training. For any other set of inputs, different 
from those used in training, the synaptic 
weights can then be applied to provide 
prediction of the network outputs. It is worth 
mentioning that ANNs weights are frozen after 
completing the training procedure and no 
further modification will be made during the 
prediction process [6]. 

In fact, off-line training can work well in 
case of slowly changing time sequences [7]. In 
the case of INS navigation applications, it is 
required to track direction changes and mimic 
the motion dynamics utilizing the latest 
available INS data. In other words, the 
synaptic weights should be updated during the 
navigation process to adapt the network to the 
latest INS sensor readings whenever the INS 
signal is available. 

To implement such criterion, a window-
based weights updating strategy, which utilizes 
the synaptic weights obtained during the 
conventional off-line training procedure (or 
probably from previous navigation missions) 
is stored in the NAViBASE and is presented in 
this research. This criterion utilizes the latest 
available navigation information provided by 
the INS signal window to adapt the stored 
synaptic weights so that they can be applied to 
mimic the latest motion dynamic. The 
window-updated synaptic weights are stored 
after each training stage. They are then used as 
initial values for the weights to be estimated 
during the next training window or for 
prediction during INS signal absence. Prior to 
looking into the details of the window based 
weights updating strategy, several aspects of 
traditional weights updating strategies are 
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given. Traditional methods can be classified 
as:  
1. Sample-by-sample training, also 

known as on-line or sequential training, that 
modifies the weights for each input record 
after computing the weights updates; 

2. Batch training, which computes the 
synaptic weight updates for each sample and 
stores these values (without changing the 
weights). At the end of the whole training 
procedure, all the synaptic weight updates 
are added together and then the weights are 
modified with the accumulated synaptic 
weight updates [7]. 

From an online operational point of view, 
the sequential mode of training is preferred 
over the batch mode since less local storage is 
required. In addition, the random presentation 
of the pattern makes it less likely for the 
standard back-propagation algorithm to be 
trapped in a local minimum if the sequential 
mode of training is utilized. In contrast, the use 
of batch mode provides a more accurate 
estimate of the gradient vector, thus giving 
more accurate estimation of the weights [7]. 

Another major advantage of sequential 
training over batch training arises if there is a 
high degree of redundancy in the data.  

On the other hand, the sequential training 
updates the weights after receiving each record 
of the input samples. Therefore, it will not be 
affected by such highly redundant data. 
However, during batch training, the network 
can learn more general relationships as it 
utilizes most of the available training data at 
the same time instead of sample by sample. 
Both generalization and training efficiency are 
very critical for INS applications, therefore, 
developing a special weights updating strategy 
that can preserve the generalization ability 
without losing too much training efficiency is 
very important. 

 
4.1 Development of Window Based Weights 
Updating Strategy 

Although the stored weights might not be 
able to provide accurate prediction during all 
INS absence, it can be applied as the initial 
weights at the beginning of a new navigation 
mission. The INS window signal concept is 

then applied to introduce new navigation 
knowledge to modify stored synaptic weights 
during navigation. In fact, this method 
combines the advantages of both sequential 
mode and batch mode of training in order to 
make the training procedure suitable for real-
time processes. In addition, the weights of 
each window are then updated via batch 
training mode. In other words, the weights of 
each window are updated sequentially. As 
depicted in figure (6), the procedure of the 
window-based weights updating method is 
given below: 
 Weights initialization: The initial weights 
can be obtained using previously stored 
weights that are stored in NAViBASE or 
random initialization. In this work, the initial 
weights were obtained using random 
initialization. After that, the weights were 
stored in NAViBASE after each navigation 
mission could be applied as the initial weights 
for the next mission.  
 INS signal reception: At the next INS 
window, INS (i+1), the stored weights or the 
initial synaptic weights, W (i-1), are updated 
utilizing the previous available INS 
information (INS (i)). These weights are stored 
as W (i) after training was completed. This 
step is repeated until IMU signal blockage is 
detected. 
 INS Absence: As depicted in figure (6), in 
case of a INS blockage (after INS (i)), W(i-l) 
is first applied for real time prediction), the 
prediction using W (i-1) and the training of W 
(i) can be operated in parallel. For 
simplification, the update procedure during 
INS blockage can be paused thus W (i-1) is 
applied to provide prediction during entire INS 
blockage and it can be updated after the 
reception of next available INS signal window. 

Since the ANNs training procedure takes 
time, updating the synaptic weights 
immediately at the latest available sample of 
INS signal before blockage is difficult. 
However, the utilization of the proposed 
method can still provide reasonable prediction 
accuracy during INS blockage since it 
provides the latest updated weights instead of 
real time updated weights for real time 
prediction. Therefore, failure in providing real 
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time updated synaptic weights doesn't mean 
the intelligent navigator is not able to provide 
real time prediction. On the contrary, it can 
utilize the latest acquired and learnt navigation 
knowledge to provide real time solutions. 
Combining the latest INS window signals, 
stored weights can be adaptively updated to 
follow the latest motion dynamics thus 
improving the prediction accuracy during INS 
blockage. 

 
4.2 Training Procedures 

The training samples acquired for the 
window based weights updating strategy can 
be arranged through using the following two 
procedures:  
 One step training procedure: The training 
samples acquired for each INS window during 
navigation are the combination of stored  
training samples  (T(NAViBASE)) and 
available training samples obtained at the end 

of each INS window (  


n

i
iTW

1
, n is the nth 

window). In other words, as the size of 
training samples increases during navigation, 
the size of NAViBASE grows during 
navigation as well.  

The advantage of the one step training is 
that it can provide better generalization of the 
navigation knowledge by incorporating stored 
and previous training samples during 
navigation. The one step training procedure is 
recommended at the early stage for building 
the intelligent navigator as the navigation 
knowledge acquired by the navigator at this 
moment might not be enough to provide 
acceptable accuracy during INS blockages. As 
the size of NAViBASE is quite small, the 
incorporation of stored training samples 
doesn't slow down the learning process during 
each window; actually, it can provide better 
generalization of the navigation knowledge, 
but when the size of NAViBASE increases 
this will slow down learning process. 
 Two steps training procedure: The training 
samples acquired for each INS window during 
navigation are obtained at the end of each INS 
window (TW(i)). After navigation, all the 
training samples acquired during the 
navigation are recalled and combined with the 

stored training samples (T(NAViBASE)) then 
fed into the navigator to improve the 
generalization of navigation knowledge using 
a conventional off-line batch training method. 
This procedure is recommended for the regular 
operational stage for building the intelligent 
navigator. After several field tests, the 
navigator might accumulate enough navigation 
knowledge to provide navigation solutions 
during navigation without incorporating stored 
training samples. In other words, the size of 
training samples is the same as the INS 
window. Therefore, the training speed during 
each window is expected to be faster than the 
previous procedure. 

After navigation, all the training samples 
acquired during the current navigation are 
recalled and combined with the stored training 
samples first to remove redundant navigation 
knowledge, and are then re-trained to improve 
the generalization of the navigation knowledge 
for future navigation missions. This will 
ensure to keep NAViBASE at specific size to 
avoid slowing down learning process. 

The key factor that can accelerate the 
learning is the generalization of navigation 
knowledge. The perfect solution is to obtain 
the most generalized navigation knowledge 
that can then be fed into the navigator in one 
field test. However, that is not the case for real 
life applications. Therefore, the navigator must 
have the ability to evolve during each 
navigation mission to provide generalized 
navigation knowledge for future missions. 
Thus, using the proposed INS architectures, 
NAViBASE, and window based weights 
updating strategy, the intelligent navigator has 
the ability to generate and accumulate the 
navigation knowledge. In other words, it can 
learn and evolve continually to provide 
updated navigation knowledge and fill the gap 
between INS blockages. 
5. Performance Analysis of the Intelligent 
Navigator 

The evaluation and the performance of 
ANN based SINS architectures, NAViBASE, 
and the window based weight updating 
strategy, will be discussed in the section. 
 Prediction by NAViBASE 
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The durations of both tests were about 350 
seconds. During duration of the first test no 
IMU signal blockage periods were 
intentionally introduced for the purpose of 
using trajectory to obtain the stored weights 
for the estimation of the second field test. The 
first trajectory in terms of position in three 
directions North, East, and Down is shown in 
the Figures (7a-c), respectively. During the 
duration of the second test INS signal 
blockage periods were intentionally introduced 
for the whole navigation period (i.e., 350 
second) in regular form.  

VUA and PVUA were implemented as the 
SINS architectures for the intelligent 
navigator. IMU measurements obtained during 
the 1st field test were fed into the VUA and 
PVUA to obtain navigation knowledge (stored 
synaptic weights) for the 2nd field test. Thus, 
the NAViBASE was applied to fill the gap 
between IMU signal blockages during the 
second field test. In order to compare the 
performance of the intelligent navigator 
against ANN based INS technique (PVUA), 
and conventional INS techniques, three 
different periods were considered as gaps in 
time domain at: 
1. (50-100), 50 seconds, 
2. (150-200), 50 seconds, 
3. (250-275), 25 seconds. 

These periods represent blockage of IMU 
signal for three times. 

It can be noticed from Figures (8a-c), the 
intelligent navigator provided stable solutions 
along the whole test of 350 seconds. 

Although the redundant navigation 
knowledge resulted in several error peaks or 
oscillations, intelligent navigator based on 
both VUA, and PUVA demonstrated the 
ability to reduce the impact of time growing 
errors in the long term. 

The last three Figures demonstrated the 
prediction ability of proposed architectures. It 
is a significant difference and improvement in 
comparison with time growing error 
characteristics of the conventional SINS 
described in [4]. 
 Performance of the window based weight 
updating strategy 

To evaluate the performance of the 
window based weight updating strategy, two 
different window sizes were considered (5s, 
10s). In addition, 70 windows, 35 windows 
were implemented with stored weights 
obtained via the 1st field test for each size 
respectively. Data were then updated utilizing 
the proposed method and 2nd field test data 
with the availability of an IMU signal. In case 
of an INS blockage, the latest updated weights 
were applied to provide real time prediction, as 
shown in figure (9). 

The window based weights updating 
strategy with stored weights can provide 
alternative weight updating algorithms for INS 
and can improve the position accuracy during 
INS blockages. The preliminarily results 
demonstrated the potential to incorporate the 
intelligent navigator as the alternative 
navigation algorithm for next generation of 
navigation systems as it can overcome or 
reduce the limitations of conventional 
techniques. 
 
6. Conclusions 
The conclusions drawn from the results 
presented in this paper are: 
1. The parameters of the intelligent 

navigator are included in the navigation 
knowledge. Thus, they can be updated 
without a human expert during navigation 
whenever newly updated navigation 
knowledge is acquired. 

2. The PVUA architecture is 
recommended as the INS architecture for 
systems using a navigation grade IMU. It 
can achieve high level positioning accuracy 
requirement for real time prediction without 
INS computation components. 

3. The results presented in this work 
strongly indicate the potential of including 
the intelligent navigator as the core 
navigation algorithm for the next generation 
navigation system. 
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Figure 9: Window-based weights updating strategy 
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Figure 7: Position of the intelligent navigator (without 
prediction) in a) North, b) East and c) down directions 
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