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Abstract

The relatively new field of multiwavelets shows promise in removing some of
the limitations of wavelets. Multiwavelets offer more design options and hence can
combine all desirable transform features. In this paper several new algorithms for
computing advance transforms are proposed. Firstly a fast procedure for computing of
1-D and 2-D multiwavelet transforms is introduced. Secondly, for the first time, a
complete new procedure for computing of 3-D multiwavelet transforms is given.
Thirdly, the inverse procedures of all the above transform for multi-dimensional cases
are verified. In addition to the mathematical prove, all these new algorithms were
verified also using illustrated example.
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windows. The wavelet transform is
suited for nonstationary signals, such as

1-Introduction
The fundamental idea  behind

wavelets 1s to analyze the signal at
different scales or resolutions, which is
called multiresolution analysis. Wavelets
are a class of functions used to localize a
given signal in both space and scaling
domains. A family of wavelets can be
constructed from a mother wavelet.
Compared to Windowed analysis, a
mother wavelet is stretched or
compressed to change the size of the

very brief signals and signals with
interesting components at different
scales.

For best performance in some
applications, wavelet transform require
filters that combine a number of
desirable properties, such as
orthogonality and symmetry. The
relatively new field of multiwavelets
shows promise in removing some of the
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limitations of wavelets. Multiwavelets
offer more design options and hence can
combine all desirable transform features.

Over the past decade, the success
of wavelets in solving many difficult
problems has contributed to its
unprecedented popularity among many
research and development communities,
ranging from mathematics and computer
science to physics and engineering.
Multiwavelets, as an extension to
wavelets with only one basis, have also
generated significant interest as they
promise the potential to construct better
multifiliters with desirable properties
and lower computation complexity. The
challenge still remains as what
constitutes good multiwavelets and how
they can be constructed and applied
easily.

Multiwavelets are new addition to
the body of wavelet theory. The study of
multiwavelets  was  initiated by
Goodman, Lee and Tang in [1]. Then
Goodman and Lee in [2] discovered the
characterization of scaling functions
wavelets. In [3], Jia constructed a class
of continuous orthogonal double
wavelets with symmetry, short support,
and orthogonality. The special case of
[3] with multiplicity 2 and support [0,2],
was studied by Chui and Lian [4].
Generally, after the presentation of
prefilter technique, multiwavelets with
multiplicity 2 can be applied in image
compression application successfully [5-
8].

2-Preliminaries of Multiwavelets

The wavelet transform is a type of signal
transform that is commonly used in
image compression. A newer alternative
to the wavelet transform 1is the
multiwavelet transform. Multiwavelets
are very similar to wavelets but have
some  important  differences. In
particular, whereas wavelets have an
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associated scaling function ¢(s) and
wavelet function w(z), multiwavelets

have two or more scaling and wavelet
functions. For notational convenience,
the set of scaling functions can be
written using the vector notation

o) =[t) 92(0) - 0.0
®(r)is called the multiscaling function.

Likewise, the multiwavelet function is
defined from the set of wavelet functions

as¥()=lyi() v2() - v, ()] . When n
=1, ¥() is called a scalar wavelet, or

where

simply wavelet. While in principle n can
be arbitrarily large, the multiwavelets
studied to date are primarily for n=2.

The multiwavelet two-scale equations
resemble those for scalar wavelets [9]:

o(1)=2 3 H (2 ~k)
k=—o0

e
¥()=+2 3 G020~ k)
k=—0

Q)

However, that #,and G, are matrix
filters, 1.eH,and G,are nxn matrices

instead of scalars. The matrix elements
in these filters provide more degrees of
freedom than a traditional scalar
wavelet. These extra degrees of freedom
can be wused to incorporate useful
properties into the multiwavelet filters,
such as orthogonality, symmetry, and
high order of approximation. The key,
then, is to figure out how to make the
best use of these extra degrees of
freedom. Multifilter construction
methods are already being developed to
exploit them. However, the multi-
channel nature of multiwavelets also
means that the subband structure
resulting from passing a signal through a
multifilter bank is different. Sufficiently
different, in fact, so that established
quantization methods do not perform as
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well with multiwavelets as they do with symmetry, and compact support, which
wavelets [10]. A very important cannot be achieved by any scalar
multiwavelet filter i1s the GHM filter wavelet basis. Where H, for GHM
proposed by Geronimo, Hardian, and system are four scaling matrices Hy, H; ,
Massopust [11]. The GHM basis H>, and H;[12]:

offers a combination of orthogonality,

3 4 3
W25 s o ° 00
H0= 1 ’le 9 N H2= 9 3 N H3= 1 .(3)

3 1 T T = -— 0
-— ——— - — 20 1042 20
20 1042 20 2
also, G, for GHM system are four wavelet matrices Gy, G;, G2, and G3:
13 91 9 3 LI
20 20 20
Go=| ; 12\5 Gi=| % V2| g, ) 10;5 Gy=| 2 . .. (4
P, = -7 0 7 _= -
102 10 10v2 102 10 1072
The low pass filter #, and high pass multiwavelet transform, the next steps
filter G, consist of coefficients should be followed:

1. Checking input dimensions: Input
vector should be of length N, where N
must be power of two.

2. Constructing a  transformation
matrix: using GHM low and high pass
filters matrices given in (3) and (4), the
transformation matrix can be written as
follows:

corresponding to the dilation equation
(1) and wavelet equation (2). However in
the multiwavelet setting these
coefficients are n by n matrices, and
during the convolution step they must
multiply vectors (instead of scalars).
This means that multifilter banks need »
input rows. The most obvious way to get
input rows from a given signal is to

repeat the signal. Two identical rows go Ho Hy Hy Hy 0 0

into the multifilter bank. This procedure Go G Gy Gz 0 0
is called “Repeated row” which wW=0 0 Hy, H H, Hj
introduces oversampling of the data by a 0 0 Gy G G, G
factor of two. | o : : |
. ) .. (5
3-Discrete Multiwavelet Transform
Computation for 1-D and 2-D Signals After substituting GHM matrix filter
By using an over-sampled scheme of coefficients values as given by (5), a
preprocessing  (repeated row), the 2NX2N transformation matrix results.
discrete multiwavelet transform 3. Preprocessing the input signal by
(DMWT) matrix is doubled in dimension repeating the input stream with the same
compared with that of the input, which stream multiplied by a constant «. For
should be a square matrix NXN where N GHM system functions o =1/+2 .
must be power of two. Transformation 4. Transformation of input vector
matrix dimension equal input signal which can be done as follows:
dimension after preprocessing. To a. Apply matrix multiplication to
compute a single-level 1-D discrete the INX2N constructed
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transformation matrix by the 2N
preprocessing input vector.
b. Permute the resulting 2NxI
matrix rows by arranging the row
pairs 1,2 and 5,6 ....,2N-3,2N-2 after
each other at the upper half of the
resulting matrix rows, then the row
pairs 3,4 and 7,8,..., 2N-1,2N below
them at the next half.
Finally, a 2NxI DMWT matrix results
from the Nx1 original matrix using
repeated row.
To compute a single-level  2-D
discrete multiwavelet transform, the next
steps should be followed [13]:

1. Checking input dimensions: Input
matrix should be a square matrix NXN
matrix, where N must be power of two.
2. Constructing a transformation matrix
W using GHM low and high pass filters
matrices given in (3) and (4).

3. Preprocessing rows: doubles the
number of the input matrix rows. So if
the 2-D input is NXN matrix elements,
after row preprocessing the result is
2NXN matrix. The odd rows of the
resultant matrix are the same original
matrix rows values. While the even rows
are the original signal rows values
multiplied by o. For GHM system

functions a =1/v2 .

4. Transformation of input rows: can

be done as follows:
a. Apply matrix multiplication to
the 2Nx2N constructed
transformation matrix by the 2NXN
preprocessing input matrix.
b. Permute the resulting 2NXxN
matrix rows by arranging the row
pairs 1,2 and 5,6 ....,2N-3,2N-2 after
each other at the upper half of the
resulting matrix rows, then the row
pairs 3,4 and 7,8,..., 2N-1,2N below
them at the next half.

5. Preprocess columns: to repeat the

same procedure used in preprocessing

rows
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a. Transpose the row transformed
2NXN matrix resulting from step 4.

b. Repeat step 3 to the Nx2N matrix
(transpose of the row transformed
2NXN matrix) which results in
2NX2N column preprocessed matrix.

6. Transformation of input columns: is

applied next to the 2Nx2N column

preprocessed matrix as follows:
a. Apply matrix multiplication to
the 2NXx2N constructed
transformation matrix by the 2Nx2N
column preprocessed matrix.
b. Permute the resulting 2Nx2N
matrix rows.

7. To get the final transformed matrix:

a. Transpose the resulting matrix
from column transformation step.
b. Apply coefficients permutation to
the resulting transpose matrix.
Coefficient permutation is applied to
each of the basic four subbands of
the resulting transpose matrix so that
each subband permute rows then
permute columns.

Finally, a 2Nx2N DMWT matrix results

from the NXN original matrix using

repeated row.

A general example for computing 1-D

and 2-D DMWT using an over sampled

scheme of preprocessing involves the
following steps:

1. Let 8-component vector be the input
1-Dsignal, X=[xg x % x5 x4 % X ¥]

2. For an 8x1 imput 1-D signal, X,
construct a 8x8 transformation matrix,
W, using GHM low and high pass filters,

|Hy H, Hy, H; 0 0 0 0
Gy G G, G 0 0 0 0
0 0 Hy, H H, Hy 0 0
W - 0 0 Gy, G Gy, Gy 0 0
0 0 0 0 Hy, H H, H;
0 0 0 0 Gy G G, G
Hy, Hy 0 0 0 0 H, H
|G, Gz 0 0 0 0 Gy G|
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As GHM filters, H’s and G’s are 2x2
matrices, the transformation matrix, W,
dimension after substituting filters
coefficients value will be 16x16 matrix
with same dimension of the input matrix
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after repeated-row preprocessing.

3. Apply repeated row preprocessing to
the input X, which results in P matrix.

P=[x0 axy X OX;p Xp OXpy) X3 QX3 X4 OX4 X5 OX5 Xg OXg Xy ax7]

4. Transformation of input vector which
can be done as follows:

a. Let [z]=[w]x[P]"

Z=[zg 2z zy zy z4 z5s z¢ 27 Zg Z9 Zi0 Z11 Z12 713 Zi4
b. Permute Z which results in A matrix,
A=[zg zy z4 z5 zg z9 zip Z3 Zy Z3 Zg Z7 Zip 21 Zia

numerical example:

215]

215]

5 [ 11.738 | [ 11.738 |
3.5355 14.75 14.75
5 16 -1.25 5.9397
16 11.3137 ;| —7.9903 6.75
X = = P= =>Z=W.P = = A=
3 5.9397 -1.25
2.1213 6.75 —7.9903
7 -0.25 -0.25
| 4.9497 | |-2.6163 |-2.6163
Hy, H, H, H,
For a 2-D signal the following steps will Gy G G, G
be involved: W= H, Hy H, H,
G, G3 Gy G

1. Let 4x4 matrix be the input 2-D

signal,
X0,0 Xo01 X02 X03
X1,0  *,1 X120 %13
X = il £l £l >
X20 X21 X22 X23
3,0 X310 ¥32 0 433 N

2. For an 4x4 matrix input 2-D
signal, X, construct a 4x4
transformation matrix, W, using
GHM low and high pass filters,

32

2Nx2N

As GHM filters, H’s and G’s are
2X2 matrices, the transformation
matrix, W, dimension after
substituting filters coefficients
value will be 8x8 matrix with
same dimension of the input
matrix after repeated-row
preprocessing.
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3. Apply row preprocessing to the row preprocessing which results

in PR matrix.

input matrix X, using repeated

X0,0 X0,1 X0,2 X0,3
a x0,0 (04 )CO’] (04 xO’z a )CO’3
X0,0 *o01 Y02 X03 X1,0 X1,1 X1,2 X1,3
X X1 X2 X a X ax; axpp ox
X = ,0 5 5 ,3 = PR = ,0 . s ’3
X2,0 X201 *22 X23 X2,0 X2,1 X2,2 X23
X X X X ax ax ax ax
30 X310 *32 X33 N 2,0 2,1 2,2 2,3
X3,0 X31 X3,2 X33
_a X3’0 o X3’1 o X3’2 o X3’3 Jonsn
4. Apply row transformation
a. Let [z]=[W]x[PR]
b. Permute Z which results in P matrix,
20,0 20,1 %02 203 20,0 20,1 202 203
210 21,1 212 213 210 211 212 213
22,0 Z21 222 223 24,0 Z41 Z42 Z43
zZ zZ 1 zZ 2 zZ zZ zZ 1 zZ 2 zZ
7|30 %3 3, 33 — p=| 30 s 5, 53
Z40 Z4)1 Z42 7243 Z20 2201 “Z22 223
250 251 %52 253 230 231 432 233
26,0 261 262 263 26,0 Z61 262 263
z z z z z z z z
1270 270 272 273 |hnun 1270 271 272 273 |hnun
5. Apply columns preprocessing
a. Transpose [P] matrix,
20,0 “Z1,0 22,0 230 Z40 Z50 260 27,0
[P]’ %001 211 221 231 Z41 251 Zel Z7
20,2 21,2 Z22 Z32 Z42 Z52 Z62 Z72
z z z z z z z z
03 “13 723 733 Z43 Z53 263 Z73 [nvon
t .
b. Preprocess [P] which results
in 2NX2N column preprocessed matrix [PC].
20,0 21,0 22,0 23,0 24,0 25,0 26,0 27,0
@zpp @z *220 AZ30 @AZ4p *Z50 *XZgp *Z790
20,1 Z11 22, 23 Z4, Z51 Z6,1 271
PC - @zo) @z @zpy) @zzp AZ4) @z AZg) (z7)
20,2 21,2 22,2 232 242 252 26,2 27,2
dxzop @*Zzyp @ZzZpzp @*zZ3p @AZup (*Z5p AZgy A Z7)
20,3 213 223 Z33 Z43 Z53 26,3 Z73
|#Z03 @213 *Zp3 OZ3z3 (I3 (Zs3z AZe3 (HZ73 |,

33
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6. Transformation of input columns b. Permute  the  resulting
a. Let [B]=[w]x[PR] 2Nx2N matrix to get [BB]
matrix.
boo boy bop boz boa bos boe bo7 boo Doy bop boz boa bos bog
bio by by bz bis bs b by bio by by bz bis bs b
byo by by byz by bys byg by byo bay bap bz byg bys byg
B byo by b3y byz b3y bys by by BB bso bsy bsy bsz bsy bss bsg
bao b4y bap bsz baa bss bye baz byo byy bry byz bry bys bog
bsog bsy bsy bs3 bsy bss bsg bsg byo by b3y b3z b3y bys byg
beo bei bep bs3 bea bes bee be7 bso be1 bep b3z bea bes beg
|b70 D71 Do biz bra bys big byg 1070 b7y D12 biz bra bys by
7. To get the final transformed b. Apply coefficients
matrix: permutation to the [Y]
a. Transpose [BB] to get matrix to get [YY]
[Y]. matrix.
Yoo Yoi JYo2 Vo3 Yoa Yos Yoo Yo7 Yoo Yo2 Yoi Vo3 Yo4 Yoe Yos Yo7
Y10 Y1 Y2 Vi3 S V4 Vs Ve VT Y2.0 Y22 Yoi Y23 Va4 Voe Va5 Vo
Y20 Y21 Yoo Y23 Vo4 V25 Va6 Vo Mo Yz Vi Y3 Y4 Ve Vs g
_)/3,0 y3,l _)/3’2 _)/3’3 : _)/3’4 _)/3’5 y3,6 _)/3’7 _)/3’0 _)/3’2 y3,l _)/3’3 : _)/3’4 y3,6 _)/3’5 _)/3’7
Va0 Yal Y42 Va3 i Vas V45 Vae Va7 Va0 Va2 Va1l Va3 i Vas Vae V45 Va7
_)/5,0 yS,l _)/5’2 _)/5’3 _)/5’4 _)/5’5 y5,6 _)/5’7 y6,0 y6,2 y6,l y6,3 y6,4 y6,6 y6,5 y6,7
y6,0 y6,l y6,2 y6,3 y6,4 y6,5 y6,6 y6,7 _)/5’0 _)/5’2 yS,l _)/5’3 _)/5’4 y5,6 _)/5’5 _)/5’7
_)/7,0 y7,l _)/7’2 _)/7’3 _)/7’4 _)/7’5 y7,6 _)/7’7 _)/7’0 _)/7’2 y7,l _)/7’3 _)/7’4 y7,6 _)/7’5 _)/7’7
So, [Y] is the final single-level 2-D DMWT matrix.
Numerical example:
[ 16 2 3 13
113137 1414 2.1213 9.1924
16 2 3 13 5 1 10 8
5 11 10 8 35355 7778 7.071  5.6569
X = ——>PR=
9 7 6 12 9 7 6 12
4 14 15 1 6364 49497 42426 84853
4 14 15 I
| 2.8284  9.8995 10.6066 0.7071]
[17.9605  6.6468 72125 16.2635 ] [17.9605  6.6468 72125 16.2635 ]
40500 114500  9.9500  8.5500 40500 114500  9.9500  8.5500
209500 04500  -0.0500  0.5500 10.6066 128693 123037 123037
S | 48790 -4dsis 40305 36062 | | 65500 119500 134500 20500
“110.6066  12.8693 123037 123037 T| 209500 04500  -0.0500  0.5500
65500 119500  13.4500  2.0500 209500  -4.4548  -4.0305  3.6062
25500 -2.0500 -1.5500  1.0500 25500 -2.0500 -1.5500  1.0500
| 64347 -68589 -72832 77075 | | 64347  -68589 -72832 77075 |

34

bo7 |
b5

by
bs 7
by 7
b3 7
bs 7

b7 7 |
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17.9605  4.0500 10.6066  6.5500
¥ 6.6468 11.4500 12.8693 11.9500
7.2125  9.9500 12.3037 13.4500
16.2635  8.5500 12.3037  2.0500
[17.9605  4.0500 10.6066  6.5500
12.7000  2.8638  7.5000  4.6315
6.6468 11.4500 12.8693 11.9500
pe | 4-7000  8.0964  9.1000  8.4499
7.2125  9.9500 12.3037 13.4500
5.1000  7.0357  8.7000  9.5106
16.2635  8.5500 12.3037  2.0500
[11.5000  6.0458  8.7000  1.4496
[20.6000  8.8671 15.9600 11.5541
4.0729 12.6250 13.1805 13.9750
-2.5739  1.1750  0.3111  2.0250
2.7600 -2.5244 -0.8400 -0.1909
B=114.02000 13.4775 17.4000 14.1846
19.0636  6.7750 11.7663  0.6250
2.8001 -1.7750 -0.5374 -1.4250
|-1.1600 -1.7183 -0.7600  4.4336
[20.6000  8.8671 15.9600 11.5541
4.0729 12.6250 13.1805 13.9750
14.0400 13.4775 17.4000 14.1846
19.0636  6.7750 11.7663  0.6250
BB=| 5 5730 1.1750  0.3111  2.0250
2.7600 -2.5244 -0.8400 -0.1909
2.8001 -1.7750 -0.5374 -1.4250
|-1.1600 -1.7183 -0.7600  4.4336
20.6000  4.0729 14.0400 19.0636 }
8.8671 12.6250 13.4775 6.7750 g
15.9600 13.1805 17.4000 11.7663 }

[20.6000 14.0400 4.0729 19.0636

15.9600 17.4000 13.1805 11.7663

8.8671 13.4775 12.6250 6.7750

Y¥ = 11.5541 14.1846 13.9750 0.6250

“|-0.7495  0.1838  0.5750  0.2250

1.6546 -1.0889 -2.9750 2.1750

2.9400 -2.4600 -6.5973 5.9185

| 3.4600 -3.9400 -10.3733 11.0521
A general computer program
computing a single-level DMWT using
an over-sampled scheme of
preprocessing (repeated row
preprocessing) is  written  using

MATLAB v.6.5 for a general NXN 2-D

35
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-0.9500 4.8790 2.5500 6.4347 |
0.4500 -4.4548 -2.0500 -6.8589
-0.0500 -4.0305 -1.5500 -7.2832
0.5500 3.6062 1.0500 7.7075 |
-0.9500 4.8790 2.5500 6.4347 ]
-0.6718 3.4500 1.8031 4.5500
0.4500 -4.4548 -2.0500 -6.8589
0.3182 -3.1500 -1.4496 -4.8500
-0.0500 -4.0305 -1.5500 -7.2832
-0.0354 -2.8500 -1.0960 -5.1500
0.5500 3.6062 1.0500 7.7075
0.3889 2.5500 0.7425 5.4500 |
-0.7495 2.9400 1.6546 3.4600 ]
0.5750 -6.5973 -2.9750 -10.3733
0.1250 =-2.1425 -0.9250 -3.5143
-0.6152 2.2500 1.2940 2.5500
0.1838 -2.4600 -1.0889 -3.9400
0.2250 5.9185 2.1750 11.0521
-0.3250 2.3122 1.1250 3446
-0.7990 -1.0500 0.1202 -3.7500]
-0.7495 2.9400 1.6546 3.4600 |
0.5750 -6.5973 -2.9750 -10.3733
0.1838 -2.4600 -1.0889 -3.9400
0.2250 5.9185 2.1750 11.0521
0.1250 -2.1425 -0.9250 -3.5143
-0.6152 2.2500 1.2940 5500
-0.3250 2.3122 1.1250 3446
-0.7990 -1.0500 0.1202 —-3.7500]
-2.5739 2.7600 2.8001 -1.1600 |
1.1750 -2.5244 -1.7750 -1.7183
0.3111 -0.8400 -0.5374 -0.7600
114250, 0:4338
N e
2.3122 -1.0500
1.1250 0.1202
3.3446 -3.75000
-2.5739 2.8001 2.7600 -1.1600]
0.3111 -0.5374 -0.8400 -0.7600
1.1750 -1.7750 -2.5244 -1.7183
2.0250 -1.4250 -0.1909 4.4336
0.1250 -0.3250 -0.6152 -0.7990
-0.9250 1.1250 1.2940 0.1202
-2.1425 2.3122 2.2500 -1.0500
-3.5143 3.3446 2.5500 -3.7500]

signal (or image). As shown in Fig.(1-a),
the original “Lena” image dimensions is
512x512 (NxN). After a single-level of
multiwavelets decomposition using an
over-sampled scheme of preprocessing,
image dimensions will be a matrix of
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1024x1024 (2Nx2N) as shown in Fig.
(1-b).The upper-left most, LILI,
subband of 256x256 dimension, is
zoomed in as in Fig. (1-c).

4- 3-D_Discrete Multiwavelet
Transformation Algorithm

This transformation is a useful
one that changes information from the
spatial domain into a local frequency
domain. In the discrete case, the
integrals can be reduced to simple
arithmetic operations. This applies to a
one-dimensional signal as well as to the
2-D, 3-D, or higher-dimensional case.
This simple 1-D scheme can be lifted to
higher dimensional cases. For a 2-D
multiwavelet transformation, the
algorithm is applied in x-direction first,
and then in y-direction. Similarly, in 3-D
multiwavelet transformation the
structures are defined in 3-D and the
transformation algorithm is applied in x-,
y- and z-direction successively. One
cycle for an n-dimensional data set is
defined as the completion of the
algorithm for all » directions.

To apply this hierarchical scheme
to volume data sets (Fig 2-a), a 3-D
multiwavelet transformation must be
implemented. Therefore, the 2-D scheme

1. Let NXNXM be the input 3-D signal,

The Determination of 3D Multiwavelet Transform

as described in the example given above
is extended into the z-direction. The size
of the array must be a power of two in
each dimension. Unused areas can be
filled with zeros. If we apply this
algorithm to data set (ctbrain.vols)
shown in Fig. (3) [14], which consists of
512 x 512 x 231 elements, we need to
scale the size of the array to the closest
powers of two, 1.e., 512 X 512 x 256. The
algorithm is iitially run in x-direction,
row by row for all 231 slices. The
algorithm splits the volume into two
halves, the left half representing the low-
frequency coefficients while the right
half represents the detail coefficients, as
shown in Fig. (2-b). In the second stage
of the algorithm, the entire volume is
then again transformed in y-direction
splitting the volume into four quadrants
as shown in Fig. (2-c). For the final run,
the volume is transformed in z-direction
splitting the volume into eight octants.
The upper left front octant contains the
low-frequency coefficients that are
initially transmitted over the network. A
general example for computing 3-D
DMWT using an over sampled scheme
of preprocessing involves the following
steps:

I X0,0 XYo@ Y02 X03
X0,0 *o,1 X022 X073 X1 11 *2 X
l X0,0 *o,1 X0,2 0,3 0 ’ ’ o
X X X X X X X X
X0,0 Xo1 Y02 X03 X0 X X2 X3 Lo AL A2 A3 2,0 X201 X202 X23
X X X X X X X X
_ Lo MLl M2 X3 | xp0 Xp1 Xpp X233 20 Tl 2 s A
X= x x x x X30 X31 X32 X33
2,0 *21 2,2 X273 X30 31 *32 X33
X30 X31 X32 X33

36
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2. Apply 2-D DMWT algorithm to

each NXN input matrix,

which

The Determination of 3D Multiwavelet Transform

result in a 2NX2NXM Y matrix.
doo doy dop dos doa dos dog dog
dig diy dip diz dig dis dig dig
dyo dyy dyp dyy dyy dys dyg dyg
dyg d3y dip diz diys dzs dig diyg
dys dig dy
.0 ., €, €3 ‘4 C5 C,6 o7 & 6 7
dss dsg dsg
o0 ‘1 ‘2 a3z ‘4 A5 e €7 ’ ’
des deg de7
€0 €1 €2 €3 €24 C5 C6 €27
d7s5 dye d77
¢ €31 €32 €33 €34 €35 C36 C37
C45 C46 Ca7
y= boo boy bon boz boa bos boe boz o e
55 Cs56 Cs57
big by b bs ba bs b by e
65 €66 €6,
byo byy bry bys bygy bys by by o e .
75 €16 €17
bsg b3y b3n b3z b3g bys byg b3y
bys b baz
ap0 901 42 93 94 905 40,6 9,7 b b b
a a a a a a a a 55756 US57
L0 A1 A2 A3 a4 Qs A dy
bes bee e
Ao 4d1 dyp dp3 dy4 Gps5 dpe Ay b b b
75 D16 D17
azg das) daszp 4z3 as4 43s d3g 437
as0 441 Q42 Q43 Q44 Q45 Q46 Q47
aso ds] A4sp 4s3 ds4 dss5 dse A5y
a0 961 Y62 963 964 G65 dee 67
ajo 471 472 473 4d74 a75 A7 A7
3. Apply 1-D DMWT algorithm to GHM system
each 2Nx2N (64 element) in all M functionsa = 1//2..
matrices in z-direction. Which can be c. Constructing an  2Mx2M
done as follows: transformation  matrix  using

a. For each 1i,j construct the

Mx1

Y(i, j)= [ai,j b; ¢,
where i, j =0,1,2,--- 2N

input vector

]T
L dixm

b. Preprocessing the input vector
Y (i, j) by repeating the input
stream with the same stream

multiplied by a constanta. For

37

GHM low and high pass filters.
d. Apply matrix multiplication
to the 2Mx2M constructed
transformation matrix by the
2Mx1 preprocessing  input
vector.

e. Permute the resulting 2Mx1

matrix rows by arranging the row



IJCCCE, Vol.6, No.2, 2006

pairs 1,2 and 5,6 ....,2M-3,2M-2
after each other at the upper half
of the resulting matrix rows, then
the row pairs 3,4 and 7.,8,..., 2M-
1, 2M below them at the next
half.

4. Repeat step 3 for all 1, j .

5. Finally, a 2Nx2Nx2M DMW

matrix result from the NXNxM

original matrix using repeated row
preprocessing.

A general computer program
computing a single-level 3-D DMWT
using an over-sampled scheme of
preprocessing (repeated row
preprocessing) is  written  using
MATLAB v.6.5 for a general NXNXM 3-
D signal (or image). An example test is
applied to “Rubic’s Cube sequence”. In
this image sequence a rubic’s cube is
rotating counterclock wise on a turn
table. It consists of 256x240x4 elements

38
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as shown in Fig. (4-a). The size of array
must be a power of two in each
dimension. Unused area can be filled
with zeros. The size of the array is scaled
to the closest power of two 1ie.
256x256x4. The algorithm is initial run
in 2-D for all 4 frames as shown in
Fig.(4-a). Then a 1-D DMWT is applied
in z-direction.

As shown in Fig.(4-a), the original
“Rubic’s Cube” image dimensions is
256x256x4 (NXNxM). After a single-

level 2-D of multiwavelets
decomposition using an over-sampled
scheme of preprocessing, image
dimensions will be a matrix of
512x512x4 (2NX2NxM). After a single-
level 1-D of multiwavelets
decomposition using an over-sampled
scheme of preprocessing, image
dimensions will be a matrix of

512x512x8 (2Nx2Nx2M) as shown in
Fig. (4-b). The upper-left-front most
subband of 256x256 dimensions is
zoomed in as in Fig. (4-c).
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Numerical example:

The Determination of 3D Multiwavelet Transform

3 2 1 5
2 1 4 1
T 10 114 o 1 1
12 0 1 12 1 10
6 2 3 13[1 1 2 0o 2 ¢4 ¢ [3 1 01
X= 5 1 10 8|3 0 1 1 3 0 1 2
9 7 6 1212 1 1 0
4 14 151I I
4.8000 4.9400 2.0577 5.5932 -0.3465 0.2192 0.3100 -1.2100
2.4200 1.5800 0.1768 1.8031 -0.2475 0.3889 0.6900 0.3100
1.6476 3.9457 1.3450 -0.1800 0.8450 -0.3800 1.7324 1.5556
4.0517 0.8344 0.5950 3.0700 -0.9050 0.8700 -0.1768 -0.0707
-0.7566 -0.4384 -0.3550 -0.8800 0.1450 -0.0800 0.1768 0.2828
0.6576 0.4101 0.2950 1.2700 -0.2050 0.0700 -0.3182 -0.6364
-0.2700 -1.3400 -0.7000 1.3859 -0.55806 0.25406 -0.8300 -1.3200
-0.4300 1.1400 0.2758 1.3718 0.1344 -0.3253 -0.1700 -1.1800
2.4200 0.8400 1.05306 1.3364 -0.36006 0.3465 -0.2700 0.1700
2.1000 2.1800 1.9587 1.7466 -0.0212 -0.0919 -0.4300 -0.3700
2.1072 1.1879 1.3325 0.1575 -0.0175 0.1575 0.0884 0.9016
2.9557 1.5415 -0.6425 2.6825 -0.4925 0.6825 1.1137 0.2298
-0.2970 0.1980 0.4825 -0.1925 0.1325 -0.1925 -0.2652 -0.1591
-0.0141 -0.2970 -0.2425 0.0825 -0.0925 0.0825 -0.0177 -0.0530
-0.9800 -0.0400 0.5975 0.2086 0.1025 -0.3571 -0.8150 -0.9850
-1.2200 -0.6600 1.0996 -0.9864 0.1803 -0.4207 -1.1850 -0.5150
2.4200 1.2600 2.2062 1.0748 -0.1980 0.0849 -0.8400 0.0400
3.9600 1.8200 0.0141 1.7819 -0.4101 0.7920 1.3400 1.3600
1.7466 2.1708 0.8050 0.1050 0.3050 0.0050 1.0253 1.1667
2.1708 0.6859 1.3050 0.3550 -0.1950 0.2550 -0.2475 0.6718
0.3323 0.1909 -0.5450 0.2550 -0.0450 0.1550 0.5303 0.2475
-0.2333 -0.3041 0.4550 0.0050 -0.0450 -0.0950 -0.6010 -0.3889
0.7100 -0.6100 -0.6010 1.0960 -0.45906 0.3889 -0.1300 -0.3700
-0.0100 -0.1900 -0.0354 0.7425 -0.1768 0.0354 -0.3700 -0.6300
20.6000 14.0400 4.0729 19.0636 -2.5739 2.8001 2.7600 -1.1600
15.9600 17.4000 13.1805 11.7663 0.3111 -0.5374 -0.8400 -0.7600
8.8671 13.4775 12.6250 6.7750 1.1750 -1.7750 -2.5244 -1.7183
11.5541 14.1846 13.9750 0.6250 2.0250 -1.4250 -0.1909 4.4336
-0.7495 0.1838 0.5750 0.2250 0.1250 -0.3250 -0.6152 -0.7990
1.65406 -1.0889 -2.9750 2.1750 -0.9250 1.1250 1.2940 0.1202
2.9400 -2.4600 -6.5973 5.9185 -2.1425 2.3122 2.2500 -1.0500
3.4600 -3.9400 -10.3733 11.0521 -3.5143 3.344¢6 2.5500 -3.7500
YY(:lll):
21.4197 14.4335 4.9680 19.3280 -2.6320 2.8080 2.3759 -1.1314
17.4797 17.9973 13.0540 12.4040 0.1340 -0.1960 -0.2630 -0.1754
9.5190 14.2630 12.8396 6.7515 1.2926 -1.7550 -2.0640 -1.2060
12.3590 14.3330 14.3882 0.7693 1.9219 -1.3025 -0.2940 4.6740
-0.6010 0.2630 0.3380 0.3309 0.1047 -0.2560 -0.3840 -0.6860
1.5390 -1.2070 -2.7521 2.1553 -0.9348 1.0734 1.0260 -0.0460
3.2117 -2.6941 -6.7860 6.3240 -2.3160 2.4540 2.1722 -1.1964
3.4210 -3.9810 -10.2840 11.2560 -3.5540 3.3260 2.3674 -3.9796
YY(:,:,2) =
-1.3350 -1.6060 1.4945 -2.6704 0.2358 -0.3864 -1.4465 0.3815
1.0790 -1.1760 -2.0439 -0.22606 -0.4458 0.8128 1.2775 1.3175
0.43506 -0.4741 -1.4277 -1.1990 0.0072 0.4260 1.4188 1.6447
0.4356 -1.7646 -1.7777 0.8635 -0.6927 0.6885 0.1460 -0.1761
0.4144 0.2259 -0.4702 0.1835 -0.0353 0.1585 0.5385 0.3330
-0.5897 -0.1807 0.9397 -0.4690 0.1247 -0.2940 -0.8192 -0.3776
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-0.1940 -0.0325 0.9627 -0.1492 0.0506 -0.2128 -0.7765 -0.3710
-1.0460 0.3525 2.3571 -1.8696 0.5823 -0.7453 -1.2085 0.0560
YY(:,:,3) =
4.4321 2.9274 1.9160 3.6960 -0.5040 0.4360 -0.1358 -0.3451
3.1056 2.8284 2.0140 2.4940 -0.1260 0.0740 -0.1329 -0.2348
2.7850 2.8500 1.8897 0.0795 0.3412 -0.0053 0.8225 1.5525
4.6450 1.8800 -0.3836 3.9580 -0.8715 1.0448 1.0275 0.1975
-0.6150 0.0100 0.3270 -0.5639 0.1927 -0.2245 -0.1875 -0.0375
0.2650 -0.1200 -0.1149 0.6205 -0.1785 0.1114 -0.1525 -0.3225
-1.0847 -0.6081 0.2945 0.7945 -0.1355 -0.2455 -1.1589 -1.5351
-1.3902 -0.1697 1.2055 -0.3945 0.2355 -0.5545 -1.2452 -1.0105
YY (:,:,4) =
10.1350 8.6740 2.8557 10.7116 -1.0193 0.9747 1.2185 -1.5335
6.4690 6.1940 3.7296 4.8044 -0.1170 0.1870 0.4225 0.0725
3.7166 7.4455 4.7585 1.8247 1.1435 -0.9252 0.8195 0.7237
6.6157 4.7054 4.8210 2.5498 -0.1440 0.2498 -0.4356 1.1833
-0.9009 -0.4105 -0.2340 -0.7427 0.1510 -0.1428 0.0099 0.0484
1.1356 0.1375 -0.5865 1.8423 -0.4515 0.3923 0.1195 -0.5385
0.7860 -1.9725 -2.7337 2.9957 -1.1710 0.9875 0.0560 -1.3535
0.8740 0.0425 -3.0681 4.7790 -0.9539 0.7768 0.8590 -2.1115
YY(:,:,5) =
-3.7550 -2.8660 -0.7117 -3.7452 0.4338 -0.4713 -0.6065 0.3415
-2.8810 -2.9960 -2.0580 -2.0085 -0.0357 0.0209 -0.0625 -0.0425
-1.3110 -2.6449 -2.2327 -1.3040 -0.2978 0.4210 0.3935 0.4780
-1.7352 -2.4505 -3.0827 0.5085 -0.4978 0.4335 0.3935 -0.8478
0.0820 0.0350 0.0747 -0.0715 0.0097 0.0035 0.0081 0.0856
-0.3564 0.1234 0.4847 -0.4740 0.1697 -0.1990 -0.2181 0.0113
-0.9040 0.5775 1.5638 -1.2452 0.5102 -0.6017 -0.6465 -0.0010
-1.0360 0.5425 2.3925 -2.6121 0.7591 -0.7806 -0.8385 0.6860
YY(:,:,06) =
4.9738 3.1763 0.0495 4.8795 -0.7305 0.8695 1.1787 -0.1959
2.7139 4.5764 4.5375 2.8075 0.3575 -0.7225 -1.3216 -1.2594
2.1740 2.6555 3.5288 1.9290 0.0711 -0.4115 -1.4515 -0.9560
2.8540 4.1705 2.8076 0.8719 0.5519 -0.3373 0.5885 0.9290
-0.4960 0.0455 0.7393 -0.1181 0.1100 -0.2666 -0.6365 -0.4710
0.5640 -0.2695 -1.2548 0.5572 -0.2577 0.4087 0.7635 0.3040
-0.0170 -0.2298 -1.1805 0.9670 -0.2305 0.2370 0.4320 -0.3861
0.4978 -1.3541 -2.4645 2.1380 -0.8145 0.7680 0.4660 -0.7948
YY(:,:,7) =
5.3350 3.7340 0.7980 5.1184 -0.6728 0.7555 0.9085 -0.3235
4.0490 4.6140 3.5529 3.0013 0.1305 -0.2019 -0.2675 -0.2375
2.0690 3.4998 3.4135 2.0047 0.2985 -0.5452 -0.9129 -0.8319
2.5640 3.8711 4.2260 -0.5202 0.7610 -0.6202 -0.2588 1.2541
-0.1442 0.0279 0.1210 0.1373 0.0060 -0.0628 -0.1669 -0.2344
0.4780 -0.2726 -0.8815 0.5723 -0.2465 0.3222 0.4377 0.0979
1.0560 -0.6325 -2.0336 1.6097 -0.6124 0.7329 0.8860 -0.0335
1.3040 -1.0975 -3.3439 3.4072 -1.0882 1.1020 1.0290 -0.9315
YY(:,:,8) =
6.1985 2.9614 0.5605 4.8305 -0.9595 1.1405 0.9567 0.3231
5.5451 6.8646 6.0325 4.2125 0.3125 -0.5575 -1.0119 -0.7205
3.1860 3.3895 4.8203 3.0261 -0.0658 -0.4670 -2.2210 -1.5465
3.0060 5.8745 5.2764 -0.9549 1.3096 -0.9832 0.3640 1.9435
0.0560 0.3995 0.6449 0.5830 0.0014 -0.1524 -0.4860 -0.5815
0.2960 -0.7855 -1.5507 0.1375 -0.2850 0.4628 0.7890 0.4685
1.0918 -0.1591 -2.1420 1.6105 -0.4920 0.6905 1.2615 0.1421
1.3972 -2.5703 -4.2630 3.4845 -1.5130 1.5045 0.8811 -0.9412
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5- Inverse Discrete Multiwavelet
Transform Computation for 1-D
and 2-D Signals

To reconstruct the original signal

from the discrete  multiwavelets
transformed signal, the inverse discrete
multiwavelets  transform  (IDMWT)
should be used. Reconstruction matrix
which is the inverse (or transpose) of the
transformation matrix (5) of GHM four
mulltifilters matrices (3) and (4) can be
used for computing IDMWT. An over —
sampled scheme of post-processing
should be used in computing IDMWT

To compute a single level 1-D
Inverse discrete multiwavelets transform
using over-sampled scheme of post-
processing, the following steps should be
followed:

1. Apply shuffling by arranging the
row pairs 1, 2, and 3, 4, ..., N-1,
N of the 2Nx1 matrix to be the
row pairs 1, 2 and 5, 6, ..., 2N-1,
2N-2 of the resulting matrix and
arranging the row pairs N+1, N+2
and N+3, N+4, ..., 2N-1, 2N of
the 2Nx1 matrix to be the row
pairs 3, 4, and 7, 8,..., 2N-1,2N
of the resulting matrix.

2. Multiply a 2NX2N reconstruction
matrix (2NXx2N transformation
matrix (5) transpose) with the
resulting 2Nx1 shuffled matrix.

3. Apply postprocessing by
discarding the even rows 2,4, ...,
2N from the row reconstructed
2Nx1 matrix to have an NXxI
original reconstructed 1-D signal
matrix.

To compute a single level 2-D
Inverse discrete multiwavelets transform
using over-sampled scheme of post-
processing, the following steps should be
followed:

1. Coefticients shuffling, which is
applied to the DMWT 2Nx2N
matrix four basic subbands
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individually? For each subband,
coefficients shuffling, shuffles the
columns first then shuffles the
rOWsS.

2. Column reconstruction:

a. Transpose the postprocessed
2NX2N resultant matrix.

b. Apply Shuffling by arranging
the row pairs 1, 2, and 3, 4, ...,
N-1, N of the coefficients
shuffled  2Nx2N matrix
transpose to be the row pairs 1,
2 and 5, 6, ..., 2N-1, 2N-2 of
the resulting matrix and
arranging the row pairs N+1,
N+2 and N+3, N+4, ..., 2N-1,
2N of the 2Nx2N
postprocessed resultant matrix
transpose to be the row pairs 3,
4,and 7, 8,..., 2N-1,2N of the
resulting matrix.

¢. Multiply a 2NX2N
reconstruction matrix (2Nx2N
transformation  matrix  (5)
transpose) with the resulting
2Nx2N shuffled matrix.

3. Apply postprocessing by
discarding the even rows 2,4, ...,
2N from the column
reconstructed 2NX2N matrix to
have an NXx2N resultant matrix.

4. Row reconstruction

a. Transpose the postprocessed
NX2N resultant matrix.

b. Apply Shuffling by arranging
the row pairs 1, 2, and 3, 4, ...,
N-1, N of the 2NxN
postprocessed resultant matrix
transpose to be the row pairs 1,
2 and 5, 6, ..., 2N-1, 2N-2 of
the resulting matrix and
arranging the row pairs N+1,
N+2 and N+3, N+4, ..., 2N-1,
2N of the 2NXxN postprocessed
resultant matrix transpose to
be the row pairs 3, 4, and 7,
8,..., 2N-1,2N of the resulting
matrix.
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¢. Multiply a 2NX2N
reconstruction matrix (2NX2N
transformation  matrix  (5)
transpose) with the resulting
2NXN shuffled matrix.

5. Postrocessing, an over-sampled
scheme of postprocessing can be
done by discarding the even rows
2, 4, ..., 2N from the column
reconstructed 2NXN matrix to
have an NxN original
reconstructed 2-D signal matrix.

A general computer program
computing a single-level IDMWT
using an over-sampled scheme of
preprocessing (repeated row
preprocessing) is  written using
MATLAB v.6.5 for a general NxXN
2-D decomposed image.

An example test is applied to the
decomposed Lena image shown in
Fig. (1-b) to reconstruct the original
“Lena” image by using this computer
program of the method of computing
inverse  discrete  multiwavelets
transform using an over-sampled
scheme of postprocessing and the
result is shown in Fig. (5).

6- Inverse Discrete Multiwavelet
Transform Computation for 3-D
Signals

1. Apply 2-D IDMWT algorithm to
each resultant matrix from 3-D
DMWT.

2. Apply 1-D IDMWT algorithm to
each eclement in all resultant
matrices from 1 in z-direction.

A general computer program

computing a single-level 3-D IDMWT

using an over-sampled scheme of
preprocessing (repeated row
preprocessing)  is  written  using

MATLAB v.6.5 for a general NXNXM 3-
D decomposed image.

An example test is applied to the
decomposed Rubic’s cube image shown
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in Fig. (4-b) to reconstruct the original
“Rubic’s cube” image by using this
computer program of the method of
computing inverse discrete
multiwavelets transform using an over-
sampled scheme of postprocessing and
the result is shown in Fig. (6).

7- Conclusion

This paper presents a new 3-D
multiwavelets transform computation
methods that verify the potential benefits
of multiwavelets and gain a much
improvement in terms of low
computational complexity. The general
procedures with illustrated numerical
examples are described in details. The
verification of the new and developed
methods using a computational aspect
was also developed. Following are some
concluding remarks obtained:

1. A single level decomposition
in the multiwavelet domain is

equivalent to two scalar
wavelet decompositions. Thus
although computation
complexity is double for

DMWT compared to DWT,
the levels of computation are
less by half to get the same
image quality.

2. Multiwavelets filter banks
require a vector-valued input
signal. This is another issue
which is addressed when
multiwavelets are used in the
transform process. A scalar-
valued input signal must
somehow be converted into a
suitable vector-valued signal.
This conversion is called
preprocessing.

3. The most obvious way to get
two input rows from a given
signal is to repeat the signal
using repeated row



IJCCCE, Vol.6, No.2, 2006

preprocessing (over-sampled

scheme).
4. Using repeated row
preprocessing introduces an

oversampling of data by a
factor of 2 which doubles the
original image dimensions. In
the same time the upper-left
most subband (L;L;) of the
decomposed 1image, which
usually the 2™, 3 | ... level
of decompositions are applied
to it, has half dimensions of
the original.

5. Discrete multiwavelet
transform computation
algorithm using repeated row
preprocessing  should  be

applied to a matrix with a size
at least to 4x4.

6. Transformation matrix
dimensions used in computing

DMWT algorithms should
equal the dimensions of the
input image after
preprocessing.
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Fig. (1): Lena image, (a) Original, (b) After single level of
DMWT, (c) Zoomed in upper-left most, L;L;, subband of (b).
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(a) Original Volume (b) x-direction run (c) y-direction run (d) z-direction run

Fig.(2): 3-D Multiwavelet Transform.
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Fig.(3):cross section of the ctbrain.vols data set

Lk

(b) (©)

Fig. (4): Rubic’s Cube sequence image (a) Original (b) 1* frame after 3-D
DMWT and (c) Zoomed in upper-left front most subband after 3-D DMWT.
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(b)
Fig. (5): (a) Reconstructed Lena image and, (b) Original Lena image.

(b)

Fig. (6): (a) Reconstructed Rubic’s cube image and, (b) Original image.
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